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It is shown that electromagnetic waves traveling in an optically nonlinear cubic crystal can be accompanied
by spatial oscillations of the polarization. Such oscillations are studied for electromagnetic waves traveling in
the direction of a fourfold axis. The oscillations can occur when the intensity of electromagnetic waves is
varied. Both the angle of inclination of the polarization ellipse axis and the degree of polarization oscillate.
The polarization ellipse ifi crystals exhibiting nonlinear absorption rotates toward one of the symmetry axes as
the electromagnetic waves propagate and the waves become either linearly or circularly polarized.

PACS numbers: 78.20. — e, 42.10.Nh, 05.40. + j, 42.70. — a

One of the important properties of optically aniso-
tropic crystals is the change in the polarization of the
transmitted electromagnetic waves (see, for example,
Ref. 1). If the intensity of an electromagnetic wave is
high enough, such a change can become self-induced. For
transparent isotropic media, the self-induced anisotropy
has the effect that the polarization ellipse of a strong elec-
tromagnetic wave rotates.? The change in the polarization
which occurs in crystals is more complex. Ih partic-
ular, it has been shown that in transparent nongyrotropic
crystals the polarization ellipse rotates only for certain
orientations of the ellipse relative to the crystallographic
axes and also only when the incident electromagnetic wave
is strong enough; in the opposite case, the polarization
ellipse oscillates about certain special directions.

The self-effect of the field E{r, t) = E(r) exp(—iwt) +
c.c. for moderate intensities of the field is determined
by the third-order nonlinear polarization of the crystal
PO (r) exp(—iwt) +c.c. Neglecting the spatial dispersion,
we find that the frequency-dependent susceptibility tensor
Xijid(@» @ —w, —w) relating PO®) @) to E(r) has three in-
dependent components in a cubic crystal and the corre-
sponding expression for y 1) (r) assumes the form

PP (r)= A\E,|E P+ A,E3E® + AGE, | E, |*, E,=E,(r). L
Here, » labels the projections of the vectors P®) and E

on the coordinate axes which are chosen to be parallel to
the fourfold crystal axes. In the absence of frequency dis-
persion, we obtain A, = (1/2)A; the term proportional to
A, in Eq. (1) determines the behavior of the nonlinear op-
tical effects in cubic crystals compared with the isotropic

medium where A; = 0.

In general, the parameters A, in Eq. (1) are com-
plex. Their real parts correspond to a nonlinear renor-
malization of the refractive index; such a renormalization
is clearly anisotropic, i.e., a nonlinear crystal exhibits
birefringence.? The imaginary parts of Ay , 4 describe the
nonlinear absorption; it follows from Eq. (1) that such ab-
sorption exhibits the dichroism effect. The self~induced
birefringence and optical dichroism of cubic crystals were
first observed in the microwave frequency range in Refs.
4 and 5. These effects have been observed in many-valley
semiconductors and interpreted as the manifestation of an
analog of the Sasaki effect at microwave frequencies.
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It was shown in Ref. 6 that a large self-induced rota-
tion of the plane of polarization can occur in the impurity
absorption region of crystals. This effect was observed
at optical frequencies in Ref. 7 and rotation angles greater
than 10° were obtained for nonlaser fields, i.e., the optical
nonlinearity can be termed "giant.” I is clear that the
real part of Aj is greater than the imaginary part when
the frequency detuning from a resonance is greater than
the absorption line width. At the same time, the value of
|A;] is large (although, naturally, smaller than at a reso-
nance).

I is, therefore, of interest to use the general phe-
nomenological expression (1) to study the change in the
polarization of electromagnetic waves under strongly non-
linear conditions when (I/A)| AjE2| s 1 is satisfied, where
1 is the thickness of a crystal and A is the wavelength of
electromagnetic waves (the nonlinear terms in P are then
small compared with the linear terms, |AjE?| < 1, and
the terms higher than cubic in E can be neglected in the
polarization). Since the change in the polarization due to
a strong self-induced dichroism was already studied in
Ref. 6, we shall concentrate on nearly transparent crys-
tals. For simplicity, we shall neglect the natural and self-
induced? gyrotropy, i.e., we ghall treat centrosymmetric
crystals as crystals where the spatial dispersion in the
frequency range considered is weak.

