Quantum theory of spectral distribution of isolated nonlinear vibration modes near the
combination frequency

M. I. Dykman

Institute of Semiconductors, Academy of Sciences of the Ukrainfan SSR, Kiev
(Submitted November 10, 1972)

Fiz, Tverd, Tela, 15, 1075-1079 (April 1973)

The time correlatfon function and its spectral representation for isolated (for example, local or quasilocal)
nonlinear vibrations interacting with the medium are cal¢ulated at frequencies close to the combination fre-
quencies, The case of an arbitrary relationship between the nonequidistant distribution of vibration levels
(due to0 nonlinearity) and the reciprocal of their lifetime is considered, The Feynman method of time ordering
of operators s used to eliminate the coordinates of the medium which is approximated by a set of harmonic
oscillators, The spectral distribution obtained on the basis of this method in conjunction with the asymptotic
perturbation theory represents an integral of an elementary function. The form of the spectral distributionand

its fine structure are studied, When the nonlinearity is large, the spectrum consists of a series of lines whose
widths are proportional to the number labeling each line, It is found that the spectrum exhibitsa fine structure
in a well-defined temperature range. Outside this range, the distribution is essentially smooth. .

The dynamics of isolated nonlinear oscillators interacting
with the medium is governed by their higher harmonics.
They are especially important in the interpretation of ab-
sorption peaks at infrared frequencies which are ob-
served in the neighborhood of double and combination fre~
quencies of local and quasilocal vibrations in c:rystals.1 2
The width and the profile of such peaks are governed by

a finite lifetime of the vibration modes,”™" by the modu-
lation of their bare frequencies w,, due to the interaction
with the medium,*? and by the nonequidistant nature of
the separation of the levels Aw which is due to anharmon-
icity of the isolated vibration modes,

Special cases of such vibrations have been studied
theoretically., The absorption spectrum oflocaland quasi-
local vibrations was studied in ref. 5 and 6 in a wide tem-
perature range on the basis of the Green's function meth-
od. Two limijting cases were considered in refs. 5 and 6,
i.e., Ow >» I' (when the spectra exhibit a fine structure)
and &w <« T (identical broadened peaks appear in the
neighborhood of combination frequencies), where I is the
reciprocal of the lifetime of isolated vibrations. Another
approach based on the asymptotic methods of nonlinear
mechanics’ yields relatively simple expressions govern-
ing the profile of the peaks for an arbitrary ratio A w/T
but it is applicable only at high temperatures kT > Hw,,.

Our aim is to study the case of arbitrary ratios

mc’ (@) and arbitrary temperatures.

We shall calculate the spectral distribution Q% ., (w)
governing the profile of the absorption peak at infrared
frequencies® w™ w, # w,, Which is due to isolated vibra-
tions in noncentrosymmetric crystals:

Q%, (“’)='2:= S Q% (t) exp (tw?) dt =-11? Re g Q% (t) exp (iwt) dt, (1)

The time correlation function Quw {t) containing pro-
ducts of annihilation and creation operators dyts @ of
isolated oscillators w

Qs (1) = b, () ay. (1) af (0) af (0)) = 2-1 Tx (afaf. e e ¥ la,0,.6™ ), } @)
Qser (8) = (a, (¢ af (¢) 63 (0) 6, (0)> = 21 Tr (a}a,,e e Ma,at e )

is related directly to the time correlation function Q%(t)
(@, (t) a*’ (0)) at frequencies®”’ Wo = Wyye
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The following notation is used in Eq. (2): H is the
Hamiltonian of the system; a, = a,(0), A = &T)™!, 1 = 1;
and Z = Tr exp(—AH).

