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The influence of nonlinearity of particular oscillators inter-
acting with a medium (e.g., local or quasi-local vibrations) on
their time correlation functions and spectral distributions is
investigated. The modulational broadening which is not connected
with the finite lifetime of the oscillator and the fine structure of
the spectral distribution are considered.

The calculation of the line shape of light absorption or scat-
tering by a particular oscillator K interacting with a medium
(e.g., alocal or quasi-local vibration near a defect in a crystal)
to a good approximation is reduced to the calculation of the spec-
tral representation Qx(w) of the time correlation function

Q) = {q,(t)q,(0)) (1)

of the oscillator K under consideration with normal coordinate qy.
The problem of determination of Q(t) arises also in the theory of

ne
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lagers [1-3] and plasma. It is connected with the general statis-
tical-mechanical problem of investigating the process of approach-
ing the equilibrium state in a subsystem.

The relaxation of a linear oscillator was considered in detail
in [4-6]. In this case Qg (w) has the well-known Loorentzian shape
with the half-width equal to the reciprocal lifetime of the oscilla-
tion ¥, However real local oscillations are to some degree
nonlinear. It is essential to note that even small nonlinearity
produces qualitative changes in the character of these oscillations
and can significantly affect the shape of their spectral distribu-
tion. '

In terms of classical theory these effects are due to the de-
pendence of the nonlinear oscillator frequency on the amplitude
and their continuous and random change in time (as a consequence
of interaction with a medium). The time dependence of the fre-
quency leads to a specific broadening of Q¢ (w). This broadening
is of a modulational nature and is not caused directly by the
relaxation of the local oscillation, that is, by frictional forces.

In terms of the quantum theory, the nonlinearity leads to
nonequal spacing of the energy levels of the oscillator. This is
evident from Fig. 1, where wg is the harmonic frequency, and
Vi is a parameter of nonlinearity. The transitions between
adjacent levels have different frequencies., If \VK | >> I; , where
I¢ is the characteristic width of the energy level due to relaxa-
tion, then the lines corresponding to different transitions do not
overlap and the spectral distribution has fine structure. If
lV;c\ < Ix, there appears a single distribution of essentially non-
Lorentzian shape.

The calculation of Qg(w) is rather complicated because a non-
linear oscillator has an infinite number of almost equidistant
energy and the corresponding quantum states interfere. That is
why the use of the Green's function method provides the oppor-
tunity to obtain Qg (w) only in the extreme cases ‘V,cl >> I, and
\VK ‘ << Ix [7,8]. The development of new asymptotic classical
[9] and quantum [10,11] methods allowed us to determine Qy (t)
at arbitrary Vi /I (but |Vg|, I¢ << w¢). It was found, some-
what unexpectedly, that Qg (t) had a simple form (an elementary
function). At the same time a corresponding expression for
Qg (w) was rich enough to lead to various spectra of essentially
non-Lorentzian shape, including those with fine structure.
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Fig. 1. Schematic of the nonlinear _oscillator energy levels.
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In this paper we give a short review of our results on the
theory of nonlinear oscillators interacting with a medium obtain-
-ed in [9-14].

The Hamiltonian of a single nonlinear oscillator, interacting
- with a medium, is of the form

2, 22 4 2,22
=1 1 1
H =2 (Pg +0c ) + 379 2 2o toya) +E € qeq

+ L €eiao 3
Here q, and p,, g, and py are the normal coordinates and mo-
- menta of the particular oscillation ¥ and of the medium vibration
" k; the frequencies wy belong to the contmuous spectrum; ¥, is the
. nonlinearity parameter (V, = .75 hyy /wK), ‘Kk and €y, deter-
mine the interaction with the medlum linear in the
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coordinate of the singled-out oscillator.

In classical considerations one can exclude continuous spec-
trum oscillations and thus obtain a nonlinear integro-differential
equation for qy(t) [see Eq. (5) in [9]]. This equation is essen-:
tially stochastic since the initial amplitudes and phases of the
continuous spectrum oscillations are random quantities. There-
fore, the application of the usual asymptotic methods of non-
linear oscillation theory is not enough for its solution. One must
also make a rather complex, non-trivial averaging. A special
stochastic asymptotic method [9] allows one to reduce the ex-
press1on for Qi (t) at large t to the explicit form:

Q,(t) = 2Relexp (-id), [t|Q, (|t 1;

I.(1+2ie)

QK(t) = --—— exp (I t)[———— sh (at) + ch(at)]-2 (3)
2w
K : y
t >> wn-l; = IK(1+4ia); = 3kT3 X .
I
8w K
K
Here
=T -
Ig =12 ﬁ B(we - w) * Ley

2
(essentially I,, ~T 2 s Coprer o= oy

defines the broadenmg due to interaction with the medium and
characterizes the inverse lifetime of the oscillatory states; the
parameter & ~ ¥ T/ Iy describes the ratio between the nonlinearity
and the relaxation broadening.

tmk,) for local vibrations)

The light absorption or scattering line shape Qg (w) is deter-
mined, according to (3), by a single parameter & and may be
easily obtained by numerical Fourier-transformation at arbitrary
o (Fig. 2). Ata =0, Qc(w) is a Lorentzian curve with the half
width 2I¢ . Such a distribution is typical for a linear oscillator,
interacting linearly with a medium, when relaxation processes
are simply reduced to an effective friction proportional to the
velocity.” However, at & # 0 the picture becomes more complex
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and the distribution becomes non-Lorentzian and asymmetric.