1. EQUATIONS DESCRIBING THE CHANGE IN THE
POLARIZATION

It is most convenient to study experimentally and also
eagy to treat theoretically the self-induced change in the
polarization of electromagnetic waves traveling in the di-
rection of one of the fourfold symmetry axes (to be spe-
cific, we shall consider the z axis). For a weak damping
and | A;E?| < 1, the equations for the envelopes of the
field ﬁ (z) slowly varying over the wavelength A have the
form

OE, koE, 2niw
9z =—2 koli, + cng

B®, v=uz, y, E,=E,exp(-—t9—:-‘—o-z). 2

Here, ngy and k, are the refractive index and the absorp~
tion coefficient (in the limit |E | — 0) and the expression
for P(3) can be obtained from Eq. (1) for P(s) by the re-
placement of E,, by E%
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FIG, 1, Phase trajectories for | f| < 1. Curves 1-8 correspond to # =
—0.2, —0,1,—0.0%, 0.6, 0.2, and 0.01 for f ='0.5. The dashed lines
denote the separatrices corresponding © # = 0,

The polarization of electromagnetic waves is deter-
mined by the angle o between the major axis of the polar-
ization ellipse and the x axis ([100] axis) and by a param-
eterp =) (I, ~1,)/(y +I,)| describing the degree of
polarization (I and I, are ) the maximum and minimum
values of the square of the electromagnetic field strength).
The quantities o and p can be easily expressed in terms
of the relative difference u between the squares of the am-
plitudes of the field components Ey and Ey and in terms
of the difference between the phases of these components
¢ which can be more easily evaluated

|E, () P—[E, () ]2
TEGP

=

. 9= ATg[E, (2)/E, (3)]. )

The expressions for o and p in terms of u and ¢ have
the form
[ — ] =
cosnp] + 58 (s) 4 nn,
1, u>0,
0, u<o,

ae=— ! aro tg[
z @

p=(u? sin? p.} cos? ¢)'/s, 6(u)={ n=0, 41, ...

(the values of a which differ by 7 are equivalent as re
gards the polarization.of electromagnetic waves).

The equations of motion for u and ¢ obtained from
Eqgs. (1) and (2) are given by

du

d
-;;——:,;—+uu—u'>(ucos29—c.). 7;;’--=——+qsm2s».

x=-§ (1 — u®) (f — cos 2¢),

f==1+(4§/46)’ 0= A 4], sp= (474 A7)/ 43

ca%n-— a; Sﬂ E (') pdz'; ®)

itis assumed that A, = 0.

It follows from Eq. (5) that the polarization regarded
as a function of 7 depends on three dimensionless param-
eters: f, g4, and ey, i.0., on the ratio of the complex quan-
tities A, and A,. The isotropic part of the nonlinear po-
larizability which is proportional to A, does not influence
directly the change in the polarization; A] appears only in
the expression for |E(z)|%. For a tra.nsparent erystal, we
obtain |E|? = const and 7 is directly proportional to the
path z traveled by the electromagnetic wave. For an igo-
tropic medium, we obtain g4 = gy, and £ =1.
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FIG. 2. Phase trajectories for |f]:<1. Curves 1-6 correspond to # = 1.3,
1,.0.5, 0,48, 0,3, and 0,1 for f =2, The dashed curves denote the separa-
trices corresponding to x-.-—— (/= 1), and the dashed lines denote the
asymptotes u = £1 correspondmg to #=0,

Equation (5) can be easily solved in the limit when
the nonlinear absorption is much greater than the nonlinear
refraction |ey 5| » 1,