We shall consider a weakly coupled low-symmetry
impurity center whose vibration frequencies w,, are non-
degenerate (w, * w,,1) and far from the combination fre~
quencies (W, * w,, = wyn). We shall approximate the
medium by a system of harmonic oscilaltors k with fre-

quencies wy belonging to a continuous spectrum,

The Hamiltonian of isolated vibration modes inter—
acting with such a medium can be written in the form

HeHo+Hi i 3 Hyloy+ab)
k

1
+7 X s (ay + i) (o +ato)

kk’

i
Hym Dosfiet 5 D Vo (00 +30)

ARy

{
% (e, +ef) (e, +af)+ —2-2 Vi Befiye

+ Doy A =ate; Ay =afoy
I3 .
Hi== 2 Vg (@4 a8) + X Vour (ax+

Hygr = 2 Vasr @000+ 3 Ve (0 +08) (@0 +0). - (3)

at) (@, +af.);

As already discussed, we shall assume that all the
quantities V contain small parameters.

We shall calculate the quantity in {w) at frequencies
w ® W, *wyt, Where it exhibits a maximum, on the basis
of the asymptotic perturbation theory (see ref. 8). It fol-
lows from ref. 8 that Q%w(t) should be calculated in the
limit t > tg, where t = max{wm, wy, }, (W is the max-
imum frequency of the continuous spectrum). The terms
~ t3/t can be neglected, which implies that the "nonreso-
nance" terms in the Hamiltonian (for example, a’a) pro~
portional to V.,mv can be omitted, Thenonresonance terms
proportional to V,,, ., lead, inthe second order of the
perturbation theory, to the following renormalization of
the parameters w,, and V.

+ VoV
- Oy 1. ARRY T Xy g,
W, == o, + 2 [V;x;x, u.)’ — (lw F Lx’)z :dx‘ i 2 BN
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=V .+ 2 [(w _.:, ‘)z‘:_“,

sz a.wn, qu, Vx‘x’r.’ N
+(w Foof—al T w, ](2—";.')- @)

It is most convenient to calculate the function Q.fm:(t)
on the basis of the method described in ref. 8. Eliminat-
ing the vibrations belonging to the continuous spectrum by
means of the Feynman ordering technique and using the
asymptotic perturbation theory, we arrive at a system of
partial differential equations® whose solution has the form

Qe () =+ 20w (4 + 1) (1 + 5 £7)

oxp {—i (&, + &,/) ¢} Wil ()

X“"&(‘)H\F (t)exp[I‘ t— Pt Pt
5
+7(Vu,i V.:..)t]. 1>t ®)

(P, £ Vo)
T

r,
W, , () =chats +[1 +1 @a,, + 1)] —shats;

(afl)Z = rzl + tr‘l (V"I x V"'h) (2“11 + 1) - T
A= loxp (Aa,) — 1],

(Vn| i Vt’;,)z;

where I'y and P, are the reciprocal of the lifetime and
the frequency shift of isolated vibration modes due to their
interaction with the vibrations belonging to the continuous
spectrum; they are proportional to the square of the param-
eters Vo and Vo0 and are defined by Eqgs. (16) and
(29) of ref. 8.

EQuatxon (5) is obtained under the assumption V, , 1x =
‘WK.' kk' = 0

e
an|

R

m o

R 120

Qe

Fig. 1. Fine stucture of the spectral distribution Q(w) near the double bare
frequency for vm./r = 146,‘% i Qw) = Y Q; (w)- (n + 1%

Q= w= 2w, — 2P, w T D1/4, 0)1/2 10) 1. At higher tem-
peratures, the fine strucmre is smeared out and the maximum {n the distri-
bution shifts toward higher frequencies.
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Equation (5) representx an expression for the correla-
tion function Q% +(t) [for Q5 ,¢t) » = »] in terms of ele-
mentary functions and it holds for an arbitrary relation-
ship between the parameter v L3 Boverning the nonequi-
distant distribution of the levels and the lifetime L, (pro~
vided the conditions | Viepl/w,e, Bo/wyes [Py 1y, [V, A,
LA« 1are satisfied). The spectral distribution Q*nu(w)
can be also transformed by means of Egs. (1) and (5) to a
single integral which can be easily evaluated on a com-~
puter for an arbitrary ratio V. o /1:4 and arbitrary tem-~
peratures. The calculated values of Q 4 (W) are shown in
Fig. 1 for different values of the parameters ¥, /Ty» and
n,. Incertain limiting cases, explicit analytic expres-
sions can be obtained for the integrals in Eq. (1).

