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Under transverse magnetic fields the two-dimensional electron energy spectrum trans-
forms into a set of essentially discrete Landau levels. Taking into account the non-para-
bolicity of the electron energy dispersion a quantum kinetic equation for the case of inelastic
scattering by phonons is obtained. This equation is valid over a wide temperature range
and at arbitrary ratios between the non-equidistance of the Landau levels (which is ¢on-
nected with both the non-parabolicity and the renormalization of the spectrum dué to
electron—phonon interaction) and their widths. The shape of the cyclotron resonance peak
is considered in the deformation potential approximation and also in the case of scattering
by phonons whose frequency is determined by their two-dimensional wave vector. In the
latter case from the shape of the peak it is possible to obtain the phonon dispersion law.

B nonepeuynoM MarHMTHOM I10JI€ CIEKTP BHEPIUHU JIBYMEDHBIX 3JIEKTPOHOB IIpei-
craBiigeT Ha0Op MUCKPeTHBIX ypoBHeil Jlammay. ITojiydeHo KBAHTOBOE KUHETH-
YecKoe ypaBHeHue B ciydae HEyIpyroro paccesHns Ha (oOHOHaAX ¢ ydeTOoM He-
napaloJIMYHOCTH HAUCIEDPCUHU JJIEKTPOHA. YpaBHEeHHe CHPABElJUBO B IIHMPOKOM
WHTEpBAaJIe TeMIIepaTyp 1 IPU IPOU3BOJILHOM COOTHOIIEHNN MEKIY HedKBUUCTAHT-
HOCTBIO ypoBHei JIannay (oHa cBsA3aHa ¢ HelapadoIMIHOCTLIO ¥ ¢ IIEPEHOPMHUPOB-
KOt cmexTpa, Oo0yCaoBJIeHHOW B3aumojielicTBueM ¢ (GOHOHAMU) M UX IIHPUHOIL.
Paccemorpena gopma nuka IMIKJIOTPOHHOI'O pe3oHaHca B Npubammenuu jgedopma-
LMOHHOTO IIOTEHIMAaJia, a TakKMe 1IPU paccesHuyd Ha (POHOHAX, YACTOTA KOTOPHIX
ompefeaserca UX [IBYMEPHBIM BOJHOBBIM BeKTOpoM. B mociegHeM ciiyuae 1o
Qopme MUIKa MOHKHO BOCCTAIIOBUTDL 3aKOH AUCHEPCUH (POHOHOB.

1. Introduetion

The gas of carriers in size-quantized systems (e.g. thin solid films [1] or narrow
surface layers in semiconductors [2]) is two-dimensional if the carrier concen-
tration and temperature are limited, so that all two-dimensional sub-bands
except the lowest one are empty. When the two-dimensional gas is inserted into
a transverse magnetic field H the encrgy spectrum of the carriers (for the sake
of concreteness we shall consider electrons) is transformed into a set of discrete
Landau levels. Optical absorption due to the transitions of electrons between
these levels (cyclotron resonance) was observed in the liquid He-gaseous He inter-
face [3] and in the inversion layer of p-type Si [4 to 6].

The peculiar properties of entirely quantized electrons are connected with the
discreteness of their energy spectrum. They are most clearly manifested at
wet > 1, where w, is the cyclotron frequency and 7 is the relaxation time.
At 0z > 1 the electron energy relaxation is due to essentially inelastic scatter-
ing by phonons (or to inelastic scattering by impurities; we shall consider pure
systems and scattering by impurities will be neglected). During the transition
of the electron between discrete Landau levels a phonon with corresponding fre-
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quency is emitted or absorbed. In the elementary act the parallel (to the two-
dimensional layer) momentum is conserved while the transverse momentum is
transferred to the “walls’ of the system. Such inelastic scattering differs quali-
tatively from the volume scattering by optical phonons where all components of
the momentum are conserved. We shall assume that w, and its overtones do not
coincide with singularities of the phonon density of states.

" The dynamics of electrons depends strongly also on their dispersion law. The
non-parabolicity of the dispersion leads to the non-equidistance of the discrete
Landau levels. The non-equidistance is due also to electron—phonon interaction
shifting the levels, the shift of different levels being different (two-dimensional
magnetic polaron). In the following it is assumed that the non-equidistance of
levels Aw, and the electron—phonon interaction are small so that Aw,, 77! < w,.

