
 

LAB 4      RLC Circuits 

 

Note:  Parts marked with * include calculations that you should do before coming to lab. 

 In this lab you will work with an inductor, a capacitor, and a resistor to demonstrate 

concepts of low-pass, bandpass, and notch filters, amplitude response (gain), phase response, 

power response, Bode plot, resonance and Q. 

 

Series RLC Circuits 

*1.  Simple filters 
 Figures 1 (a), (b), and (c) show low-pass, bandpass, and high-pass filters.  Write the 

transfer function H() for each of these filters, showing the ratio Vout/Vin  as a function of the 

 

Figure 1: Low-pass (a), bandpass (b) and high-pass (c) filters. 



 

angular frequency  of the input voltage. [2 p] 

 

*2.  The low-pass filter power calculations 

        (a) Show that the low-pass filter in Fig. 1 (a) above has a power response function: 
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 (b)  Show that this is a low-pass filter by finding the limits at  = 0 and  = . [1 p] 

                       (c) Under what conditions is |H| close to a maximum when = 0?   [1 p] 
  

The half-power points are the angular frequencies  where the value of |H()|2 is reduced to 

half the value at resonance.  

(d) Show that the half-power points for this circuit are  

1 0
2

R

L
   and   

2 0
2

R

L
   . 

  

Important note: You should use the approximation that the resonance peak width is small 

compared to the resonance frequency itself.  [1 p] 

 

The difference between half-power frequencies is the bandwidth of the resonance.                   

The Q of the resonance is equal to the resonance frequency divided by the bandwidth.  

 (e) Show that Q = 0L/R.  [1 p] 
 

3. The low-pass filter experiment 

Set up the series low-pass filter shown below. An input voltage of 1 V peak-to-peak is good.  

Notice that there is no discrete resistor.  The resistor in this circuit represents the 

resistance of the inductor plus the output resistance of the function generator (50 ohms). 

(a) Measure the resistance of the inductor, add the value contributed by the function 

generator, and use this sum in your calculations below. 

(b) *Calculate the resonance frequency and measure it by changing the function generator 

frequency. Use ‘scope B, as shown in Fig. 2 to find the maximum voltage output. You can use an 

AC DVM on Vout  to find a more precise maximum and resonance frequency. [2 p] 

 

Figure 2: Series Low-pass Filter. 



 

(c) *Calculate the phase shift at resonance and measure the phase shift by comparing 

‘scope A with ‘scope B.  You will get a more stable phase shift if you use the averaging 

capability in the Acquire menu. Print a screen showing input and output with phase shift. [2 p] 

 

(d) *Calculate and measure the ratio of input and output voltages at resonance.  

[Important note: Measure the input voltage as it comes out of the function generator with the rest 

of the circuit DISCONNETED.] [3 p] 

 

 (e) You should find that the output voltage is greater than the input!   Explain how a 

passive circuit like this can give a voltage gain. Is this a violation of Kirchoff’s Law? [1p]  

 

(f) Using the measured resonance frequency, L and R , calculate the Q.  [1 p] 

 

(g) *Using the C, L and R , calculate the Q.  [1 p] 

 

(h) Vary the   frequency to find the half-power frequencies and determine the Q from the 

measurements on ‘Scope B. (Note:  By definition, at the half-power frequencies the output 

voltage is smaller than the output at resonance by a factor of 1/SQRT(2) .)  (Note: Do not use the 

DVM to measure these voltages. Its frequency response is not flat enough. ) [3 p] 

 

(i) Measure the ratio of input and output voltages for very low frequency, about 1% of the 

resonance frequency.  From the transfer function you expect them to be the same.  Are they?  

What is the phase shift at very low frequency? [2 p] 

4. Reduced Q 

Reduce the Q of the filter by adding a 150  resistor in series with the inductor.   

Measure the resonance frequency. Do you expect that frequency to be changed?  Is it?  Calculate 

and measure the Q for this circuit.  [3 p] 

5. High-frequency limit 

 Measure the output voltages when the input frequency is 20 kHz and when the input 

frequency is 40 kHz.  Use these measured values to calculate the high-frequency response slope 

in dB per octave. Compare with the expected value of –12dB per octave, i.e. the output decreases 

by a factor of 4 when the frequency doubles (see the Appendix). [2 p] 

6. Bandpass Filter 

 (a) *Refer to your bandpass transfer function from Part 1. What is the resonance frequency? 

What is the gain at resonance? [2 p] 

 

Connect the same components as in Figure 3. 

 (b) Use the function generator, choosing a convenient significant figure on the display as you 

change the frequency with the knob, to show that this is a bandpass filter. [1 p] 

 

(c) Measure the resonance frequency, and measure the gain at resonance.  You can use the 

DVM for relative voltage measurements at a single frequency. Compare with your expectations 

from part (a). [2 p] 



 

 

 

 

(d) Measure the phase shift at resonance, *calculate an expectation, and compare. [2 p] 

(e) Measure the Q.  Compare with the Q of the lowpass filter above.  [2 p] 

 

(f) *Show from the transfer function that the amplitude response at high frequency is –6dB/ 

octave, namely the output decreases by a factor of 2 when the frequency doubles.   [1 p] 

 

(g) Measure the amplitude response at 20 kHz and 40 kHz to check  –6 dB/octave. [2 p] 

 

7. Parallel RLC Circuits 

 As an example of a parallel circuit, consider the filter Figure 4. 

(a) *Calculate its transfer function. [1 p] 

(b) *Explain why this is called a “notch” filter.  What is the frequency of the notch? [1 p] 

 

(c) Use L = 27 mH, C = 0.047 F and R = 150 .  Measure the depth of the notch by comparing 

the response at the bottom of the notch with the response at low or high frequency.  Why doesn’t 

the response actually go to zero at the bottom of the notch?  [2 p] 

(d) Use the function generator knob to control a convenient significant frequency digit to 

demonstrate the notch to the instructor and your neighbor. [1 p] 

 

 

 

 

Figure 3: Bandpass Filter. 

Figure 4: Parallel or Notch Filter. 



 

 

 

                                         Appendix: Asymptotic behavior 

 

A filter can be described by its asymptotic frequency dependence.  Although the transfer 

function may be a complicated, complex function of frequency, the asymptotic characteristic is 

simple.  For example, consider a low-pass filter with a transfer function that is inversely 

proportional to frequency in the limit of high-frequency. We say H()  -1. This applies to the 

bandpass filter of Fig. 1(b).  

 

In general, the asymptotic behavior of a low-pass filter is  H () n, where n is a 

negative number. Therefore, the filter has a gain characteristic of n20 decibels per decade 

(dB/decade). 

 

 Proof:  The gain characteristic in dB is  

 

     AdB = 20 dB log10|H()| . 

 

 If  increases by a factor of 10 (one decade), then the change in gain is  

 

     AdB = 20 dB log10|H(10)/H()| , 

 

and this is just  

     AdB = 20 dB log10[10n] = n dB . 

 

 Similarly, the asymptotic dependence can be given in dB/octave.  Whereas a decade 

stands for a factor of 10 in frequency, an octave stands for a factor of 2 in frequency.  If the 

asymptotic frequency dependence is, again, H()  n , then increasing the frequency by an 

octave leads to a gain change of   

 

     AdB = 20 dB log10[2
n] =  n6 dB . 

 

The asymptotic dependence describes the limiting slope of a Bode plot. 