We shall first consider the case of a strong nonlinear-
ity Ivnm I>> Ty, (1 + 2 oxy),when the distribution
(1) exhibits a clea.rly defined fine structure. In fact, ex-
panding T, /V,m £ V 1y,) aod retaining only the quad~
ratic terms in the expansion, we can express the functions
exp(a.,_ t) \Il ! L0, \1«"'2 t)+ exp@af) and 29, 3. (t) as infinite
series in terms of exp (—a X xl:). » Introducing the Fourier
transforms (1), we obtain

b=t S S FEoa
RS | (T 2...(... IR

- % £ +
Ay, m, I‘MI cosay ~ Qi‘" sin o,

Xe ™ (I‘: .,)3 T (Q: :.)2 H

Qf wmo—&, F .:.,,+-;-(V"+ Poe £ 27,0

- E (Pt V),

_42 7

X (1+2m, =3,

r (6)
n'l (il.. + 1)
t ¥ a"'x) - P' ¥ P“:

I‘*-'\ = % r'. [(‘ +2"':. -3xl| F B"‘l) v(" + 2,"!) - l]:

“ "‘29 =7 ["'*-“-n

—t (3£ )=t (100, +30) -

/

It follows from Eq, (6) that the fine structure lines
are not necessarily Lorentzian, their widths are propor-
tional to the numbers {mwu,} labeling the lines and in-
crease with temperature. In the simplest one~dimensional
case [V.,mv = V wOnn rand the substitutions Dy, = Tndun,y,
Qs = am%a.,m should be formally made in Eq. (8)],
the dlstributlon Q,y (W) in the neighborhood of the fre~
quency 2w., represents (with an accuracy up to terms
am, ~ 0,/V,) a set of equidistant Lorentzian bands
(for small m), The separation of such bands (obtained -
with the same accuracy) 2V vy 18 twice the distance be~
tween the fine structure lines lying close to the fundamen-
tal frequency. The width of the m~th band I'y, = I, {(2m™
1)1+ 2n,)—1] is a factor of Iy (1+ 2n,) smaller than the
width of the corresponding line in the neighborhood of the
fundamental frequency I (2m (1+2a,)~1] and is given by
the general formula of the Weisskopf—Wigner theory.
However, the total width of the spectrum (6) correspond=
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ing to a oune-dimensional system is greater than the spec-
trum of the fundamental frequency. This is due to the
fact that the expression governing the intensity of the
m~th line contains a factor quadratic in m and the separa-
tion of the lines is twice as large.

When the temperature is raised, the deviation of the
line profile from the Lorentzfan form and the overlap of
individual lines increase (the overlap increases with in-
creasing m), the fine structure disappears (which {s dem~
onstrated in Fig, 1), and Eq. (8) reduces to the expres-~
sions (17)~(18) of ref. 7 which were obtained on the basis
of the classical statistics. It should be noted that the fine
structure also practically diasppears at very low temper~
atures since the expression for the intensity contains a
rapidly decreasing factor exp (~Awym).

For high transition probabilities when |V, =+
Vytyeq| < Ty, We obtain the following result which is valid
with an accuracy up to terms quadratic in (Vo & Viyry )
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The first term in braces in Eq. (7) corresponds to a
Lorentzian distribution with a width 2(I'y + I'yt), The
second correction term is non-Lorentzian and increases
when the temperature 1s raised (< T? at high tempera=-
tures). The broadening of the distribution (7) with respect
to the Lorentzian distribution is of the modulation type.

The author is grateful to M, A, Krivoglaz for his
interest in the present work and for his valuable remarks,

These renormaltzations can be easily obtained as  result of the direct
{teration of the system of equations d, = =1(a 4, Hl.

1The corrections corresponding to these terms and the resulting renormalid
zations were discussed tn ref, 8,
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