In {7] it was shown that the line shape of cyclotron resonance (CR) of non-
degenerate two-dimensional electrons at 7' ~ hw, (there were electrons in a few
Landau levels) depends strongly on the ratio Aw,/r~1. At Aw,> 7! a fine struc-
ture appears in the spectrum near w,. Different lines of the fine structure corre-
spond to transitions between different adjacent levels under the resonance elec-
tric field. The frequencies and the widths of the lines were determined in [7].
The fine structure of the CR spectrum is an attribute of two-dimensional systems.
In the three-dimensional case the fine structure may be observed if the disper-
sion in a plane perpendicular to His non-parabolic (Aw, > 7~1), while the elec-
tron energy equals to the sum of energies of the transverse (to H) and longitudi-
nal motion. With decreasing Aw,/r~* different lines of the fine structure overlap
and the CR spectrum becomes smooth (but asymmetric at Aw, == 0).

In this work the dynamics of entirely quantized nondegenerate electrons is
considered at arbitrary ratio Aw,/r~* over a wide temperature range. In Section 2
the Green’s function for the density matrix of electrons is introduced and using
it the equation for the conductivity in the range of the CR peak is obtained
(the equation for the two-particle Green’s function is derived in the Appendix).
In Section 3 the deformation potential approximation is analysed. In this appro-
ximation the conductivity is given by a comparatively simple expression. In
Section 4 the shape of the CR spectrum in the case of scattering by phonons
localized in a two-dimensional layer is investigated. Section 5 contains some
concluding remarks.

2. Green’s Function and Equation for Conduetivity

For the sake of simplicity we shall consider an isotropic two-dimensional
system. The results may be readily extended to the anisotropic case. The elec-
tron momentum and position vectors, p and r = (z, ) and the vector potential
A = (0, Hx) ((Hr) = 0) are supposed to be two-dimensional. The phonon is
specified by a two-dimensional wave vector ¢ and by an index j which deter-
mines the branch number of the phonon, its polarization and the quantum num-
ber of its transverse motion.

The Hamiltonian of the electron-phonon system is of the form

1 14
K= do+ s Ho=5 P+ gos

Pt + X wgjaqiaqg;, (1)
q)

J; = ) eqj €xp (1qT) ag; + c.c., P:p——z«A, h=1. (2)
qj
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Here m is the effective mass at the bottom of the band, w, = |e] Hjmc; V is the
non-parabolicity parameter (in Kane’s model ¥V = —2wc/fe,). The interaction
parameters gq; are agsumed to be small so that w7 > 1. The two-phonon inter-
action is investigated in the Appendix.

In (1) the electron spin is not taken into account. We shall assume |gupfl —
— w,| >77' and consider electrons with fixed projection of spin (the electron
ground state energy and, generally speaking, the cyclotron frequency are spin-
dependent).
| According to (1) the electron wave function is specified by the number n of
} the Landau level and the quasi-continuous number X corresponding to the z-pro-
* jection of the centre of the cyclotron orbit. The energy of the electron located at
} the n-th level, H,, does not depend on X, B, = wn + +Vn (n 4+ 1). In the
| following all traces will be calculated using electron wave functions (nX] cor-
responding to V' = 0 and phonon wave functions (ng| in the occupation number
representation.

The dynamics of an electron interacting with phonons is determined by its
density matrix ¢

é(t) == T'I'phg(t) EnZ ( oo Ngj e e |Q(t)| e Ngj. - ) s (3)
s g e
where o(t) is the density matrix of the whole system. Assuming that at ¢ = 0
the phonons are in thermal equilibrium while the electron is described by 9(0)
we may introduce the two-particle Green’s function G(¢):

