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Abstract

We present analytic results for the current in a system moving in an arbitrary periodic potential and driven by weak Gauss-
ian noise with an arbitrary power spectrum which are valid to order (fc/t;)%, where fc is the largest characteristic time of the
noise, and fr is the characteristic intrawell relaxation time. The dependence of the current on the shape of the potential, and
on the shape of the power spectrum of the noise is illustrated. It is demonstrated that the direction of the current is opposite
when the power spectrum of the noise has a minimum or maximum at zero frequency. A simple physical mechanism for this
behavior is suggested. The behavior of the system in the limit of slow noise (fc >> #;) is also discussed.

Recently some intriguing work has appeared on the
subject of stochastically driven ratchets [1,2], and
the transformation of noise in spatially-periodic (or
phase-periodic) systems into a current. Such systems
are noise rectifiers and thus are of great interest in re-
lation to the understanding of machinery which oper-
ates in “the Brownian regime” *!, that is, on the very
small scale where fluctuations play a major role, and
where the basic macroscopic methods of controlling
energy flow no longer remain valid. The most imme-
diate examples are biological systems [3], but these
ideas may not be irrelevant in the area of applied tech-
nology, where a great interest has developed recently
in the possible construction of nanoscale devices [4].

A simple model for a ratchet is a noise-driven over-
damped nonlinear dynamical system described by the
stochastic differential equation

#1 This term was apparently introduced by M. Magnasco.

U)

Fig. 1. Typical ratchet potential U (x).

x=-UX)+ 1), Ux)=Ulx+4),
(f (1)) =0, : (1)

where U (x) is a periodic potential, such as the one
illustrated in Fig. 1, and f (¢) is zero-mean noise of
some type. The theoretical problem is to find the sta-
tionary current density j = (x(¢)) in the ratchet

given the shape of U(x) and the properties of the
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noise f(t), and then to find the most appropriate
conditions for the transformation of the noise into
the current. If the noise is white then the system is
(quasi)thermal, the second law of thermodynamics
applies, and j = 0. If the noise is not white, i.e., for
colored noise, the system is no longer in thermal equi-
librium, and in general j # 0. Since onset of a cur-
rent means breaking the “right-left” symmetry, cur-
rents may only arise, in the case of additive noise, if
the potential U (x) is asymmetric with respect to its
extrema. The onset of a current can be viewed also as
an example of “temporal order coming out of disor-
der”, since the current is apparently time-irreversible,
whereas stationary noise does not distinguish “future”
from the “past”; we notice, however, that Eq. (1) im-
plies relaxation and is thus time-irreversible itself.

We consider the case where f (¢) is zero-mean
Gaussian noise with a frequency-dependent power
spectrum

DP(w) = / dtexp(iwt)o(t),
(1) = (f(£)f(0)). (2)

If the characteristic noise intensity D = max ® (w)
is small then most of the time the system performs
small-amplitude fluctuations about the minima of the
potential. Occasionally it “jumps” from the minimum
it occupied to the one on the right or left, with the
probabilities per unit time W, and W_, respectively.
These jumps give rise to the current j = A(W, -
W.). The dependence of the transition probabilities
W, on the noise intensity D is of the activation type
for Gaussian noise, Wi = const x exp(—R+/D). The
characteristic activation energies R+ of the. escapes
from a given minimum X, of the potential over the
right (x4 ) or left (x-) maximum are given by the
solution of a variational problem formulated in Ref.
[5]. In the case where the bandwidth of the spectrum
@ (w) greatly exceeds the reciprocal relaxation time
of the system 7! = U"(xp) the activation energies
“are R+ = 2F(0)AU + y+F"(0), where

AU = U(d) - U(a) >0,

X4
P = / dxU'(x)U"(x) > 0, (3)

X0

p d’F ()
F(w) = D/®(w), F (w) = TPy
|F"(0)/F (0)| < t2. (4)
The current is then given by
j = AWx{exp[—y+F"(0)/D]
—exp[-y-F"(0)/D]}, (5)

where Wk is Kramer’s activation rate
nD/F (0)

WK -3
VU (xo)|U" (x4)]

exp[—2F (0)AU/D].
(6)

