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A quantum transport equation for degenerate local vibrations of cubic symmetry is derived. The
transport equation takes into account the internal anharmonicity quartic in the impurity coordinates and
also the decay and modulation broadening mechanisms of local vibrations. The transport equation is
reduced to a system of linear algebraic equations for the calculation of the spectral distribution of local
vibrations. This system is solved analytically for a highly developed fine structure of the spectrum. The
possibility of a numerical analysis of the profile of a general spectrum at finite temperatures and for
arbitrary ratios of the anharmonicity and relaxation parameters is discussed. Examples of numerical
calculations are presented to illustrate the changes in the spectral distribution on increase in temperature
and as a result of changes in the relative magnitudes of the local vibrations parameters.

PACS numbers: 63.20.Pw

The line profile and the spectra of quasilocal and lo-
cal vibrations due to transitions at the fundamental oscil-
lator frequency were studied in Refs. 1-6. At low temper-
atures T « hw, (w, is the local vibration frequency), the
line profile i Lorentzian, At higher temperatures, the
line exhibits a broadening and itg profile changes con-
siderably, This is due to the fact that the spectral dis-
tribution includes a contribution from transitions between
nonequidistant (because of anharmonicity) excited local
vibration levels. If the deviation from equidistant dis-
tribution of the levels is greater than the broadening of
each individual transition line, the spectrum of local vi-
brations exhibits a fine structure at temperatures T ~ hw,,
Such a structure is observed, for example, in the infrared
absorption spectrum of nondegenerate quasilocal vibra~
tions in MnF, doped with Eu?* (see Ref. 7).

The effect of internal anharmonicity on the profile of
the spectral distribution of local vibrations and also on
its fine structure was studied in Refs. 2, 4, and 8. The
calculations of Refs. 2, 4, and 6 apply mainly to nonde-
generate local vibrations since the energy spectrum of
an isolated local vibration can then be easily determined,
On the other hand, degenerate local vibrations had been
studied experimentally, in particular, three-dimensional
local vibrations transforming under the vector representa-
tion of the cubic group,?

Theoretical description of the spectral distribution
of degenerate local vibrations is quite difficult, On the
one hand, the energy levels of a large number of excited
local vibration levels are required in the calculation of
the temperature dependence of the spectral distribution.
The energy spectrum of local vibrations in the harmonic
approximation represents a set of degenerate equidistant
levels, Internal anharmonicity of local vibrations leads
to a shift and splitting of the levels. Since the number of
states with approximately equal energies increases rapid-
ly with the principal quantum number n [for example, for
local vibrations of cubic symmetry, the number of degen-
erate levels is proportional to (n + 1)(n + 2) /2], the posi-
tions of the levels corresponding to high quantum num-
bers n ane determined by a high-order secular equation,
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On the other hand, the interaction of local vibrations with
the vibrations of the continuous spectrum stimulates
transitions between the states with different n (between
the multiplets) and also within the multiplets, The latter
transitions are due to mainly the scattering of continuous
spectrum vibrations from local vibrations, As a result,
we obtain a stochastic modulation of the phase of local
vibrations which results in modulation broadening? and in
hybridization of the states within each multiplet,®

We shall derive a quantum transport equation (see
Refs, 8 and 10) and apply this quantum transport equation
to study the spectral distribution of trebly degenerate lo-
cal vibrations of cubic symmetry. We consider arbitrary
temperatures and arbitrary ratio of the relaxation width
to the interval between the levels in a multiplet. Since
the number of multiplets contributing to the spectral dis~
tribution of local vibrations increases with increasing
temperature, we assume in our numerical calculations
that the temperature is not too high compared with hw,,
At temperatures 0 < T =< 2hw,, the profile of the spectral
distribution of local vibrations is obtained for a number
of typical parameters of the system considered. In par-
ticular, we demonstrate that a fine structure appears
when the temperature is raised and is smeared at still
higher temperatures,