189 () =e™"tge(0), tg2(x) =o™tg2(0), |ey|+]eg|>1;  (6)

it can be seen from Eq. (5) that £,7 and £, 7 are inde-
pendent of A}. It follows from Eq. (6) that the phase shift
¢ tends monotonical]y to nm when electromagnetic waves
travel in a nonlinearly absorbing crystal (for A} < 0) or
the phase shift tends to (2n +1/2)7 (for A} > 0) and &
tends to mn /2 (for A} < 0) or to (2m +1/4)7; and n and
m {n, m =0, 1, ...) should be chosen so that the limiting
values of ¢ and « are closest to ¢(0) and a(0). For

A% < 0, we thus find that the polarization of electromag-
netic waves due to the self-induced dichroism tends to.a
linear polarization (monotonically for AT < 0). For A7 >0
and AJ + 2A} > 0, electromagnetic waves acquire a cir-
cular polarizatlon, for A >0, but AJ +2A% < 0, we find
that, although ¢ — +7/2, the polarization in the limit

z -0 becomes linear since the amplitude of one of the
components vanishes. The orientation and rate of rota-’
tion of the major axis of the polarization ellipse toward the
nearest axis of the (100) or (110) type, which corre-~
sponds to. a— n1/2 or o — (2n + 1)1/ 4 are determined
only by the value of AT,

2. SELF-INDUCED CHANGE IN THE POLARIZATION
OCCURRING IN A TRANSPARENT MEDIUM FOR
1fl <1

In the absence of nonlinear dissipation (¢; =&, = 0),
Eq. (5) represents a gystem of Hamilton equations of mo-
tion in the variables u and ¢ (in fact, this is the reason
why such variables are convenient), With an accuracy up
to a constant, the Hamiltonian # is equal to the ratio
of the energy of electromagnetic waves in the medium
(velated to the nonlinear polarization P®)) to A}|E|4. For
€4 = £3 = 0 and a weak nonlinearity when Eq. (2) holds, the
constant value of # is a consequence of the law of con-
servation of energy. The solution of the system (5) can be
oexpressed in terms of elliptic Jacobi functions. Since the
resulting expressions are rather complex, we shall quote
only the result of our analysis of the final expressions.
The phase diagrams of the system are shown in Figs. 1
and 2. I follows from the system (5) that the equations
of motion do not change when ¢ is replaced by ¢ + n7 and,
therefore, only the portion of the trajectory corresponding
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to the interval of ¢ of length 7 is shown in Figs. 1 and 2;
the complete phase diagram represents the periodic ex-
tension of the curves shown in Figs. 1 and 2. For |f]| < 1,
it follows from Fig. 1 that all the trajectories are sym-
metric convex closed curves with centers at the point
¢=nmT,u=0for <0 or ¢ =(2n+1/2),u =0 for

X >0.  The quantity & is bounded by the inequalities

‘ 1
B<E<KH, Komgl(itt) (11<1).

For |# — &, | <€ 1 the corresponding trajectory is
closeto an elliptic trajectory and, for # -0, it ap-
proaches a rectangle. The amplitudes of the quantities
u and ¢, i.e., uy and ¢y, and also the period T of the mo-
tion over the trajectory are given by '

2 Th x '
“°=[1"T:F|+—f§'] ’ w=—murcoos(f—23)+%0(x),
T =1 — [P ékugt K (%), '

|| XK - [ — 2% ‘
v=[ TR AT in<e @
where K(k) is a complete elliptic integral of first kind and
k is its modulus.?

Equation (7) exhibits simple asymptotic behavior. For
X =» #,. ,the amplitudes uy and ¢, tend to zero as
| % —&.lh and T~T,==y2[1+ % The quantities
T, and. T_ determine, respectively, the smallest turning
period for each f corresponding to # >0 and ¥ <0 .
The period and amplitude increase with decreasing |# |
For |#|<€1, we obtain '

0. _E%Tarecosf—}-%e(x)-
T=2(—M"hn 4 (-] vt

For small | # |, the period then depends logarith-
micallyon | ¥ |

It follows from Eq. (4) that the phase trajectories
shown in Fig. 1 for |f| <1, # <0, correspond to period-
ic oscillations of the polarization such that the angle of
inclination of the ellipse o varies between (v /4) — o, and
(r/4) + oy and the degree of polarization varies from 1
to p, (the period of oscillations of p is T/2), where

