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The dynamics of an anharmonic oscillator interacting with phonons in a nonresonant quasimonochromatic
field is studied. The field-induced decay effects alter considerably the effective oscillator temperature.
When an induced decay corresponds to simultaneous excitation of the oscillator and creation of a phonon,
a runaway effect occurs for strong pumping, i.e., the oscillator energy increases exponentially with time.
Mechanisms limiting the runaway effect are proposed. The limiting mechanisms lead to an inverse
population of the oscillator levels in a certain energy interval. The luminescence and absorption spectra
corresponding to local and quasilocal vibrations are studied. For an inverted population, the anharmonic
vibrations can amplify light near the fundamental absorption frequency. If the frequency of the pumping
field is higher than the oscillator frequency, the pumping field amplifes light and phonons at the difference -

frequency.
PACS numbers: 63.10. + a

The study of the dynamics of localized vibrations of
impurities in crystals (local or quasilocal vibrations) is
dependent on the solution of a more general problem of an
oscillator interacting with a medium.! The relaxation of a
harmonic oscillator whose interaction with a medium can
be described by an effective friction force 1'*'q.M [ay =
V2o, (a,+af) 1s the normal coordinate of an oscillator
and wy, is its frequency] and by a random force was studied
in Refs. 2-5. A quantum-mechanical transport equation
corresponding to such a model was discussed in Ref. 4.

It was shown in Ref. 4 that, after a time t > 1! from the
application of a regular external force when the initial
distribution p(0) is *forgotten,” the density matrix p(t)
represents a shifted Boltzmann distribution. The shifted
distribution can be obtained from the equilibrium distri-
bution by the following simple unitary transformation:

P(8)=D (1) ¢,gD* (8); pag=[A () + 1] exp (—hu,afay), )

l:s"ir, B (w) = [er — 1],

D (t)==exp [v{t) af — V" () a];
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T
viny=1 { der(e) expi= (T 3 tw) (e — 1) A=t
0
where f(t) is an external force (measui'ed in frequency
units). )

In fact, Eq. (1) holds only near a resonance when
|o—of <o, wherew is the characteristic frequency of
the applied force, wpy, is the characteristic frequency of
variation of the polarization operator of the oscillator R(w),
and T =Im R(wy). For |v—o,] ~ o, the dispersion of R(w)
influences strongly the oscillator dynamics in an external
field.- For example, it follows from Eq. (1) that the weak-
field absorption cross section o (0)ecl/(0—w,)*(lo—o,|>T)
decreases monotonically as a function of the frequency
detuning, whereas the correct expression o (vw) & Im R (w)
H{o—w0)* (see, for example, Ref, 6) has an additional struc~
ture near |o—o,| ~ o,. Such a structure manifests itself
in the infrared absorption spectra of local vibrations’; in
addition to a central peak at w = wy, the absorption cross
section o{w) exhibits side bands that are shifted relative to
wy, through distances approximately corresponding to the
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maxima in the phonon density of states. For a strong field
and o ~ |+, +o,|, the decay effects involving the simul~
taneous creation or annihilation of a photon, a phonon, and
a quantum of local vibrations can dominate the relaxation
of local vibrations.

The distribution of vibrations over excited states in
strong fields depends strongly on whether the field fre-
quency is higher than-the oscillator frequency and the fre-
quency of phonons participating in the decay or not. In the
latter case, the decay can occur only when either the
oscillator or phonons are excited. The oscillator is then
coupled to a distribution of phonons participating in the
relaxation. This can be described by an effective tempera-
ture TI*=T- —-"- (the plus sign corresponds fo wyy > wy)-

For w > wy, the decay corresponds to the simultaneous
excitation of the oscillator and phonons. Since the oscil-
lator has an infinite number of levels and the probability
of a transition in which the number of the level increases
also increases (neglecting the anharmonicity), a runaway
effect takes place, i.e., the stationary distribution is
described by a negative temperature T*=—To, /(0—u,)and
cannot be normalized. We shall consider two mechanisms
removing the runaway effect: nonlinear friction® and an-
harmonicity. It is found that the current can be limited by
an infinitely weak anharmoniecity but the limitation of the
oscillator energy can occur only when the distribution of
the levels (or at least of the high-energy levels) is strongly
nonequidistant. The mechanisms limiting the runaway
effect do not destroy the population inversion of several
lowest levels and, therefore, nonequilibrium local vibra-
tions can amplify light at a resonance frequency.