1, HAMILTONIAN OF THE SYSTEM AND TRANSPORT
EQUATION

The Hamiltonian of an isolated local vibration trans-
forming under the representation T,y of the group Op in-
cluding the quartic anharmonicity ie given b;
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Here, ax and ay are the creation and annihilation operators
of local vibrations. As usual,® we shall assume that the

4
anharmonicity is described by ¢ %‘,qx +clx§' igis (qy are

the oscillator displacements in the direction x). Jor such
anharmonicity, the parameters V, and V; in Eq, (1) satisfy
the relation V, = 2V;, The renormalization of the param-
eters V due to the interaction with the vibrations of a con-
tinuous spectrum® leads (see also the Appendix) to the pa-
rameters V, and V; that are independent, ) Formally, we
can also assume that the aforementioned parameters are
independent if the Hamiltonian of the internal anharmon-
icity of local vibrations contains nonadiabatic terms simi-
lar to p? qx. (pX is the momentum component of local vi-
brations).

In our discussion of the relaxation of local vibrations,
we shall consider both the decay effects (one-phonon for
quasilocal and two-phonon effect for local vibrations) and
the modulation effects, The corresponding Hamiltonian
is given by

HeHy4 H 4 Hy BP= 2 oxbibl; Hym i Z Vo (g + a*) (g -+ b3)

(2)
+7 2 Vore 8y 4 a3) (b + %) (Bp + 85) + vl 2 V kw3 1 bibye,

xkk! Xy ek

Here, bf; and by are the creation and annihilation opera-
tors of the continuous spectrum vibrations and N is the
number of atoms in a lattice, We have included in Eq,

(2) only the fourth-order anharmonic terms corresponding
to the scattering of continuous spectrum vibrations from
local vibrations and we have assumed all the interaction
parameters (Vyk, Vykk' Vyy'kk" to be much smaller than
wg -and the characteristic phonon frequency weff.

The profiles of the peaks of the spectral distributions
of the correlation functions are governed by the behavior
of the local vibration correlation function (A(t)B(O)) for
large times t > wy “’e{f Following Ref, 6, we can as-
sume 1in this region that the frequency dependencekof the
damping of local vibrations is smooth and write the corre-
lation function in the second order in the interaction Hi
and in the first order in the internal anharmonicity in the
following form:

A (2) B{0)) == Tro[exp (1H,t) A exp (—iHjt) Gy (#)], (3)
where the operator Gp(t) is the solution of a transport
equation

PR
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The trace Tr; is taken over the wave functions of the Ham-
iltonian Hy. The operator I' governs the damping of local
vibrations due to decay effects

PG=I‘2((I£+1)(nXG—2a Ga} + Gm)
) 4
+2lny+1) G —203Ga, 46 (ny 1)1},
1‘=w2 V2d (00 — ) + 7 2 ¥ (P Moo 1) (00 — g — )
+z<ﬂk~—nu)6(wo+w»—ww)1 o= (ool 1y == 1 )

_ (5
7 (@) = [exp (\w) — 1]~4, A == T,
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The operator I'y, governs the modulation damping of lo-
cal vibrations

rmG = rmlz [”x'- [”x- Gl 4 2"y ; [AXX"
x #FY

[Au,, 61l + T ; [#y [nyr, GIL, ©

AZZ' = “l ' + al'al' T, "l = N-3 2 Vllkklfkk'; rm! =N-% l§ V%zkh'fkk’r

Ty =2 N % Vi Vasnar Farrt fkk' =ty (1=} fg) ¥ (0 — wp),
¥

Three independent parameters I'mi appear in the operator
of the modulation broadening since it follows from Eq. (6)
that Trni are the components of a tensor of rank four ap-
propriate to a cubic crystal {the operator of the decay
broadening defined by Eq. (5) transforms as a tensor of
rank tWo and has only a single independent component],

The operator B= P.,Zn in Eq. (4) results only in a small

(|Py| < wy) renormalization of the local vibration frequen-
cy wy and we shall assume that such a renormalization
has been made,