(nX] 0(t) [n'X") = exp [i(Hy — Bn) ¢} X G, Xsn', X'| ny, Xq3m3, X7 1) X

’
ny, Xy, s

1
X (mXy| @(0) [m1Xy) . )
It is of utmost interest to determine G(¢) in the large time range ¢ > wg', t ~ 7.
This needs the use of asymptotic methods of perturbation theory. A convenient
asymptotic method for the calculation of correlation functions of a nonlinear
oscillator interacting with phonons was deduced in {8 to 10] As the oscillator
spectrum and the spectrum of a two-dimensional electron in a quantizing mag-
netic field are analogous (but the Landau levels are degenerate with respect
to X)), we succeeded in the generalization of the method [8 to 10] to the problem
considered here. This allowed to obtain (see the Appendix) the differential-dif-
ference equation (A2) for the function G(f). Using (A2) to (A4) one may easily
find G(¢) for any concrete system with the aid of a computer.
The Green’s function G(¢) allows to calculate any time correlation function
and therefore to determine any transport coefficient of the nondegenerate iso-
tropic electron gas. The correlation function of two arbitrary single-particle

operators 4 and B with an accuracy to (z71/1") exp (— w,/T) < 1 equals
CAG) BOD = Z3* 3 (X714 |nX) (mX,] B niX3) exp [i(H — B 1]
Mgy Xy n"l,X'l,
Xexp (—Aby,) Gn, X5 0, X'| ny, X3 nq, X1 |1);
Z, =n§’ exp (—AK,), A=1T. (4a)

We shall consider the conductivity

(@) = Ogalw) = N 1——63‘2 (Z20) g f Calt) Go(0)) et dt ()
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where N denotes the electron concentration and j = (e/m) P. Substituting

A=B=14,, mX|j|nX")=c¢e l/a)c/2m Ox, x[Onw +1,n [/n + 0w —1,n |/n_ -+ 1] into
(4a) we may write ¢(w) near the CR peak in the form

o(w) = %Q(w); 0=, Qo) = RefQ(t) exp [Hw — w,) £] d¢;

Q) = (i + 1)-1 2°°¢(n, )5 @, t) = Zgt e~ WOt 37 p~iBur (6)
n, X, X’
XY+ +)Gn+1,X;n, X0 +1,X;n,X'|t),

n = [exp (Awg) — 1171

The Fourier transform of ¢(n, ) may be compared with the optical absorption
line due to the electron transition from the n-th Landau level to the (n+41)-th one.
The whole spectrum o(w) presents the superposition of these lines according to (6).
If in the case of electron—phonon scattering a phonon may be emitted only for
an electron transition between adjacent Landau levels (i.e. if k£, = 1, see the
Appendix), then from (A7) the following equation may be obtained

D ) P gl )+ 2@+ 1) (0 1) T 1) X
X pln -+ 1,8) + 20 (1) Tln — 1, 1) pln — 1,8)3 @)
pn,0) = (0 4+ )71 (n 4 1) exp(—Aiwmn) ,
where (cf.(A7), (A4))
In) = 2 Uo(q; n) + To(q, n + 1], |
P = P,.1— P, 14 1),
(n) +1 + Vir + 1) @®)

I, 1) = 2 I'(g;n+ L) [(n 4+ 1) (n + 2)]712; =0,
qa

I'—1,1)=0.
It is easy to check up that 3’ I'|(q, n) equals to the width of the n-th Landau

q
level given by the Golden Rule. Within the framework of the Weisskopf-Wigner
theory 20'(n) is the half-width of the line corresponding to the transition
— |n 4 1), while w, + P(n) is its frequency. The terms with I'(n, 1) de-
monstrate the inapplicability of this theory to the CR spectrum in the general
case. These terms lead to interference of the lines with different », which is
connected with approximate equidistance of the Landau levels (the non-equi-
distance being Aw, < w,). If the widths of the levels are small as compared with
their non-equidistance,

|[P(n) — P(n o+ 1) > I'(n), [ I'(n, )] , 9)

the lines with different n practically do not overlap and the CR spectrum has
a distinct fine structure. In the same approximation for the renormalized elec-
tron spectrum as for the initial one, i.e. when

Py~ P + Vn, (10)

the fine structure lines are equidistant with an accuracy to V/I'(n). The fine
structure is considered in detail in [7] for arbitrary k.




Nondegenerate Two-Dimensional Electrons Interacting with Phonons 551

The set of equations (7) allows to calculate the CR spectrum numerically for
arbitrary ratio between the level widths and the non-equidistance and over a wide
range of temperatures.

