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The energy spectrum of two-dimensional electrons (holes) in a transverse quantizing magnetic field
represents a set of discrete Landau levels. The line profile of the cyclotron resonance in such a system is
studied in the absence of degeneracy when the broadening is small and is due to the inelastic scattering by
phonons. In addition to the broadening, the nonequidistant distribution of the Landau levels is also
considered. If the deviation from an equidistant distribution, which is due to a nonparabolic dispersion and
due to a renormalization of the electron spectrum caused by the electron—phonon interaction, is much
larger than the reciprocal of the relaxation time, the cyclotron resonance peak may exhibit a fine structure
in a well-defined range of temperatures. The individual lines of such a structure correspond to the
transitions between different neighboring levels. In general, when the ratio of the deviation from an
equidistant distribution to the line width is arbitrary, the cyclotron resonance peak has a complex
asymmetric profile which can be obtained by solving a system of microscopically derived linear equations.

PACS numbers: 76.40.+b, 71.30.Hr, 71.85.Ce

Size quantization of the motion of carriers (for example,
electrons) can take place in thin films!? or thin surface
layers in semiconductors.®»? The separation of the neigh-
boring two-dimensional subbands in such systems may be
quite large (> 0.1 eV), Therefore, at low temperatures
and for moderate carrier densities, only the lowest sub-
band is occupied, all the other bands can be neglected, and
it is sufficient to consider a two-dimensional gas of car-
riers.

The energy spectrum of a two-dimensional gas in a
transverse magnetic field transforms to a set of discreté
Landau levels. The properties of the system under study
depend strongly on the ratio of the cyclotron frequency we
to the electron relaxation time 7. We shall consider the
cyclotron resonance in a two-dimensional gas with a weak
damping w,7 > 1 when the discreteness of the Landau lev-
els manifests itself most clearly and the cyclotron reso-
nance peak is narrow.

The cyclotron resonance in two-dimensional systems
was first observed in ref. 5 (for electrons in the vicinity
of a gas—liquid helium boundary) and in refs, 6-8 for in-
version p-type Si layers. A theoretical discussion of this
effect based on a model in which electrons are scattered
elastically from impurities was given in ref, 9, However,
such a model cannot describe the energy relaxation of
two-dimensional electrons.

We shall study the spectrum of the cyclotron resonance
of nondegenerate two~dimensional electrons interacting
with phonons. Since the electron energy levels are dis-
crete, the scattering of phonons is strongly inelastic, When
an electron undergoes a transition between levels accom-~
panied by‘the emission or absorption of a phonon, the en-
ergy is conserved since a part of the phonon momentum
is absorbed by the "barriers" containing two-dimensional
electrons. Such a scattering differs qualitatively from the
standard three~-dimensional inelastic scattering by optical
phonons., We shall assume that we and its higher harmon-
ics do not correspond to singularities in the phonon den-
8ity of states.
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In the investigation of the cyclotron resonance it is
necessary to consider not only a finite width of the Landau
levels but also their nonequidistant distribution. The non-
equidistant distribution is due to a nonparabolic disper-
sion of electrons and also due to a weak electron—phonon
interaction. The contribution of the electron—phonon in-
teraction is related to unequal shifts of different Landau
levels (a two-dimensional weakly coupled magnetic pol-
aron), :

The cyclotron resonance spectrum at temperatures
comparable with hwe (when several Landau levels are oc-
cupied by electrons) depends strongly on the ratio of the
deviation from an equidistant distribution of the Landau
levels Awg to their width 771 (Awe, 7! « we)e For Awe>»>
r‘l, the spectrum in the neighborhood of w, represents a
set of fine-structure lines. Such lines correspond to the
transitions between neighboring Landau levels. The sep-
aration of the levels is ~ Awg and their width ~ 7=1, When
Awe/ v! decreases, the lines begin to overlap and, for
Awe « 17!, the spectrum transforms into a continuous band
(but asymmetric for Awg = 0).

For Awe ~ 1!, the frequencies of the transitions be-
tween different neighboring levels overlap and the elec~
tron—phonon interaction leads to a mixing of levels (which
will be discussed later), which complicates the calculation
of the cyclotron resonance spectrum considerably, We
shall carry out such a calculation for arbitrary Awe/r!
in a wide range of temperatures (in the absence of degen-
eracy) using a quantum—statistical method similar to that
used in refs. 10 and 11 (the profile of a line representing
the absorption of light by a nonlinear oscillator whose en-
ergy spectrum is analogous to-a set of nonequidistant
Landau levels was studied in refs. 10 and 11).