2. SPECTRAL DISTRIBUTION OF THE CORRELATION
FUNCTION OF THE LOCAL VIBRATION
COORDINATES

It is well known that the profile of an infrared absorp-
tion line due to local vibrations is governed by the follow-
ing spectral distribution:

o

1 :
Q“°)=mm_§w <y (8) af (O efotdt, s o -

We can calculate the quantity (a (t)ax(O)) from Egs. (3)-
(6) setting A = ay and B = af. The vibrations of the con-
tinuous spectrum are already excluded from Eqs. (3)~(6)
{the averaging over the thermostat) and the problem re-
duces to the operator equation (4) in the space of wave
functions of an isolated local vibration, It is convenient

to choose the wave functions |nayj) of a three-dimensional
harmonic oscillator,  Here, n is the principal quantum
number defined by

Z"xl”“ri)‘“"l”arj)
X

o ig an irreducible representation of the cubic group;

is the row of the representation; the index r labels the
same representations o corresponding to a given n, Be--
cause of the anharmonicity, the levels with the same n but
different ¢} have different energies and form a multiplet.
The transport equation (4) is applicable provided the sep-
aration between multiplets { ~w,) is much greater than the
splitting of the levels within each multiplet (~ Vj).

Since (napj|Hy|n'a'ry') ~bnndaadjjr, it is neces-
sary to solve a secular equation to obtain the position of
the multiplet levels, The order of the secular equation
depends on the number of realizations of the representa-
tion o for given n, We shall assume that the diagonaliza-
tion has been performed and, therefore, H, |noyj) =
eop(n)] nogpj). In the repregentation of the functions
Inoyj) = |n ¢), the expression Q(w) defined by Eq. (7) as-
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sumes the form
Q (w)=1(24-1)"* Re }] Ay (ny 91 ¢") Gulpr §'5 0)s
woy'
Ay (n, 9, ¢) =<nplayln 1>, 9

0
Gylps 95 W)=~ 18 “"’"”""(u-}-i? [ Gar ()| ns) dt.
)

For each pair of representations ¢ and o', the elements
Ax(n, o, j; n+1, o, j" corresponding to difterent jand
it satiefy certain conditions that are independent of n but
depend only on the group properties. Analogous condi-
tions should be satisfied by the matrix elements Gy(e,
¢'; w) gince they transform under the same representa-
tion a8 Ax(no @ 9, '

1t follows from Eqs. (4)-(8) that the function Gn(q),
e w) satisfies the fquowing system of linear algebraic
equations,

(1@ — gy (p+ 1) + 2o (M] +T(n)) Gulo, ¢'; ©)
: p 2B v 9 9 'G" [ ,"V;w
T B 2, T 0 ¥ e 0 Gon o )
(9)

Q== w0 — wy,

t
=ZEFE A & ¢) exp(—hogn),
T (n) =T [(2n + 1) (27 + 1) +-61), e, (n)=

L (n).

The parameters By, are governed by the decay equations

Balm 9 ¥ o v1)==21‘(ﬁ+1)§]A (1, s ) Ay (n, # i;:)

Boan 9 ¢ o m—ﬁ(ﬂ+i)"51(n—1 5 9L %?)

the quantities By are governed by the modulation broaden-
ing ‘

X Boln 9 ¢ 910 ) Gu(our 5 w)==<n+w |£nG +<w)|mp> a1

?191

since the explicit expressions for these quantities are
cumbersome, we shall not quote them, :

Neglecting the broadening, we find that the spectral
distribution defined by Eq, (8) can be represented [see
Eq, (9)] as a fine structure set of delta function lines lo-
cated at frequencies wy + €<P'(n +1) - e(ﬁ(n) The intensity

of each line is given by (i - 1)‘*exp(——)\mon)2|A (n, @ ¢

The total intensity of the lines corresponding to a transi-
tion from the n-th to the (n + 1)-th level is given by (n +
1)~ exp (- Awgn)(n + 1)(n + 2)(n + 3)/6. Since T > wy/21n2,
the latter function exhibits a maximum atn = n, (n, =~

37T /w, provided T > wy) and then decays exponentially,

Relaxation leads not only to.a broadening of delta -
function lines but also to interference between the lines.
If the anharmonicity lifts ecompletely the random (with re-
spect to the cubic symmetry assumed) degeneracy: of lo-
cal vibration levels and if the ‘separation between the fine
structure lines is much greater than their half-width