Eq. (5) is a principle result of this Letter. It is im-
mediately obvious from (5) that (i) the noise color
does give rise to the onset of a current due to the fluc-
tuational interwell transitions, and (ii) the direction
of the current depends crucially on the shape of the
spectral density since F” (0) can take both positive or
negative signs. We emphasize that, although the cor-
rections y+ F” (0) to Ry are small compared to the
main term, they are not small compared to the noise
intensity D and can change W. by orders of magni-
tude (we have neglected the corrections to the pre-
factor in Wy due to the noise color and used the stan-
dard Kramers expression for this prefactor valid for
white-noise driven systems). In fact, except the spe-
cial case where U(x) is symmetric with respect to
Xg, the ratio of the probabilities W, /W_ is exponen-
tially large or small for small intensity of the colored
noise, and therefore the transitions in one direction
dominate overwhelmingly over the transitions in the
opposite direction, so that |j| ~ AW, where W5 =
max (W,, W.). The direction of the current is deter-
mined by the interplay of the shape of the potential
and the features (the shape of the power spectrum, in
the present case) of the noise.

The dependence of the current on the noise color
is different depending on the sign of F”(0). When
F"(0) > 0 there is a saturation effect where, given
the noise strength D and the shape of the potential,
the current is maximal for F”(0) given by

Din(y-/y+)
Y- =7+

Thus, for F”'(0) > 0, F4 (0) is the optimal noise color
for a given noise strength and ratchet potential.

Fn(0) = , Fm(0)>0. (7)
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Fig. 2. The sawtooth potential which is the “optimal” limit
of U (x) which gives rise to the greatest current.

Eq. (5) also provides an answer to the following
question: given the barrier height AU, what is the
shape of the well for which the current (5) will be
most pronounced for weak noise color, that is, what
is the most effective shape of the ratchet? This shape

is given by the extreme value of yi for given AU |

and period A. It is straightforward to show that the
corresponding variational problem does not have a
differentiable solution: the single-valued potential
has to be of the shape approaching the one pictured
in Fig. 2. A simple analysis can be done, e.g., for
U'(x) = 4 + Axtanh[(x — Xo)/a], =32 < x < $4
(A; + Aztanh[(xp — Xp)/a] = 0): for small a/A the
shape of the corresponding potential is close to that
of the sawtooth,

The above results apply immediately to the most
often studied case where f () is exponentially corre-
lated,

D
1 + w?t?’

B(t) = 2 exp(~tl/1), D (@) = (8)
The problem of fluctuational transitions induced by
this noise has been investigated for small noise inten-
sities in very much detail (see Refs. [6-8] and also
Ref. [9] for a review). The noise (8) has one corre-
lation time, 7, and F”(0) = 2t% > 0. Obviously, j
vanishes to first order in 7, in agreement with the re-
sults of Ref. {2]. It has a maximum as a function of
7 for 7 given by (7), and falls down for large y.+1%/D.
The saturation of j versus 7 is illustrated in Fig. 3.
Naturally occurring noise will generally not be ex-
ponentially correlated, a situation which any realistic
physical theory must accommodate. This is clearly the
regime in which j # 0. The advantage of the result
presented here is that it not only gives an analytic re-
sult to second order in t./t;, but is valid for any Gauss-
ian noise. A more general situation than (8) can be

0Tl o =10

i/Wx

=2
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" Fig. 3. Current versus 7 for varying potential shape showing

that the current is maximized for a specific 7.

modeled [9] by the noise with the power spectrum

4rbp

PW) = Ty 4 4’

9)

where I' is a measure of the bandwidth, and wq the
frequency of the noise. This can be thought of as the
power spectrum of the system,

J+2rf +off =<, _
(E(1)E(s)) = 4I'Dé (1 — 5). (10)

In this case F (0) = w¢D/4I'D,and F”(0) = (2I'*-
w3)D/I'D. Obviously, F"(0) > 0 when w} < 2I'?
and thus the maximum of the power spectrum (8) is
at @ = 0. In this case the direction of the current for
I' > 7! is the same as for exponentially correlated
noise and the analysis given above directly applies.
A completely different situation occurs if w3 > 2I"?
and the power spectrum (8) has a minimum at @ =
0. In this case F''(0) < 0. It follows from (5) that
the direction of the current is opposite to that arising
for exponentially correlated noise. In contrast to the
case F""(0) > 0 considered above, in the present case
an increase in [F"(0)| does not give rise to saturation
and then to a decrease in j: the current is increas-
ing exponentially with the increasing |F" (0)| where
the approximation (3) is applicable. The current re-
versals have been found recently in numerical exper-
iments, and in certain specific exactly solvable cases,
by Doering and Horsthemke [2]. No plausible phys-
ical mechanism has been suggested as an explanation

.in Ref. [2]. Not only does the present analysis give an
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analytic criterion for the current reversal, @ (0)
—F"(0) > 0, but it also suggests a direct physical in-
terpretation.