We shall consider a two~dimensional isotropic system
(our results can be easily extended to anisotropic systems).
The momentum p and position r vectors and also the vec~
tor potential A = 1/2pe x r] {3 is the strength of an applied
transverse magnetic field (3¢r) = 0] are assumed to be two-
dimensional. Phonons will be labeled by their two-dimen-
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sional wave vector q and by an index j, which determines
the type of phonon, its polarization, and the quanturh num-
ber governing the transverse motion,

The Hamiltonian of the electron—phonon system is
given by

1 14
H=Ho+ Ui Ho=gzo P + Emtay P4 Zw‘l.ﬁatuaqp

P’=(P-—£A)2' he=t1; (1)

2: 7 8XP (iqr) a}, + H.c.

Here, m is the effective electron mass at the bottom of
the band, we = |e|3¢/me, V is the nonparabolicity parame-
ter (for the Kane model, we obtain V = —2¢3/¢), a;,

qj’ and wJ are the phonon creation and annihilation op~
erators and the phonon frequency, and i is the parame-
ter governing a weak (woT > I} electron—phonon inter-
action,

Apart from an unimportant constant, the energy of an
electron at the n-th Landau level corresponding. to the
Hamiltonian Hy is given by won + (1/2) Va (n+1). For
IguBJc- | »> =1, | V|, the electron spin can be neglected
and we shall consnder only the contribution to the cyclo-
tron resonance peak which is due to carriers with a given
projection of the spin (different w, correspond to different
spln projections).

We shall not discuss the method of calculatxon of the
correlation functions, which is similar to that used in refs.
10 and 11 and will be described in a separate publication.
Using this method, we can write the conductivity o () in
a direction parallel to a layer of nondegenerate two-di-
mensional electrons in the following form, which applies
to frequencies close to the ¢yclotron resonance:

o(w)——ﬂezv(n. W), @~ g )

n=0

where N is the density of electrons with a given projection
of the spin.

Equation (2) has a simple physical interpretation. The

function Re o (n,w) corresponds to the absorption line due

to transitions between the n-th and (n +1)~-th Landau lev-

els and the total absorption spectrum ¢ («) represents the
superposition of such lines. The electron—phonon inter-

action leads to a mixing of the wave funcétions correspond-
ing to different Landau levels. Such effect gives rise to

a coupling of functions o (n, «) with different n, It can be

shown that the equation for ¢(n, «) has the form 1)

#(n, w) [—i{w—=wy=P (r)] + [ (1)}
—2(n+ 1) X T (n, k) (A 1)
13
Xpln+k, w) =2(n +1) DT (n—k k) igpln—=k w)
k

= (Ay+ 1) (n + 1) exp (~rwe/T)
k=1, 2, .o., kmax; Mg =[0XP (kwe/T) — 1]74;
T(n, k)=0; n <0, 3)
The parameters ['(n) and I'(n, k) in Eq. (3) govern the
decay effects:
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P (n) = qu (L1, k) m
X[” (n-~1—k, k ﬁL;(rz-—-/\z k)|
P(re k) == DT (@) Lo(n 1, &Y Ly (n, B) [(n -+ k 4 1) (a5 1))
q

-2!‘ -l”(—’—z)“ex (--1«13 Z)a K ~
R T PL= 7000 )P — wg,);
7

uoe 1
Loin, k) ={2%n 1 (n - R) 1LY (—z—ziqz);

(m k)] (7 — 1)

Ty (q)=

R
I=Vm; Ly(n, k)=0, n <0, )

where L‘,‘1 are the Laguerre polynomials.

The terms in Egs. (3) and (4) with different k* are due
to electron transitions across k levels. Each such tran-
sition is accompanied by the emission or absorption of a
resonant phonon, which is reflected in the delta functions

in Eq. (4).

The quantity P(n) in Eq. (3) represents the shift of
the transition frequeng:y n—-n+l,

Pny=V(n-1)+rPuyi— Py (5)

where Py is the shift of the n~th level due to a weak pol-
aron effect, which can be calculated for the interaction de-
fined by Eq. (1) from the standard perturbation theory.