[t (2 1) = ez, ()] =[5, (41 #1) — ey, (n 2 1)][>1(n), (12)

we find that the interference between different lines can
he neglected and their profile is Lorentzian with a half-
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I
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The contribution of the decay broadening to ¥ s identical
foy all the lines corresponding to the transitions between
the p~th and (n +1)~-th myitiplets and is proportional to the
number n, The modulatjon broadening depends on the in-
dices o and o'y but, on the whole, it algo increases rap-
idly as a fumtion of n, {onsequently, even if the eriterion
of the fine structure (12) {s satisfied for small n, it is vio-
lated for layge n and the fine structure disappears in the
wings i.e.,

ey

1Q (@) & phyg /@, qo =T 4Ty + 2, jw — oI ey, (mo)l, Y(rg).(14)

It follows from Eq. {13) that the criterion (12) is vio~
lated at higher temperatures for smaller and smaller n,

+ Since the relative intensity of the lines with small n de-

oreases as (n + 1)~ %, the flne structure is quickly smeared.
On the other hand, at low temperatures satisfying T « w,
the intensity:of the trangitions between excited levels is
exponentially small. - Copseguently, the fine structure Q(w)
can be observed only in p narrow temperature range T ~
wg. The corresponding pumber of lines is small and the
lines correspond to transitions hetween eeveral lowest
levels, ,

When there is a fine structure near the maximum of
the distribution Q(w), the profile and pogition of the peak
are governed by the trapsitions from the states with n ~
nm. The parameter ny, is determined by the condition

* that the amplitude of the fine-structure lines should ex-

hibit a maximum, i.e., the factor (n + 1)(n + 2)(n + 3) exp-
(=Awgm)/ v (n) should have a maximum, Since y(n)is a
rapidly increasing function of n, the quantity ny, is smaller
than n,, The gmearing of the fine structure at the maxi-
mum of Q(w) is accompanied by a decrease of ny ~ nm.

_For a weak internal anharmonicity ([Vy,q,3] < ¥¢)»
the system of difference equations (11) can be solved
analytically «

Gu(#r 95 0) = ogys A (% 0 97) oxp (—hwgn) (10 — 1R), @ ()
1 :
~tito as

where v, is defined by Eq. (14). Since the interference of
the transitions in t_he absence of an internal anharmonicity

4 9

0T

FIG. 1. Temperature dependence of the spectral distribution Q(w) in the
absence of a fine structure: V,/T = 2; Vo/T" = V4/T" = 1, Cuwes 1, 2, and
3 correspond to' T/wy = 0, 0.5, and 0.9.
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a0 /r
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FIG. 2. Spectral distribution Q( ) of degenerate local vibrations exnibiiing
a fine structure: V¢/T" = 15; V./r = B/ = 7.5. The ratio T/ w, for the
curves a, b, and ¢ is'equal to 0.67, 1, and 2

is-strong, all the:individual lines in the sSpectrum have the
-samehalf-width v, that:is not:determined by the Wigner—
Weisslkopf expression (Eq, (13)], i.e., the "paradox" of
the: harmonic escillator is retained for degenerate local
.vibrations both:for-the: decay and modulation types. of -
broadening,

3. PROFILE OF THE SPECTRUM OF DEGENERATE
LOCAL VIBRATIONS FOR ARBITRARY
ANHARMONICITY (NUMERICAL
RESULTS)

“Tostudy the spectral distribition of local vibrations
for- arbitrary ‘ratios V/ I''and “’o /T, itis necessary to solve
numétieally the set of lineat: equatione 9). For simplic-

ity, we shall agsume that the modulation broadening is un-

impoértant, f.e:; Fmi,z.a <«T', “The 1atter Inequality can be

satisfied for: quasﬂocal or low-frequency local vibrations,

Equatioir (9) tlién-contains five dimensionless parameters:
o/r, Q/r, Vi/I‘, Vz/r, and V‘s/T