3. Deformation Potential Approximation

For the further analysis of the CR line shape it is necessary to choose a con-
crete model of electron—phonon interaction. The experiments both in two-di-
mensional [3 to 6] and three-dimensional cases are often carried out at
w, =~ 1012 371, i.e. when @, lies in the acoustic phonon frequency range. In this
section we consider the scattering by acoustic phonons which are not localized
in a two-dimensional layer (their wave number § is quasi-continuous). It is ob-
vious from (A4) that the contribution of a phonon with wave vector ¢ to I(q)
is proportional to exp (—q¢%?/2) i.e. the damping is due to phonons with ¢ < I,
For typical values of w, = 112871, v, = b X 10% cm/s (v, denotes the velocity
of sound) and m = 10728 g we have | = ]/ﬁ/ma)c ~ 3 X 107® cm and the dimen-
sionless parameter § = v /lw, ~ 0.2. § characterizes the contribution to the
resonance acoustic phonon frequency we; = w, connected with ¢ == 0. As § is
small the main contribution to damping is due to the phonons moving almost
normally to the layer.

In the deformation potential approximation

eq) = Ofli(qeq) + asleqies)] (11)
where C; specifies the deformation potential parameter, eq; is the phonon
polarization vector, e, is the unit vector normal to the layer and «; is determined
by the dependence of the phonon wave function on z (for plane waves a; = vk,).
For waves propagating almost normally to the layer, from (11)

¢! lim (A-l pX |e.m~12) ~ & P, wei =~ w, (12)
4->0 q,
= sq+4)

where the terms of higher order in ¢ are omitted while the term linear in ¢ is
absent. This is correct both for longitudinal waves ((egje.) ~ 1 -+ a;9*) and
transverse waves ((ege,) ~ ¢, & = 0). In the vicinity of the two-dimensional
layer the longitudinal and transverse waves are, generally speaking, mixed.
However, (12) is valid for almost normal (to the layer) waves because their coef-
ficient of mixing is proportional to g.

The frequencies of the considered resonance phonons equal

Wqj = woj + 02 wG1q%2 ; Wqj = Wg » 0y = w, . (13)

The second addend on the right of (13) may be neglected because 6 << 1. In the
model under consideration wy; is continuous near w,.

In the approximation (12) and (13) the summation over ¢ in (8) may be ful-
filled (cf.[11], 7.414.4). The resulting expressions for the damping parameters
are

_ 1 - -
I'(n) = y,| 20 + 1——55”,0(%+ ])w + 2y 2(n + 1) 20 4 1) — 1],

I, 1) = —ys; (14)

27 27
yozﬁ‘zgja(wo,i_wc): Vlzﬁznﬂs(woj—wc)'
7 J
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1t is seen from (6), (7), and (14) that the terms &; and 7, in (12) lead to different
effects. Atzn; = 0 the CR spectrum presents a set of Lorentzian lines with
half-widths 2y, (2% + 1 — (3) 6x,0( + 1)], the intensity of the n-th line being
proportional to (n + 1) exp (—Awgn). If the distance between the lines exceeds
their widths the fine structure appears in a certain temperature range. In the
opposite case the spectrum is smooth and asymmetric. At » = 0 it becomes
Lorentzian.

Aty, == 0 the individual lines ¢(n, w) cease to be Lorentzian, generally speak-
ing. If the fine structure is distinct, the linewidth increases monotonously (appro-
ximately linearly) with rising number of lines. The set of equations (7), (14) may
be solved at y, = 0 in the approximation (10) using the method of generating
functions (cf. [8, 10]). Then

Vo _ _ 29 -2
Q) = chat+[g(2n+ 1)+6n2—|~6n+1]_(;sh at} X
1
X exp [(2y, — 1P + V) 1] L s