1. TRANSPORT FEQUATION IN A QUASIMONOCHROMATIC
FIELD

We shall consider a one-dimensional anharmonic
oscillator interacting with continuous-spectrum vibrations
representing a thermostat. We shall assume a weak inter-
action I’ «< wm, wy - In the simplest case, the Hamiltonian
of the system under study in an external field is given by

Hez Hy- Hoy+ Hy; Ho=W.¢t¢.+Ti§Vc§—f(t) 6 ¢ mmal ta,,
1 {#)==1, (8) exp (~—twt) 1 (t) oxp (twt),

Hpy= z wpofay; Hym= ; V,kc,ck (2)
+7 2 VoknrCuCrCpr + 2 V,,;,c’c,,, ¢ == ay - af,
k, k! J
where k labels the continuous spectrum vibrations. The

terms ~ci’,t are omitted in Hy since it is assumed that the
equilibrium position of the oscillator represents a center
of inversion. The first and second terms in H; in Eq. (2)
lead to a damping and shift of the oscillator frequency due
to the decay into one or two phonons; the third term yields
maxima inImR(w)for w ~ wy £ wpy (see Ref. 6) and also
a nonlinear friction® with a complex coordinate dependence;
the latter term corresponds to the decay with the annihila-
tion of two oscillator quanta.

A transport equation based on the Hamiltonian (2)
without the field term was derived in Refs. 8~10 and its
solution was analyzed in the equilibrium and nonequilibrium
cases for an arbitrary ratio of the anharmonicity parameter
V and the relaxation rate I'(but IVl, T « wp, uwy). The
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method of Ref. 8 can be generalized to an oscillator ina
quasimonochromatic field

'.’—“:,',-'-L'— <, Th(jo t o)) G =min (o, up o fo—ol. ()

We shall assume that £(t) = 0 for t < ¢; and the oscillator is
in equilibrium with the vibrations belonging to the con-
tinuous spectrum. For moderate fields |Vf?| « t;3, we
obtain from Eq. (3) the following result, whichholds in the
interaction representation:

fl “) p-fwt
Wy =W

2, (1) e ag () e Lo (1); v (1) = ﬂw(tz:‘:‘ ;

8 2 t
g0y =¥ [1+ ZHAGE | 00 ) a0 0

?
K(e)==S* (2, 1) AS (2, t,); S (t, to) == Texp [—.z Sdtﬂo (':)].
2

(4)

The transport equation for the density matrix in the inter-
action representatipn p.”(t) obtained in the second order in
Hi has the following form for large times t — t; >» tg:

g, v
0: = -rﬂt_ rlp: - ipf ["o- P:] —1 _ ["’3 P!]
P =04 (1), R ==n, (¢) == a}a,,
t./l’x: == P/ (2,4 1) (ng, p2}e +
— 2ﬂ/d3'?n“n], “o’ia_o (‘).‘
{4, B),==AB 4 BA; Ty==T,(t)

" LI
—r 3 A e b —r).

Here, v is the renormalization of the anharmonicity
parameter V due to a third term in Hi (such renormaliza~
tion was obtained in Ref. 9); Py is a time~dependent fre-
quency shift; for f = 0, it was evaluated in Ref. 9; and the
field-dependent part of Pg can be obtained by a Kramers-—
Kronig transformation from I'; -~ T'. The parameters r',and
T'jnv govern the probability of the stimulated decay:

rtﬂﬂg Vb (0 £ o — wy); rm==‘“§ Viab(v—o,— W),

2049, — 2 (Ay 1) agp,af
®)

18u} 11, (8]0

(w0} — «?)