The correction to the activation energy of a transi-
tion R in the case of “weakly colored” noise is due to
the fact that it is not only the total work the noise does
on the system on the way from the potential minimum
to the barrier top (along the optimal path of the es-
cape) that counts, as in the case of white noise, but the
characteristic strength and duration of the pulse that
gives rise to the escape. The parameters y+ just char-
acterize the ratio of the squared value of the force to
the duration of the pulse (cf. Ref. [5]). The shorter
the pulse the higher are the frequencies of the noise
components involved. If the power spectrum of the
noise @ (w) decreases with @ (F”(0) > 0) then the
higher-frequency noise components are weaker on the
average, and the escape probability decreases with the
decreasing duration of the pulse. For @ (w) increas-
ing with w (F" (0) < 0) the result is exactly opposite.
The characteristic duration of the pulse is determined
by the ratio of the distance between the potential min-
imum and the barrier top to the characteristic veloc-
ity U’, and for a given height of the potential barrier
it scales as U’ 2.

Suppose we have a potential more steep to the left
from the minimum, as shown in Fig. 1. It is clear
from (3) that in this case y_ > y,. The pulse which
gives rise to the escape over the left barrier is shorter,
and the characteristic frequencies involved are higher.
Therefore, for F(0) > 0 (as in the case of exponen-
tially correlated noise), the escape over the left bar-
rier is less likely to happen than that over the right
one, and the current flows to the right, whereas for
F"(0) < 0 it flows to the left.

The behavior of the system when driven by slow
noise (f; < t;) is also of interest. The activation ener-
gies in this limit can also be calculated via the method
of Ref. (5], and are given by R+ = DU2./2¢4(0)
where |Up, 1| are the maximum values of |U’| on the
intervals (xg, x+). We note here in passing that there
are nonanalytic ((t;/¢)*?) corrections to Ry [5,8].
The current which arises in the case of slow noise is
then

j = ACsexp[-Us2, [26(0)] -
C-expl-Un-/20(0)]}. (1)

(C4 are the constants that allow for the prefactors in
the expressions for W, ; obviously, ¢(0) is just the
mean-square value of the noise.) What is happening
here also has a clear physical interpretation (cf. Ref,
{71). Since the noise has an extremely long correla-
tion time, in the range where U”(x) > 0 the parti-
cle simply follows the force adiabatically according to
U'(x(t)) = f(t). The fluctuation large enough to al-
low the particle to escape over a barrier is just the one
that overcomes the restoring force —U’(x) for all x,
and the probability of such a fluctuation is just W
exp(—R/D). The current in this case is always in the
positive direction for Ujz_ > U2, . There is again a
saturation effect, and the current is maximized for

4DIn|C-Uh_/Cs Un 4|
Ur’nz,— - Ur412,+ '

o~'(0) ~

We emphasize that the onset of current in the sys-
tem considered is the result of it being away from
thermal equilibrium. This means that dissipation
and fluctuations are not interrelated via fluctuation-
dissipation theorem. In the particular case considered
dissipation was not retarded (the friction force is
determined by the instantaneous value of the coordi-
nate), and therefore the effect arises when the power
spectrum of the noise displays dispersion (for Gauss-
ian noise). A current can also arise in the situation
of a white-noise driven system where dissipation is
retarded.

Lastly we remark that the system can be expected
to exhibit behavior similar to stochastic resonance as
the noise strength D is varied, with j exhibiting a
maximum for some noise strength. Obviously for very
small D the current is an increasing function of D.
As the noise strength is increased the fluctuations will
begin to wash out the effects due to the shape of the
potential, leading to a decrease of the current for large
D.
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