]
t> 0, a2:4y§[(2ﬁ—|—1+g>~%(%+1)]- }
1

Equations (15) and (6) express the correlator of the electric current in ele-
mentary functions while the conductivity in quadratures for arbitrary V/y,.
It is seen that at » == 0 the correlator damping is non-exponential and hence
the peak of o(w) is non-Lorentzian (but symmetric at ¥ = 0). The asymmetry
of o(w) increases with the increase in 17/;/1 and when (9) is fulfilled a fine structure
appears in the spectrum. The shape of o(w) at y, = 0 is shown in Fig. 1 for several
values of V[y; and . The curves are obtained ‘by
both numerical solution of the set of difference
equations for @(n,w), corresponding to (7) ((10),
(14) being taken into account), and integration of
(15). The strong broadening of o(w) with increas-
ing temperature is typical at V = 0. The fine
structure is distinct at large | V|/y, (| V]/2y, Z 10).
It rapidly smears with temperature increase.

q
/

25,00

Fig. 1. Broadening of the cyclotron resonance line and
the smearing of its fine structure with increasing tem-
perature in the deformation potential approximation
(&5 =10), 2 = (0 — w, — P)/2y;. The curves 1 to 5 cor-
respond to the parameter values (1) wy /T =5, V = 0;
@) oo/T =2, V=05 3)wo/T =2, V[2y,=10; (4) o,/ T=1,
V =0; (8) w,/T =1, V[2y, = 10. The figure shows the
-1 0 0 20 halves of the symmetrical curves 1 and 2
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4. Seattering by Two-Dimensional Phonons

The interaction with phonons localized in the thin layer occupied by electrons
will be considered here. Rayleigh waves at a surface of solid serve as an example
of such two-dimensional modes. These modes appear also in thin films with fixed
or free boundaries where the spectrum of three-dimensional phonons is split into
a set of two-dimensional sub-bands. The two-dimensional phonon frequency wgy;
within the limits of a sub-band (the sub-bands are numbered by the discrete
quantity 7) is determined by q and generally speaking, we; & 0. The condition
of energy conservation in the case of electron—phonon scattering, wq; = w,,
determines therefore the wave vector g, of the resonance phonon. We shall

denote

211m(A 1 2 Pl(q) I,, a,=ql. (16)
TN wstzara '

Iy, z;, and T/w, determine the damping parameters I'(n), I'(n,1). Since

I', ~ exp (—21/2) (see (A4)) the scattering by two-dimensional phonons is

inessential at x> 1.

Using (8), (10), and (16) the set of linear equations for ¢(n, ©), corresponding
to (7) may be solved numerically for arbitrary V/I';, x,, 7. The results of the
calculation are shown in Fig. 2 and 3 for a few values of these parameters. Analy-
‘oically the resonance scattering by the phonons with relatively long wavelength

z, L 1, but z, == 0 because at x, = 0 I, = 0) may be investigated. For z, <1
Lq,(n, 1) ~ y/2(n 4+ 1) (cf. [11], 8.970.1) and (7) coincides with equations in [8]
which describe the mterfcren(,e of the absorption lines corresponding to transi-
tions between the levels of an anharmonic oscillator interacting with phonons.1)
The method of generating functions [8] gives

—2

}i (2n + 1)] sh (at)} ;

r

~ I,
Q@) =exp[(I; — tP + V)] {ch (at) —}—**[1 +
(17)
Ve
%<1, F2+zFV(2n+l)—I
According to (17), (6) the shape of the CR peak is determined by an integral
with elementary functions for arbitrary ratio between the non-equidistance of
the Landau levels and their width I', and for arbitrary temperature. For V=0
Q) = exp [— ([} + ©P) t] and the shape of o(w) is Lorentzian with the half-
width 207, As |V{/I, grows the asymmetry of peak increases (as V3/I} at
|V| <€ Iy) and at | V| > I'y(2i + 1) the fine structure appears. The half-widths
'2I(n) of the lines of the fine structure increase linearly with rising number of
line.
The terms of higher order in «, lead to a non-Lorentzian shape of o(w) even

for V = 0. For |V|/T, < 1, 2, < 1 equation (7) may be solved by decoupling
the chain of equations for the moments Qu(t) = X n®p(n,t). To the first order
n=0

1y This coincidence is not accidental. In the investigation of light absorption by the oscil-
lator it was assumed in [8] that the scattering by a phonon does not shift the oscillator equi-
librium position. For ¢, <€ 1 the centre of electron cyclotron orbit is practically not shifted
during inelastic scattering, therefore the quantized electron is analogous to the oscillator.
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in a,, | V1/I", this yields after Fourier transformation

F _ T2 92 P 5

According to (18) the peak remains symmetric for small z, to first order in V/I'.
It is interesting that the peak narrows and its maximum value increases with
increasing temperature.