Bys=fiy (1) =T7 {I‘n {0 + (6)

X (L (0, + ) +T_A (0, — w) - Lyge (A (w—w'x)+1)l,}-

The parameter T in Eq. () is the field-independent decay
damping® and the operator I';p, describes a nonlinear
friction and is given by (see Ref. 8)

Pyp, == I (28 (20,) (n5 4+ my+ 1, 2}y
o+ (28— Bgy p)s — 2 (8 (20 + 1) oo’
— 21 (20,) 6§ %0,03]; T =7 3 Vi, 8 (20, — wp).
. )
Equation (5) is derived neglecting the terms ~ (2,-4-1)*
|V GL|<r, and T TOL VI Pt

(7

It is of interest to compare Eq. (5) and the transport
equation for the harmonic oscillator with linear friction
discussed in Ref. 4. It follows from Eqs. (1) and (4) that,
in the approximation defined by Eq. (3), we obtain aot) =
et} (9, (1) D* (t), where D(t) is defined by Eq. (1),inwhich
a,, should be replaced by @, (t and the integrationovertime
is from ty. Transforming from the interaction representa-
tion with the Hamiltonian H, to the interaction representa-
tion with the Hamiltonian H} = wyaay, we find that, up to

M. I. Dykman 1307



rapidly oscillating terms, the transport equation (5) is
formally the same as the transport equation obtained in
Ref. 4. However, it should be noted that the field-induced
decay effects modify the parameters ¢'and B; in Eq. (5)

8o that they can deviate considerably from their equilibrium
values.

Equation (5) can be also applied to analyze the peaks
in the spectral distribution of a nonequilibrium oscillator
near w,,-and | +o+o/|. The profile of the peaks (linear
response to an additional weak field) can be obtained from
two-time correlation functions (A(7)B(9)) at large times
|t=7] > tc. It:can be shown (for f = 0, this was demonstra-
ted:in Ref. 10) that, with an accuracy up-to small terms
~T'te» We obtain

ARBEY TLBOL @ & oA, t—1> 10 (8)

where Try, represents the trace taken over the wave func-
tions of an isolated oscillator, The operator & (¢, v; C (<)}
describes the relaxation of the oscillator and satisfies the
" differential (with respect to t) equation (§) with the initial
condition & (=, ; € (x)}=C (%), where

Px (vt)#é(t. to; Z-texp [—hH, (t)]); Z=Tr, exp [~k (fal]. (9)

2. SOLUTION OF THE TRANSPORT EQUATION FOR A
MONOCHROMATIC FIELD

For a monochromatic field, we obtain [fj(t)] = const
and it follows from Eqs. (4) and (5) that the parameters in
our transport equation cease to depend on time. During a
time At 3 T'f!, a steady-state distribution of the oscillator
with respect to the eigenfunctions of the operator ng is
reached {it follows from Eq. (4) that dny/dt = 0]. We shall
first discuss this distribution for r(z) = 0. The steady-
state solution of Eq. (5) is then given by the Boltzmann dis-
tribution '

(10)

fiy4171
P (6) = by = (1)1 xp (—uny "), r-=«».[1n y ] .

- It follows from Eq. (4) that the density matrix in the
Schrédinger representation is a shifted Boltzmann dis-
tribution and Eq. (10) has formally the same form as Eq.
(1). However, the effective temperature T" in Eq. (10) can
be either much higher or much lower than the thermostat
temperature. In particular, for T, =2 160?|f, [ Ty/(0} —o®?
we obtain T* = To (o, ). .
In weak fields, we find that
16w2| £, |t T3 ,
"'*""TF»!“"—'IL*'«:;T Tar (o) (7 (o F 11 T+ 1A lon F o) = ]