1 '/ i x \Ya
r=(zt+1-2]" a=f-gun(-=Fm=)" } (8
#L0, |f <1, 2% > 1—1). ‘

For a = m/4 + oy, the polarization of electromagnetic
waves is linear, but as o approaches /4, the ellipticity
increases, p approaches p, and then increases up to unity
when o passes through 7/4. The trajectories in Fig. 1
with centers at ¢ =u =0 correspond to oscillations of the
major axis of the polarization ellipse about the axis [110];
the trajectories with centers at u =0, ¢ = (which are
obtained by the shift of the aforementioned irajectories
through 7 in the direction of the axis ¢) correspond to_
“oscillations of the polarization ellipse about the axis {110].

The trajectories in Fig. 1 with cenfers atu =0, ¢ =
{(2n +1)/2] 7 (#>0) correspond to the rotation of the
polarization ellipse with a period T defined by Eq. (7)
which is accompanied (in contrast to isotropic media) by
periodic oscillations (with a period T/ 2) of the degree of
polarization p between the minimum value pyyin and the
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maximum value pmax given by

{ s 2% \th
pan=[3 0 +1~28)]", pue=(1—or)", #>0, 1<t

(9

For |f] <1, p reaches its maximum when the axis of the

ellipse lies in the direction of one of the axes (100}.

3. SELF-INDUCED CHANGE IN THE POLARIZATION
OF ELECTROMAGNETIC WAVES OCCURRING IN A
TRANSPARENT MEDIUM FOR |£f] >1

For |f| >1, it follows from Fig. 2 that the phase
trajectories can be closed provided | # |> |f | —1,
or open when this inequality is not satisfied. Forf >1,
the closed trajectories have a center at a point u =0,
@ =(2n +1)7/2; for f < —1, the center lieg at u =0, ¢ =
nw. The trajectories corresponding to. £ < —1 can be
obtained from those shown in Fig. 2 by a shift by /2 in
the direction of the ¢raxis and by reversal of the direction
in which they are circumvented; this property follows
from the symmetry of the equations of motion (5) under
the substitutions £ —=f, #—> —#, ¢ —+"¢+7/2, and
7 —=71. For |f| >1, the signs of f and # coincide
and the condition | #.|-> 14|/ |, is satisfied. For
2|# {—> 141f | , the trajectories are nearly elliptic and,
for | # |~ 0, the trajectories approach a straight line
and tend to one of the asymptotes u = £1.

The expressions for the amplitudes u, and ¢, for a
closed trajectory corresponding to |[f| > 1 are identical
with the expressions defined by Eq. (7) and the period T
can be obtained from Eq. (7) provided the quantity k is
renormalized as follows:

ru () (7a)

/2
k=gu (L) >0 2@ > 11—t

For 2|#|-|f|41 , it follows from Eqgs. (7) and (7a)
that the amplitudes u, and ¢, tend to zero as (1 + |£]—
2|7 )" and Ta=y2(|f|41)"" The amplitudes uy, ¢,
and the period T grow with increasing |#| and

~(2 ‘e ~ — _~ g 16(’fl_1) "y
o 2L+ 15 omm2— 8 Ta[2/(]f)— 1)1 m[—m+—15 ]

e . (10
=[x LL=LTR et .