As already noted, the irnhomogeneous term in Eq. (9)
decreases exponentially with incredsing principal quan-
tum number, i.e., for n >» ny Consequently, we can de~ -
fine at arbitrary temperatures n = n for which the chain
of equations (9).can be terminated so that the quantity
Q(w) can be obtained with a specified accuracy. It {s quite
clear that the truncated chain of equations can describe
accurately the maximum of Q(w) only for i > ny,.” Hence,
the quantity i increases with increasing temperature. At
the same time, the number of equations required in-
creases rapidly (following a power law) with n. As a re-
sult, only the case of low temperatures can be studied
relatively easily, We shall choose 1 = 5 {the system (9)
then reduces to a system of 310 linear equations], which
makes it pessiblez) to study the range of temperatures
T = 2w, (ny € 4).

Since the distribution Q(w) for a degenerate oscillator
is a function of four parameters, we shall study only the
most important changes of the spectrum: 1) the tempera-
ture broadening of the peak Q(w) due to internal anharmon-
icity but in the absence of a fine structure; 2) tempera-
ture smearing of the fine structure; 3) dependence of the
number of fine structure lines on the relative magnitudes
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" FIG. 3. Dependences of the fine structure of a degenerate local vibration

on the relative magnitude of the anharmonicity parameters for T/wq = 0.5.
a) W/T = 0, W/T = 37.5, Vy/T = 0; b) V,/T = 15, Vo/F = 1.5, Vy/T = 1.5;
¢) /T = 18,95, Vo/ = 0, V4/T' = 9.875; d) V,/T = 8, Vo = 215,
VYT = 4.

of the internal anharmonicity parameters.’

It follows from Fig: 1° (our choice of the ‘parameters
Vs Vy, and Vg corresponds to a spherical oscillator with .
an internal anharmonicity of the type x? + y? + 22 that no
well-defined fine structure occurs at any temperature for

* Vy,3,3 ~T. When the quantity T/w, is increased, the

maximum of Q{(w) shifts, the peak broadens and becomes
ds§inmetrid, ' For V/T ~ 1, the interference between the
transitions is quite important and ng & nm. Consequently,
the quantity Q(w) for T = 2w, cannot be described in texrms
of five excited levels only (the error involved reaches

30%).

- Figure 2 shows: the temperature dependence of the -
epectral distribution of local vibrations for such a choice
of the parameters that the fine structure criterion (12) is
satisfied for T ~w,, It follows {see also Fig. 3b showing
the graph of Q '.)' for thé same oscillator at T = wo/2l that

~ the fine structure becomes well—deﬁned when the temper-
"ature 18" raiged and lies in the region of ‘relatively small

T/w,. However, although the anharmonicity parameter is
quite large (V/ I~ 30), the number of the fine-structure
lines is small, The lines in the neighborhood of Q/I' n
3075 correepond to the transitions between the levels n =
1 and i = 2; in the neighborhood of 2 /I' ~ 60, the transi-
tions take place between the levels n= 2 and n =3, The
half-widths of such lines are well described by Eq. (13).
Asthe: temperature-is raised-above the value T » .w, the
fine structure.is-gradually smeared, ‘The smearing be-
gins to manifest itself for:large.Q /V where the:contribu-
tion of the continuous spectrum is espeecially strong. The
lines characterized by smaller n disappear earlier than
the lines characterized by large n. For certain-ratio of
Vto at T = 2w, the fine structure practically disap-
pears and Q(w) represents a single highly asymmetric
distribution, The maximum of this distribution lies to
the left of the frequency corresponding to the transitions
from the level n = ng = 4, i.e,, as already noted, we obtain
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Dy < g The accuracy of the determination of the ainpli-
tude and position of the maximum on the curve 2c is of the
order of 10%. To the left of the maximum, our calculated
results for Q(w) (Fig. 2¢) corresponding toi=4andni=5
agree with an accuracy of 1%; the agreement on the right

of the maximum becomes rapidly poorer.