- 1 (o — ) = 8 ()] P {8 (0 —0) - 0) 410, [T/~ FI<E,

It follows from Eq. (11) that the effective temperature
changes rapidly also in weak fields provided the equilibrium
Planck number of the oscillatoris small, fi(w,,) « 1,

7 (|w,—o|) > @ (0,) and a decay w,=|v—w,| can occur.
It should be noted that, when Eq. (10) is satisfied, the
steady-state oscillator current <c, ()= .[6(#)p. ()=

;;54:“_'—0,1-30 [fe*] has nonzero terms only at the field fre-

quency.
Equation (10) ceases to be valid when the dominant
relaxation mechanism is the decay of the field quanta
accompanied by the creation of a phonon axid excitation of
the oscillator since Tg< 0, 'ﬁfs ~1,and T <0 and the
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distribution (10) can no longer be normalized. For Tg<0
(r(z) = 0), a runaway effect for the oscillator takes place.
For example, the average occupation number obtained from
Eq. () is given by d(ny)/dt==—T,((n,>—1#,);for I's < 0 [it
follows from Eq. (6) that rag > 0], we obtain (n,> ~ exp

(ITy[8)> 0 for t—w.

To analyze the runaway effect and to calculate the
correlation functions defined by Eq. (8), it is convenient to
transform from the operator eguation (5) to difference
equations and take the matrix elements with respect to a
complete orthonormal system of functions | m)r:

Fm)g == (m 1)~ [ad () €**5%]™ [0); | O)g = D (x) $* (, 26) | O);
+(m’ | no (2) [ m), = Mn', "

(12)

' Here, |0) is the wave function of the oscillator ground state

at the time tg [| m)y are not eigenfunctions of the Hamil-

‘tonian Hy]. The parameter Tin Eq. (12) is arbitrary but it

is convenient in our discussion of the relaxation to assume
that r is a time at which the initial condition for our trans-
port equation is specified. For.such a choice of T, it follows
from Eq. (5) that @ (¢, <} depends only to t—r.

The system of differential—difference equations for
Pmn(t) = .(mlp, (9)In), corresponding to |fi(t = 7)| = const
has the same form as the system of equations for pp,
obtained in Refs. 8 and 10 for £ = 0. The method of gen-
erating functions was used in Eq. (10) to solve the afore~
mentioned system; the obtained solution [Egs. (11)=(13) of
Ref. 10] corresponding to large times remains valid even
for T'g<0. The evpluﬁon of the matrix 2lements can be
easily studied in the case if =—1 and T ==0. Let us
assume that pp = 1 for t = 7. As a result, we obtain

P (t) s 0xp [~2[ Dp | (¢ — )] (1 — 2 T/ VCF, £ 5 e, - (13)
It follows from Eq. (13) that ppn(t) — 0 for t — « and an
arbitrary finite n but, as t—r increases, states with higher
and higher numbers n are excited (the runaway effect) and

the quantity <n,(t)>= 3 np,,(t) grows. The internal an-

harmonicity of the oscillator considered in the approxima-
ar ,

tion <no>, |4 Twi|< T', does not influence the diagonal ele-

ments of py but is very important for the nondiagonal ele-
ments. For example, for fig ==1 and I'y < 0, the quantity
pn+in(t) (this matrix element governs the oscillator cur-
rent at a frequency wy) can be obtained from Eq. (5) under
the assumption py (t)=ua, p,,1, (7)ls>0=0 in the following

‘form:
\ 4 V) Jn
buvin () =+t E [ VAT T

'exp (= [B|T |41 (Py—Vn 4+ V®)2)] (t —1)) (14)

X (4 —exp [ RITs |+ 1V + (V) (£ — )"