For open trajectories, i.e., for 2 | # | < | f| —1,
the. quantity |u| varies from (1 — k%1/2u, to uy, where u,
is defined by Eq. (7). The expressions for k and for the
period T corresponding to a change in ¢ by 27 are given by

) x |
T=duz* (2 — )" K (k), k=2u3 f_’—_ilh’ }

> 2| |<[f—1

(11)

I can be easily shown that Eq. (11) for T reduces to
Eq. (10) in the limit 2 | # |- |f | — 1 providedthe sign
under the square root in the expression for ¢ is changed.
For | # | - 0, the quantity |u] tends to unity and the
period to T ~ 27 ({2 = 1)71/2,

For |f]| > 1, the motion over closed trajectories leads
to a polarization which changes as in the cage of |f| <1
and is described by Eq. (8) for £ < —1 and by Eq. (9) for
f >1. The motion over open trajectories corresponds to
oscillations of the polarization ellipse about an axis of the
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(100) type. The amplitude of the oscillations of the angle
of inclination of the ellipse « and the minimum value of
the polarization p are given by
2% Th
+1 ] ’ } (12)

1 ‘
=g arotg (2] — t —2)]%,  po=[1—
1> 2| ZI<(f]—1,

where p varies from unity to py.

To conclude this section, we note that the polarization
can be described in an adiabatic approximation for a weak
nonlinear dissipation |4 ,] <« 1 and far from the bifurca-
tion points (#=0 for |f| <i1and 2 | # |=|f|— tfor
1£] >1). Infact, we may assume that # is a slowly
varying function during the period T and we can average
dZ/d~ over the period. As a result, we arrive at a first-
order differential equation for # (x) which has several
stationary solutions. In particular, we obtain stationary

solutions ,76.._7(]‘+ % I) corresponding toa circxilarly

polarized wave for # >0 or to a wave polarized linearly
in the direction of axes of the (110) type for # < 0.

The circular polarization is stable for e, + 3¢y > 0 and
the linear polarization in the direction of one of the axes
(110) is stable for £, —3¢4 > 0.

It follows from our results that rotation of the polar-
ization ellipse in a transparent nongyrotropic nonlinear
crystal cannot occur for f = —1; if f >=1, the rotation
takes place only for waves with a high degree of ellip-
ticity. Self-induced oscillations of the polarization are a
special feature of the nonlinear crystal optics. The axis
of the polarization ellipse of electromagnetic waves trav-
eling in the direction {001] oscillates about one of the crys-
tal axes of the (100) or (110) type. For certain limiting
deviations, electromagnetic waves are polarized linearly.
Since the effective nonlinear optical Mhickness® of a crys-
tal |E(0) |2 depends on the intensity of light, we may in-
crease or decrease the ellipticity of the transmitted waves
by varying the intensity of light (this is in contrast to crys-
tals with linear birefringence).

The self-induced change in the polarization which oc-
curs in cubic crystals has also the following property that
can be used to identify this particular mechanism: the
angle of rotation of the polarization of waves traveling in
the direction of the [001] axis changes its sign when a
crystal is rotated by 90° about ‘its axis [001] [see Eqs. (3)-
(5)]. This effect has been obgerved’s1® (but it has beén at-
tributed only to the self~induced dichroism).
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Since the crystal axis about which the polarization
ellipse performs its oscillations and also the amplitude
and the spatial period of the oscillations are determined
by the relative magnitudes of the nonlinearity parameters
A, and A; in Eq. (1), the effect studied in the present pa-
per can be employed to determine these parameters. The
ratio of Im A, and Im A, in the impurity absorption band®
(the nonlinearity due to the saturation of the absorption or
the optical orientation of impurity centers) and also in the
two-photon band—band absorption!! is of the order of unity.
It can be easily shown that we also obtain A;/ A, ~ 1 in the
wings of the corresponding absorption bands where the
condition |Re Aj| > |Im A; | is satisfied in the case of
two-level (two-band) models employed in Refs. 6 and 11,
i.e., the anisotropy of the nonlinear refraction determined
by the parameter A, is essential.

Finally, we would like to point out that there are both
"stable" directions of rotation of the polarization ellipse
(axes of the type (110) or (100)) and "unstable® directions
(axes (100) or (110)) separating regions in which the
polarization ellipse turns toward one or the other axis.

I such a nonlinear crystal is placed in a resonator and the
incident waves are polarized in the direction of one of the
unstable axes, a crystal may support a domain structure
with domaing in which'the directions of the rotation of the
polarization are different.
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