At 2, =1 I'(n) depends nonmonotonously on n and for some n the ratio

I'n)/I'; may be small. This softens the criterion of the observation of a fine

structure | V| > I';. The fine structure is clearly manifested even at V = I,
(see Fig. 2). At 2, =~ 1 the shape of the spectrum is rather complicated, the ampli-
tudes and widths of fine structure lines depend nonmonotonously on the number
of lines and vary with temperature substantially (at 7' <<#w, the spectrum pre-
sents a Lorentzian peak with the half-width 21). For V = I'; only a part of
lines of the fine structure may be seen while the rest lines overlap. At higher non-

equidistance, when V/I", = 10, all lines are resolved practically if the tempera-
ture is not too high.

PO
|
\
r\}
3
.1 .
05t ;
Xr':
H
3 X719
7
7
/J N ;
M { " 1
3 0 3 3 0 3
QIr—— QL -
Tig.2 Fig. 3

Fig. 2. Shape of the cyclotron resonance line in the case of scattering by two-dimensiona

phonons for @, = 1; 17/11r =1and10. 2 = w — w, — P. The curves 1 to 3 correspond to
the temperature values w /T = 2; 1; 0.5

Fig. 3. Shape of the cyclotron resonance line in the case of scattering by two-dimensional

phonons for ¥V = 0 and 2, = 0.5; 1; 1.5. 2 = w — w, — P. The curves 1 to'4 correspond

to the temperature values w./T = 2; 1; 0.5; 5. The shape of the curve 4 is practically Lo-

rentzian and does not depend on x;. The right or left halves of the symmetrical curves are
shown
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The non-monotony of I'(n), I'(n, 1) causes another interesting effect. As can
be seen from Fig. 3, for V' = 0 and 2, =~ 1 over a rather wide temperature range

the rise in temperature leads to the narrowing of the peak of o(w) (for V=0
all lines ¢(n, @) in (6) have a common peak and cannot be identified®)).
The non-monotony of I'(r), I'(n, 1) appears to be essential at rather small x,

(e.g. at 2, = 0.5 and V = I', a few lines of the fine structure are distinguishable

at 1w, =~ 1). The shape of the spectrum and its temperature dependence are
very sensitive to z,, especially at | V| > I',, therefore the solution of the inverse

problem (i.e. the determination of #,, V', and I', from the experimental spectra)
may be easily found using (6) to (8) and (16). The experimental determination
of z, for different w, gives the dispersi on of the two-dimensional phonons
directly.

5. Conelusion

The peculiarity. of the dynamics of two-dimensional clectrons in quantizing
magnetic fields is due to the discreteness of their energy spectrum. The evolution
of the electron density matrix is determined by the ratio of non-equidistance of the
Landau levels to their width. If the non-equidistance is relatively large,each pure
electron state is damping exponentially with its lifetime. When the non-equidis-
tance is of the same order as the width, all electron states interfere. This inter-
ference is described by the differential-difference equation (A2) for the two-par-
ticle Green’s function. Equation (A2) is valid for both one- and two-phonon inter-
action.

Many properties of quantized electrons may be investigated using CR. The
CR absorption peak has a complex asymmetric form, a fine structure being pron-
ounced sometimes. The shape of the peak allows to determine the electron energy
spectrum as well as the strength and type of electron-phonon interaction and the
type of phonons causing inelastic scattering.

In the case of scattering by non-localized acoustic phonons (probably it takes
place in quantized surface layers) in the deformation potential approximation
the shape of the peak appears to be non-Lorentzian at finite temperature and
depends strongly on the polarization of the scattering phonons. The increase in
temperature causes rapid line broadening .

In the case of inelastic scattering by two-dimensional phonons (it is of
importance in thin films with free or fixed boundaries) the shape of the CR
spectrum depends strongly on the momentum of the resonance phonon. This
allows to obtain the dispersion of phonons from experimental data. Increase in
temperature may lead to narrowing of the CR line. The criterion for the obser-
vation of the fine structure (being determined by the ratio of the non-equidistance
to the low-temperature half-width of the line) is substantially softer here than
in the case of scattering by non-localized acoustic phonons.