It follows from Eq. (14) that <a(#)> & ZvVrF Tp,,,, () exp
[—iVn (¢ —=)] ccexp[—3|T,| (¢—1)] fort=T —w= providedV +
V¥ w 0; for V¥ + V = 0, a runaway of the current takes
place‘): <ay (£)) o exp [IT,| (t—)). The damping of (a(t))
due to a nonequidistant distribution of the levels can be
explained as follows: For anonequidistant distribution of
the levels, there are always levels with such high numbers
that the transitions between these levels have frequencies
that differ considerably from the transition |0), — {1),; the
probability of the excitation of such transitions is very low,

14i %’% 'N< 1, N> 1. For a harmonic oscillator, all
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transitions occur at the same frequency and, therefore,
they interfere. As a result, only the relative contribution
of a single transition can be defined.! Because of inter-
ference, the total current grows exponentially as a func-
tion of time.

There are several mechanisms restricting the oscil-
lator runaway. The simplest mechanism is related to a
nonequidistant distribution of the excited levels. If, for
some level Ny, the transition frequency w(n) between the
n-th and (n + 1)-th levels (n = Ny deviates to such an
extent from w(0) ~ w,, that the decay w = wk + w(n) cannot
occur, the runaway effect does not arise. The aforemen-
tioned model cannot be described by the transport equation
(5) since the damping operator f‘,p, corresponding to this
mechanism is more complex and, in general, an oscillator
temperature cannot be introduced. However, assuming
that, for n = Ny, decay effects w = wy + w w(n) dominate,
it is possible to introduce an oscillator temperature in the
corresponding energy range provided wy, > T > w(Ng)—ewy,
i.e.,

Pun==4 exp (—u,n/T*), n & Ng; py=0, n>Ny;
1 — exp (—a,/T*)
ST —exp[— (No+ 0wyl ’
Me—wTl)(o—w), T <<l

4 (15)

[Eq. (15) can be obtained from Eq, (5) for arbitrary
I'/Tinv < 1 provided the weighted phonon density of states
is rectangular]. The population of the levels defined by
Eq. (15) increases monotonically up to a level Ny and there
decays rapidly to zero. For a real anharmonic oscillator,
such a sharp dependence is smeared. For low-energy
levels, the distribution is only weakly nonequidistant and it
follows from Eqgs. (5) and (10) that it is possible to define
a negative temperature for such levels provided the
inverting pumping is strong. For higher levels, the con~
tribution of the pumping decreases and then becomes small
compared with the contribution of other relaxation mecha-
nisms. As a result, the population of the levels is a func-
tion with a wide maximum.

Another mechanism contained in our model which can
also limit the runaway effect is nonlinear friction defined
by Eq. (7). It follows from Eq. (7) that nonlinear friction
increases rapidly with increasing oscillator energy and,
therefore, even for small 1‘( /T'gitbecomes important for

high levels. To analyze the contribution of nonlinear fric~

tion, it is convenient to transform from the difference
equation for ppyn to a differential equation for a generating

function : ¢(s)= gp_s'

. . Tyt
V("-" "’r)+4"P +2pms — 1 (2ug) (8 + 1)
XAY' [s—exp (/)] + ¢}, (1) =1. (16)

-The requirement that the function ¢(s) should be analytic
in a unit circle represents the second boundary condition
to Eq. (16). We shall illustrate the application of this con~
dition in our calculation of ppp for 'y « '®). In the zeroth
approximation in T'p we obtain

v(n)=7%,f&‘f,7» oo+ gy =t — 7B,

[ Liand TS L1 4

an

To calculate pgy and pyy, we note that the .right-hand side

1309 Sov. Phys, Solid State 20(8), August 1978

' of Eq. (16) remains finite for T'g » 0 at the point s =~1

provided the expression in braces vanishes at this point. .
This yields '
puftoe == [1 + 67T (1 4 29T)/[2 4 ¥T* (1 - e~224T)]. (17a)

For 79 » T'g, it follows from Eqs. (17) and (179.1 that, ir=
respective of the ratio T"/T and of the sign of T”, popu-
lation inversion does not occur, py < pgo-