. The system (3) describes the interference of the lines
@ (n, w) for an arbitrary ratio of the line shift P(n) to the
width parameters T'(n), T'(n, k). It follows from Egs, (3)
and (4) that the number of lines kp, 5% Which are coupled
directly to v (n, w) is determined by the maximum sepa-
ration of the levels which are con_nected by a one-phonon
transition. For large we (> 10 sec-!) used in the cyclo-
tron resonance experiments on two~dimensional systems 8
kmax s small and can be oftea set equal to unity, kmax =
1. For the interaction with acoustic phonons, this is due
to a restriction on the momentum of the resonant phonons.
In fact, it follows from Eq. (4) that Ty (q) is exponentially
small for q7 » 1. It'is also obvious that the transverse
phonon wave number should not be much greater than the
reciprocal of the thickness of the electron layer ( ~ 10°
cm-!). At low temperatures we/T > 1, the transitions
withk = 1leadto a finite width o(w) = (e’N/zm) Re ¢ (0, w).

The system of linear equations (3) can be easily solved

- on a computer for arbitrary electron—phonon interaction

and nonpérabolicity [the infinite chain (3) can be truncated
since the function ¢ (n, w)is exponentially small forn > H].
The case of a highly nonequidistant distribution of the levels

[P ()= P (n kY5 (n), |I'(n, k)] (6)

which can be studied analytically, corresponds to the cy~
clotron resonance peak, consisting of a set of virtually
nonoverlapping fine-structure lines. The profile of the
n~th fine=structure line is given by

Reg(n, w)=(a;+4 1)"2® (n, »)

[rr2m(®) 3 Brl-4+4.9)

1
x(n+g+5)emr o «
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« T D(rs k) —Q(m)Qn+kp) |,
T I (n T k) '

~— nw T'{n)
@ (n, w)=(n+1)exp( i c) T (n) 4\,-‘.2‘(71) H

Q(n) =w—w,— P(n) N

The first term on the right-hand side of Eq. (7) de-
scribes a Lorentzian curve with a half-width 2I'(n) equal
to the sum of the widths of the n-th and (n + 1)-th levels
(between which the transition takes place) calculated from
the standard formula of Weisskopf and Wigner. The sec~
ond term describes an asymmetric correction, which
arises since the frequencies §2(n) lie close to one another
and the lines interfere, ‘

The widths I'(n) increase when the temperature is
raised, the lines overlap, the condition (8) ceases to be
satisfied, and the fine structure disappears. Since only a
single line ©(0, w) is excited at low temperatures wq/T »
1, the fine structure can exist only in a narrow range of
temperatures.

It follows from Egs. (2)-(4) that the general cyelotron
resonance peak has a complex asymmetric profile. The
total intensity of the peak is independent of the interaction
with phonons. The wings, where |w—w,| > I'(n), [P,
and n ~ fiy, are Lorentzian. Using the iteration method,
we obtain from Egs. (2)-(4)

etV 1
e} m (@ — wg)? !

lo—wI>y 1= (8 + 1)

Xi (n-f-i)exp(—r

“")[r(n)-42r(n. K) A (n + ko 1)}. (8)
n=0 k

The interaction of an electron with two phonons is not
included in the Hamiltonian (1). If this interaction is taken
into account in the second order of the perturbation theory,
Egs. (2) and (3) remain unchanged and the interactionleads
only to corrections to T'(n), T (n, k), and Py, in Eq. (3).
Such corrections are especially important for we > wp,
(wm is the maximum phonon frequency) when the one-
phonon transitions are forbidden because of the law of
conservation of energy.

Our discussion indicates that a study of the cyclotron
resonance of two-dimensional electrons can not only give
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the spectrum of the electron energies but also yield in-
formation about the interaction of two-dimensional elec-
trons with phonons. It will be shown in our forthcoming
publications that non-Lorentzian lines (even for equidis-
tant levels) are very sensitive to the type of phonon partic-
ipating in the inelastic scattering. The line profile can
vield not onlv the parameters governing the electron—
phonon interaction bhut also the form of the phonon spec~
trum (when the phonon spectrum splits in size-quantized
two-dimensional bands). Most accurate information can
be obtained when the cyclotron resonance spectrum exhib-
its a fine structure. When the strength of the magnetic
field is increased, the distribution of the levels bgcomes
more nonequidistant and the fine structure should manifest
itself in strong fields (for InSb and 5 = 20 kOe, the non-
parabolicitv leads to a separation of the fine-structure
peaks V~ 14 cm~! = 2.4 kOe). & should be noted that a
fine structure should appear at T ~ w¢ even in the spec-
trum of the cyclotron resonance of degenerate two-dimen-
sional electrons.

The author is grateful to M. A. Krivoglaz for his dis-
cussions.

5In the derivation of Eq. (3), we have made use of the fact that, for all rel-
evant n ~ n,, the corrections I'(n)/w, Idl"(n)/dwcl ‘P! /we « 1, and

“also T(m)/T, | P(n) /T <« 1 are negligible.
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