As a grows, the asymmetry increases, the distribution width be-
comes larger and its maximum is shifted. At |a| >> 1 the width
is determined only by the nonlinearity parameter y; and, there-

fore, has a purely modulational nature. The detailed analysis of
the temperature dependence of the form and width of the spectral
distribution for quasi-local and local vibratlons is presented in

ol

If the condition kT >> #w, does not hold, then quantuin consi-
derations are needed. It is necessary also for the investigation
of the spectral fine structure. The latter is connected with the
discreteness of the energy levels, that is, with a pure quantum
effect.

In order to calculate the time correlation function of impurity
oscillations in quantum theory, a special asymptotlc method was
developed [10].

This method enabled the following expression for QK(t) to be
obtained (cf. Eq. (4) in [10])):

hw
Qe(t) = exp [- i -} V)t + o WE+ 1)

fw,. m
- iVemt), t>acl,

x 73 mF(m,t)exp (-

where -ﬁK is the Planck occupation number.
hw,m
The Fourier transform of F(m, m-1;t) = F(mt) exp (- T )

is connected with a light absorption line, corresponding to the
transition between the (m-1)~th and m~th oscillator levels. Ac-
cording to (4), Qg(w) may be interpreted as the sum of partial
spectra. As all energy levels are almost equidistant, the lines
(F(m,t)] with different m interfere and for F(m, m-1;t) in [10,11]
an equation was obtained (cf. Eq. (6) in [11]) which is an analog
of the quantum kinetic equation

3F(n, m;t)

T = 2'2 D (n, m) exp (- 1VK3(n-m)t]F(n+j, m+j;t). (5)

j=-1
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D; depend on the damping I, and frequency shift of the singled-
out oscillator due to interaction with the vibrations of the conti-
nuous spectrum. It is possible to find a generating function for
F and to show that it satisfies an equation in partial derivatives.
It is essential that the exact solution of this equation may be ob-
tained for our problem. It was found that in quantum theory the
time correlation function may be formally described by the same
formula as in classical theory. The only difference is that in
the quantum case ‘

3¥? _ ' . 9
o= —— (@T 1) a” = Lo [1+4i0 - —2 ], (6)
16w, I, (Zn.c +1)

Detailed analysis of Qg(w) as a function of temperature and
the parameters of the interaction is given in [10] on the basis of
. (3), (6). We should note that the most interesting quantum effect,
namely the fine structure of Qg (w), appears at | Vi |>> Ig(2n,+1)
and exists within a limited temperature range. The fine structure
may be due also to nonlinear interaction between the singled-out
oscillator considered and another one [10].

The classical [9] and quantum [10] asymptotic methods al-
low also for consideration of the shape of Qg (w) near combined
frequencies of the singled-out oscillations [12,13]. The effects
of nonlinearity there are even more pronounced.

Some of the above~mentioned effects caused by nonlinearity
have been already observed in experiments on infrared absorp-
tion by local and quasi-local oscillations. For example, the
increase in temperature leads to strong asymmetry in the ab-
sorption lines in the systems NaCl:Cut* [15,16] and KI:Ag+ [17]
(quasi-local oscillation) which is probably of a modulational
nature. The width of the lines also grows strongly (by an order
of magnitude for the former system at kT ~ twg). Fine structure
was found in the spectrum of quasilocal oscillation in Man:Euz"'
{18]. Its character and temperature dependence agree with
theoretical results [10]. In [19] modulational broadening of the
high-frequency local vibration of the impurity complex SO 4’ and
Ca2+ in a KCl1 crystal due to interaction with low-lying quasi-
local oscillation was observed.

Even strong modulational broadening does not lead to a
change of the infrared absorption peak intensity with temperature



126 M.l. DYKMAN AND M.A. KRIVOGRAZ

{14). With the use of the unambiguous procedure of separation
of the peak in [14] an expression (Eq. (8) in [14]) for the peak
intensity change containing only relaxation parameters was ob-
tained. The strong temperature broadening of the absorption
line under a slight change of its intensity, observed in (16], is.
typical for modulational broadening and may be used to distin-
guish it.

New effects arise in the case of nonlinear friction when the
energy of interaction between a particular singled-out oscilla-
tion and a continuous spectrum of oscillations contains not only
the above terms

U €y 2, e o)
but also the terms

2
% E oo

proportional to q% , corresponding to decay with participation of
two quanta of the oscillator ¥ [11]. Here, in terms of classical
theory, the friction coefficient depends on amplitude, i.e., it
changes with time even for a linear singled-out oscillator.
Therefore, Qy (t) decays nonexponentially and its spectral repre-
sentation is non-Lorentzian even for a linear oscillator.

In [11] the asymmetric complex Q. (w) is investigated for an
arbitrary ratio of the parameters of linear and nonlinear friction
and nonequal spacing, on the basis of generalizations of Eq. (4)
and (5). In the absence of nonequal spacing nonlinear friction
leads to narrowing of Q¢ (w) as compared to a Lorentzian curve
with the same wings and integral intensity.
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