For r(z) « I'gy population inversion can occur for
T* < 0. The standard perturbation theory in T'( /r¢ cannot
be used to analyze the limitation of the runaway effect by
nonlinear friction. However, nonlinear friction can be
taken into account consistently in the important limiting
case of low temperatures exp¢-2w,,/T) « 1 when Eq. (16)
can be reduced to a degenerate hypergeometric equation.
For r? < I'¢(2R; + 1), the only analytic solution of this
equation is given by
r,(n
LA N A | PRt A )

) (18)

where (F, is the degenerate hypergeometric function.!?
Using Eq. (18), we can easily verify that pgy < pyy is satis-
fied for weak nonlinear friction provided T <0, i.e.,
population inversion is obtained.

The nonlinear friction defined by Eq. (7) can be the
dominant mechanism removing the runaway of low-fre-
quency quasilocal vibrations since the parameter 1..(2) is
relatively large since the phonon density of states at the -
frequency 2w, is higher than the density of states at the
frequency wy. For local vibrations, we obtain T = 0.
However, for wpy < wy < 2wy, the nonlinear friction of
local vibrations can be due to the field and is obtained if
the terms ; Vit in Hj in Eq. (2) are taken into ac-

"P (‘)"’.11"1 (1:

count. For higher frequency vibrations, the principal
mechanism limiting the runaway effect is a strong an~
harmonicitiy which manifests itself for such vibrations.

It should be noted that, for a strong field satisfying
I'f > I', the transport equation (5) has a qiasistationary
solution defined by Eq. (10) even for a nonmonochromatic
field.

3. INTERACTION OF NONEQUILIBRIUM LOCAL VIBRA-
TIONS WITH LIGHT

A convenient method of study of the states of nonequi-
librium oscillators is the investigation of their absorption
(amplification) and luminescence spectra. We shall dis-
cuss the profile of peaks near resonance frequencies in the
spectrum of local vibrations located in a nonresonant
monochromatic field under steady-state conditions, i.e.,
when the susceptibilities averaged over the period w™ are
independent of time. The polarizability of the oscillator
dipole moment M = uc,, is determined (see Ref. 10) by the
Fourlertransform of the correlationfunction ¢lc, (), ey (=},
Under steady-state conditions, we obtain <le, (8), ¢, (9>
=¢[ey(t—1), ey (0)1>. It follows from Eq. (4) that, with an
accuracy up to small corrections ~I'¢t,, the profile of the
absorption spectrum near the normal frequency of the
oscillator is described by

Q0 (@)= Re { drexp (108) clex (1), ¢ (O))> = Re | deoxp (190) 0, (1;
.0 0
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Qo (8) =K[a, (8), af (O)D

=T [0y () 6 (1, 0 [af (O g Oy B~y (19)
Using Eqs. (6)~(7) and (12), we can write Q,(Q) as a set of
nonoverlapping lines corresponding to the transitions be-
tween neighboring levels of the oscillator induced by reso-
nant radiation. The system of equations describing the
interference of such lines has the same form as in the equi-
librium case.8» ® However, in the nonequilibrium case, the
parameters I's and T and also the transition probabilities
that are proportional to the differences between the popu-
lations of the levels are field dependent.

For decay effects wy = wy * w, the broadening Iy is
an increasing function of the field. However, for ﬁ(w.n) s1
and |[V] > T, the total width Qy(Q) can decrease in a cooling
field (I'y > I'-~s T'iny)» 8ince transitions from fewer levels
contribute to the formation of Qy(2) and the effect of a nop-
equidistant distribution of levels is weaker. For |V| « Ty,
a reduction of the half-width I'¢ of Q(Q) occurs in a field
provided I'jny > I'x. The effective oscillator temperature
increases with decreasing b and, for ¢ ~ ﬁflVI, the dis-
tribution Q((Q) broadens due to a nonequidistant distribu-
tion of the levels. For ry < 0 and rg(2fig + 1) > ', a non-
equilibrium oscillator amplifies the light in a certain in-
terval of frequencies. It follows from Eq. (19) that the
absorption of light takes place in the whole spectrum

§ 490, ©) == cta ), ot O ==.