The energy spectrum of electrons and electron—phonon interaction may be
determined most précisely by the investigation of the temperature dependence
of the CR spectrum when a fine structure is distinct. As with the increasing

2) This fact was noticed in [9] in connection with the paradoxon of the harmonic

oscillator. The identification is possible, strlctly speaklng, only for ]V[ > I'y, when all lines
of the fine structure are resolved. '
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magnetic field strength the non-equidistance of the Landau levels increases,
in crystals with non-parabolic dispersion the fine structure must appear under
strong fields (cf. [7]).
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Appendix

The Green’s function G(f) may be expressed using the operator U(f) =
= exp (1H,t) exp (—iJCE):

Gn,X;n', X' ny, Xy;m1, X1 |8) =Zpn X exp (—).Z'wqj 7ﬂqj) X
...,nqj,mqj,... .
X (oeongje . ;nX| U@ .. mgj -3 1y X)) X

- o Al
Xewomgie o ;i Xy U)o .o ngj .. .3 n/X7); (A1)

_ _ 1
th = II (nqj + 1) N Ngj = [eXp (quj) —'1]_1 5 A=
qj T

The chronological ordering allows to carry out the summation over ng;, mg;
in (Al). Then G(¢) is determined by the integrals (over time) of the ordered
operators. The expressions under the integrals may be divided into smooth and
fast oscillating (like exp (iwt)) parts. The integral of the latter between the
limits 0 and ¢ > wg" is small (as compared with the integral of the former).
Neglecting it we may obtain the equation for G(¢) (the analogous procedure in
the case of an oscillator interacting with phonons is described in [8]):

G, X;n', X" 0) Enm

----- 5 = X 3 Dig(m,n)exp[—iVk (n — n') t]X
l k=—kn q
X exp [igy (X — X) g (k)] G(n 4k, X — Py (k); n' +k, X'— Bqy (k) |11);
x(k) = r% (1—=0g,0), P=(wgm)t, S (A2)

Gm, Y;m', Y || ) =CGm, Y;m', Y | n, Xy;ng, Xi|1),
G, X; n', X"|| 0) = 5n,n16X,X16n’,n16X',X1 )

where

Dog(n, ') = —1Lo(q,n) — Iy(q,n") — i[P(q,n) — P(q,n)],

, , kE Jkl , k1%
Dig(n,n’) = 2I% (Q§n +—2'*L2i, n +§—%) X
(A3)

. 1 1
X ("k —f‘?-l-"z“ x(/c)),

k40, 7= [exp Qolkl) — DI
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The parameters I" and P are quadratic in gg4;:
Fm 3 N
I'y(q,n) = X I'lq) [mLy(n, k) + (m + 1) Lyin —k, k)],
E=1
I(q; n,n") = I'(q) Lo(n, [k]) Ly(n’, |k]),
1 . \2l 1
I'(q@) =7 X legjl® <§ ZQ) exp ( —5 12q2)8(1k| We — Wgj) 5
J

1 © (1 \dm A4
Plg.m = v et ey (— g pet) 3 (1) x (A4
j m=—n
ﬁqj ﬁqj + 1 P m |m|
- z(n+ =20 )
X [wqj —mw, g+ mwc] ¢ (n Ty Il

L Ly -_222 -2?%' v n=0, L =0, n<0
o, m) = btat| 0 PZ 0 Llmm =0, n<0.

Ly are Legendre polynomials. They appear because

(nX| exp (igr) In-+m X — Pg,) ~ L, (n o m ml).
The corrections of the order of

Ii] Diglwl » |8(§ Diq)[0w,| <1 (A5)

are omitted in (A2). It is seen from (A2) that G(¢) falls off non-exponentially,
therefore it is impossible to introduce a relaxation time 7. The condition (Ab)
substitutes for the condition w,r > 1 used in three-dimensional problems and
shows how small the electron-phonon interaction must be.