Figure 3 illustrates the dependence of the structure
of the spectral distribution of degenerate local vibrations
on the relative magnitude of the anharmonicity parameters
V,, V,, and V5. We have chosen these parameters so that
the separation between the frequency of the fundamental
transition (0 — 1) and the maximum transition frequency
between the firat and second excited levels is constant and
the temperature is chosen so that the lines corresponding
to the transitions between higher excited states are unim-
portant,  Figure 3a corresponds to a quasi-one-dimen—
sional local vibration (the vibrations in three directions
are independent); there is only a single side line, Figure
3b corresponds to a spherical local vibration; two side
lines corresponding to the transition 1 - 2 occur (a weak
line at a frequency = 60 I corresponds to one of the
transitions 2 — 3), Figures 3c and 3d refer to a more
general case of a three-dimensional local vibration of
cubic symmetry and they correspond to three transitions
1-—-2,

The fine structure of the infrared absorption gpec-
trum due to degenerate local vibrations has been studied
only under nonequilibrium conditions.!! Experiments that
would measure simultaneously the relatlve magnitudes
of the parameters V,, V,, and V; (for example, from the
positions of higher harmonics'?!%) and the profile of the
peak Q(w) at the fundamental frequency in a wide interval
of wy/T are not available. Consequently, we cannot com-
pare quantitatively our calculated results with the experi-
mental results for degenerate local vibrations.

Finally, we would like to point out that our calcula~-
tions of Q(w) at frequencies w ~ w, that are based on a fi-
nite & are valid at arbitrary temperatures (in particular,
for ny > n). They correspond to the model of an impurity
that exhibits T + 2 nearly equidistant multiplets (including
the ground sate) with oscillator transition probabilities
and with energies of all the other levels differing consider-
ably from nw,. It is only necessary to replace the quantity
(n + 1)° on the right-hand side of Eq. (9) by the correspond-
ing partition sum of the impurity.

APPENDIX

The internal anharmonicity parameters of local vi-
brations Vy 5,3 in Eq, (1) are renormalized due to the in-
teraction of each oscillator with the vibrations of the con~
tinuous spectrum, The cubic anharmonicity that is most
important is described by the Hamiltonian

== =/s , + ’ +, bt)-
HY =N nguk(ax-{-a?) (ayr -+ a3} (br + bE) (A.1)

In the second order in Vyy'k, the parameters V, o ; are
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given by

7, =v1+4PWEVm(m%—@ =);

14
I=Va+8P'N‘2{ V“ ";)% fk}v (Az)
;w w . Vil )
,==V.—|-4P'N—2( ?k 4“)’:‘7‘6":’13)
1t follows from Eq. (A.2) that ¥, — V; = 2(V; — V;). How-

ever, for low-frequency quasilocal vibrations and in the
lowest approximation in the ratio of the local vibration
frequendy to the typical frequency of continuous spectrum
vibrations, we find from Eq. (A.2) that ¥, — vy~ 2(V; -

Vj). This is due to the fatt that the continuous spectrum
vibrations follow adiabatically the low-frequency local
vibratious and the "clothihg" of the local vibratiohs does
not lead to a spatial deperidence of the effective mass of
local vibratiohs and to thé appearance of terms similar
to p2q® in the internal anharmonicity Hamiltonian, Since
‘the phonon density of states at frequencies ~ [V]is quite
low, the broadening of local vibrations due to transitions
between the levels within each multiplet, that is described
by thie Hamiltonian (A.1), can be neglected.

Upor honcentrosymmetric local vibrations, the parameters V, and V; are in-
dependent even {f the. renormalization of these parameters due to. internal
cubic anharmonicity is taken into accoutit,'l?

%)At high temperatures, it is convenient to replace the system of difference
equations (9) by a partial differential equation. This can be accomplished
by a transition in the opetator equation (4) to the representation of the wave
functions of a triply degenerate harmonic oscillator in the coherent-state
representation. As a result, we obtain a second -order diffusion-type equa-
tion with seven independent variables (time, three amplitudes, and three
phases of an oscillator). For T > wy, the latter equation transforms to the
Fokker—Planck equation for the classical three-dimensional oscillator.
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