Therefore, local vibrations with a strong anharmonicity

V] > Iy lead to optimum amplification. The corresponding
spectrum Qy(Q) represents a set of weakly averlapping
nearly equidistant lines. If the intensity of the n-th line,
which is proportional to (n + 1)(ppn= pn+1 n+1) » 18 negative,
amplification takes place in the corresponding frequency
interval.

It.was shown in Ref. 13 that a cubic anharmoniecity
Vcs and a nonlinear dependence of the dipole moment of
local vibrations on the displacement leads to a resonance
absorption of light at twice the frequency of the oscillator.
This result holds also in nonequilibrium under steady-state
conditions. The profile of the peak near the doubled fre—-
quency is governed by the Fourier transform of the cor~
relation function -
0, () ="Tr, [ (1) G {¢, 0; (22(0), o, O3], (20)
where the quantity 82, ,(t) shouldbe replaced by a}(t) exp-
fiumt) and the quantity &2 (0) should be replaced by
lag (0))°. However, Eq. (20) can be used to study the pro-
file of the peak not only at twice the oscillator fre-
quency (the corresponding calculations for the equi-
libriin case were made in Ref, 14) but also near the :
Raman spectrum |+o+o,|. It is only necessarytotake -
into account in &%, the cross terms (v + v¥)(a, + ag). For
Wy = > 0, the term in Q,(t) which governs the peak at a
frequency @ ~ o, + o, differs from Qy(t) only by an addi~
tional factor 16m |fal? (02— o®) ™2 x eF and, therefore, peaks
at the frequencies wy, and wy, = w have the same profiles.
For w > wy, the peak at a frequency Q ~ w—wyisgoverned
by the correlation function
0 ()= Tk 1y ™ 0 £ T2, [0 () € (8, O; (a9 (0), o (O] (21)

{w? — o)
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A compargson of Eqs. (21) and (19) indicateg that the func~
tions %Q« (z+o) and §, (z+-o—o, )X (lz] € @, 0,)

exhibit an inverse symmetry with respect to x = 0. For
optical pumping, the regions §(Q) (@ ~ w—u,,) of ampli-
ficatton (for 'y > 0, this includes the whole peak region)
correspond to the stimulated Raman scattering of light.

The Raman scattering of light interacting with local
vibrations and the stimulated Raman scattering of light
are due to the anharmonicity and nonlinear polarizability
of the oscillator. The Raman scattering and luminescence
at the normal frequency can be calculated as in Ref. 10
provided the interaction with the quantized electromagnetic
field in the crystal is taken into account. For I'y > 0 and
T(2) = 0, the profile of the luminescence peaks near w,, and
w—w,, is governed by

Wo () =[1,—1n ()] C (®), 8~u: W, (@)

=— [+ 1(@) +1] G, (8), 8~ 0 —0, (W,>0)
The oscillator emits light at the normal frequency and at
frequencies o,+ o >0, provided its effective temperature
is higher than the temperature of the medium. At a fre-
quency w=tws, (for w—w, > 0), the emission of light
(Raman scattering) takes place for arbitrary T*/T > 0. For
I'g <0, Eq. (22) is no longer applicable; at frequencies
Q ~ w—uwy there are frequency intervals in which the
stimulated Raman scattering does not manifest itself, i.e.,
é',(m > 0 and, for large n(Q), no luminescence ocecurs.

(22)

Equation (20) can be also applied to the absorption of
nonresonant phonons by a nonequilibrium oscillator [the )
absorption coefficient is proportional to ; V2,3(2 — “’k) Q:(Q).

It follows from Egs. (20) and (22) that the oscillator can
emit phonons spontaneously at frequencies v, ~ v, to
for n{wy) < nf but no amplification takes place. Phonons

" at frequencies wi ~ w—w,, are not only spontaneously

emitted but it follows from Eq. (21) that coherent amplifi-
cation of the phonons in a field takes place.