It is obvious from (4) that the density matrix ¢(¢) in the interaction represen-
tation satisfies (A2) also. In effect, equation (A2) is a balance equation. The
terms with k = 0 in the right-hand side of (A2) describe all electron transitions
from the states (nX| and |n'X’) due to emission or absorption of a phonon, as
well as the shift of the energy of these states. The terms with k == 0 describe
all transitions to the states (nX| and |[n'X") from other states. The 3-functions
in I'4(q) in (A4) conform to the energy conservation for the real transitions.

The n-th level shift,
P,= ) Plq,n), (A6)
a

is due to virtual processes (weakly-bound two-dimensional magnetic polaron).

Since the matrix elements of some single-particle operators (e.g. momentum
or energy of electron) are diagonal with respect to X and independent of X,
the equation for the function G(n,n’|t) = 3 G(n, X;n', X| ny, X;; ny, X1 |£)
may be useful: X

’ km
ng: 2 Din,n)Yexp[—Vk(n —n)t] Gn +k,n +Ek|t);
ot k=—km (AT)

Di(n,n’) = X Dgg(n,n');  Gn,n" |0) = dn,n0n,n0x,x;
q
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ky, in (A2) and (A7) is the maximum difference in the numbers of such two
levels that a phonon-assisted transition from one of them to another is possible.
For high o, (= 102 s71) used in experiments on CR in two-dimensional systems
[3 to 6] ky, is small. In the case of interaction with acoustic phonons one may
often assume k,, = 1, i.e. take into account only phonon-assisted transitions
between adjacent Landau levels. This is due to the restriction to the resonance
phonon wave numbers: ¢ < I™! because [;(q) is exponentially small at g7 > 1
(see (A4)), while the transverse wave number must not exceed substantially
the inverse thickness of the electron layer. Since the decays corresponding to
k = 1 cause finite width of the CR line for w /7T > 1, the account of them is of
principle importance. In case of scattering by optical phonons the condition
k,, = 1 is not obligatory. However, in this work for the sake of brevity the con-
sideration of the shape of the CR spectrum is carried out at ky, = 1. This ap-
proximation is often sufficient at high w,.

If the cyclotron frequency either lies in the gap between acoustic and optical
branches or exceeds the optical phonon frequency the single-phonon transitions
between Landau levels may be forbidden due to the energy conservation law
(an analogous situation appears in the case of localized vibrations of impurities
in crystals [12]). Then, similarly to the theory of localized vibrations, the two-
phonon processes are to be taken into account. The Hamiltonian of the two-
phonon interaction is of the form

I = 2 exp igr) 2 (Caayiiaita—a: + Eqaii0ait—a-rai) C-C-§}
LA (A8)
€0q.5j, = 80qm1 =0.

To the second order in J{* equations (A2) to (A4) may be obtained again, where
in I(q) and P(q,n) new terms I'}”(q) and P”(q, n) appear:

S~ L1, \2I# 1 _ _
I'?(q) = 2x X (5 l(l) exp (‘—E 1292) Ueaquiil® (ng,; 4 g —qu5,+ 1) X

91901
X Y(wg,j + 0g—ai — 1kl 00) + 2 |eqq,iil* (Mg—a.j, — Nay) X
X S(waj — Wg—g5 ”d wc)] »

» 1 =) 1 2|m|
PO(g,n) = 2 v.p. 3 exp (———E lzq2> 2 (? lq) X

[ m=—n
72 m|m| Ng, g —q,j
) [ P —
2 2 w‘111+wq —qj; T MW

(”Lqm + ) (g ~ s +i),> +

Wq,j + Og—g,j, + MW,

- Ng,j(Mg—gqj, + 1)
+ 2 |8gq,53® ((; B AT L )}

qj — Wg—qj — MWD

(A9)

Besides there appear terms causing the addition of the expression — 2 yaln, n)
to Dy(n,n') in (A7),

, o 1.
Ve, n') = 4w 3 |Eqq,j|® Ng,j(g,; + 1) exp ("—2‘ l2q2) X

91971

KLy, 0) — Lyg(n, 0)]? d(wqyj — 0g—aijy) - (A10)
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This addend leads to a specific broadening of the Landau levels which is not
connected with transitions between them. It corresponds to the elastic scattering
of phonons by electrons and may dominate for large w /wm (0, is the maximum
frequency of phonons).
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