When. the pumping of localized impurity vibrations is
due to a nonresonant light, the largest effect is obtained
when the frequency of the light lies at the maximum of one of
the side absorption bands (absorption with the participation
of a phonon). The aforementioned bands are due to the an-
harmonic terms c.f‘ck in Eq. (2) and due to a nonlinear
polarizability of local vibrations’ depending on the phonon
coordinates. The nonlinear polarizability leads to a term
f(t)gm‘,c‘c,,. in the Hamiltonian defined by Eq. (2). The

coefficients m, | lead to a renormalization of Vi in the
expressions for-the induced decay parameters I'y, I'jny:

S
Vﬂ*—’ ,Vnk+ “)'4%”.

m,;.

Fields that are required for the rate of the induced
decay to be of the order of the spontaneous relaxation rate
can be estimated from the measured ratio of the absorp-
tion at the maximum of the peak o, to the absorption in
the side band «a, , () :|f|*~TITo0a,/(e,2,,). where I is the
half-width of the peak. The estimated fields are weaker
than 10° V/em. The amplification of light and phonons at
the difference frequency w- can manifest itself in
weaker fields; the threshold for such an amplification is
governed by the lattice absorption. To obtain strong heat~
ing of local vibrations or cooling of quasilocal vibrations,

v
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it is necessary to select high-frequency vibrations in the
former case and low-frequency vibrations in the latter
case so that I is small. Uniform heating of high-frequency
Iocal vibrations up to high occupation numbers n(“"u) s 1

is often impossible.

Our results obtained for a one~dimensional local
vibration can be generalized to the case of several an-
harmonically interacting local vibrations. In the non-
degenerate case when different local vibrations have dif-
ferent frequencies and the field frequency is not equal to
the difference or combination frequency of local vibrations,
such a generalization is trivial: the interaction c, ¢, 1ck
results in a situation in which the field acting on an oscil-
lator « induces the decay of the oscillator %' and vice
versa. Such decay effects are analogous to those that have
been already described. However, for degenerate vibra~
tions (for example, local vibrations of cubic symmetry),
the situation is quite different. In general, for an arbitrary
orientation of the field, the problem in question cannot be
solved and, in particular, an effective temperature of local
vibrations cannot be defined. However, in the important
special case of high-frequency local vibrations, an effec-
tive temperature can be introduced approximately. In fact,
it is only necessary to note that, for such local vibrations,
there is a fast relaxation mechanism due to the quasielas-
tic scattering of phonons from local vibrations. Such a
scattering leads to a levelling of the occupation numbers
of different local vibration states with approximately equal
energies (with the same principal quantum number).

Large effects can occur in relati&ely weak fields if the

field frequency is close to the difference of the frequencies -

of two anharmonically interacting (Vnwmcuw ) local
vibrations provided one of these vibrations is rapidly re-
laxing,) I, > T, | Vi, | For I Vi, |f, Poli(e} — ot
the relaxation of an oscillator « is then described by Eq.
(6) in which 1, I'y),,, should be replaced by a considerably
larger parameter Vi.,/I's. The resonance method con-
sidered is particularly important for the cooling of low--
frequency quasilocal vibrations. This is due to the fact
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that, for the induced relaxation to phonons, it is difficult to
satisfy the necessary inequality I'+ > I'jny for such vibra-
tions. For a resonance with high~frequency local vibra-
tions, the latter inequality can be easily satisfied pro-

vided wy, » I'y,.

D1t was shown in Ref. 11 that the runaway effect which occurs n semi-
conductors for the scattering of electrons from polar optical phonom can
be limited by a finite width of the forbidden band.

)As an example of such a system, we may quote high-frequency untn—
molecular) local vibrations of an impurity molecule interacting with
relatively low-frecuency (in particular, libration) vibrations, whose damp-
ing is strong.
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