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The spectral distributions of no-phonon lines of impurity centers in crystals are studied. Their modulation
broadening due to interaction of impurity electrons with local or quasilocal vibrations is considered. Using the
method employed in the theory of nonlinear oscillators interacting with a medium, the spectral distributions
are calculated in the general case of an arbitrary ratio of the parameters governing interaction of electrons
with localized modes V,, and their damping I, {but assuming |V, |, I', €w,, where w, is the frequency of a
mode y ). The spectral distributions are expressed as integrals of elementary functions. The width, profile, and
fine structure of the corresponding strongly non-Lorentzian distribution of a no-phonon line are investigated.
Simple analytic expressions for the spectral distributions are obtained in the limits of large and small ratios
|V, /T, and at high and low temperatures. The intermediate cases are studied numerically.

There are very narrow no-phonon (NP) lines
in electron—vibration absorption or emission optical
spectra of impurity centers in crystals. It was
shown in Ref. 1 that such lines exist even for quite
a strong electron—phonon interaction. The NP lines
are not broadened by this interaction in the situa-
tion when only the interaction of electrons with crys-
tal lattice vibrations which is linear in the phonon
operators is important. This result holds in the
harmonic approximation and in the absence of in-
homogeneous broadening and nonradiative transitions.
The width of an NP line is then determined by its
natural width. When the quadratic interaction is
included, it is found that the modulation of the fre-
quency of an electrpn transition due to vibrations
of atoms leads at finite temperatures to a modula-
tion broadening of the NP lines.?"’

It was shown in Refs. 4 and 5 that the inter-
action of electrons with local or quasilocal vibra-
tions which may occur near impurity centers can
lead to a strong modulation broadening of the NP
lines (provided such vibrations are excited at the
temperatures under study). Such broadening can
be much larger than the broadening due to the
interaction with vibrations belonging to the continu-
ous spectrum (phonons). In fact, the modulation
broadening is determined by the effective density
of vibration states g(w) which is of the order of
r.~! for a localized mode «, where I, is the damp-
ing of the mode. On the other hand, the phonon
density of states is given by gw) =« 1/Aw, where
Aw is the width of the phonon band. The damping
I can be several orders of magnitude smaller than
Aw.

The modulation broadening due to local vibra-
tions « occurs since such local vibrations shift the
frequencies of electron transitions by V,.n, propor-
tional to the occupation number of the mode n, (for
a small coupling constant V). Assuming that there
is no relaxation of vibrations during a character-
istic time of the order of the reciprocal width of
the NP line y~!, i.e., for y » I, the occupation
number n, remains fixed during such times but
the occupation numbers of different centers are
different (due to fluctuations). As a result, a set
of lines corresponding to pure electron transitions
and separated from one another by |[V,| is ob-
served. Such a set of lines corresponds to an NP
line with a well-defined fine structure.
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Let us now assume that relaxation effects lead
to quantum transitions between the levels of local-
ized vibrations in a time ~~!, i.e., the condition
Y $ Ty is satisfied. It follows that averaging of
the decupation numbers n, occurs during such time
for each center and the effect of their fluctuation
scatter on the spectrum of an NP line is weakened.
It follows that the fine structure of an NP line be-
comes less pronounced for large I, and disappears
eventually; its width y for I, » |V,| is much
smaller than |V,|. This dynamic narrowing of
the NP line is analogous to narrowing of the line
in the spectrum of systems with a random modula-
tion of the frequency studied phenomenologically
in Refs. 8 and 9.

The modulation broadening of an NP line due
to interaction with local or guasilocal vibrations was
studied in Refs. 4 and 5 in the limiting cases I, »
yand I'. = 0. In view of recent progress inthe
selective spectroscopy methods which can detect a
homogeneously broadened NP line and determine
both its homogeneous broadening y and profile,
and also since NP lines have been studied exten-
sively, it is of interest to investigate the profile
of an NP line (including its fine structure) in the
general case of an arbitrary ratio of vy to I'y.

The proximity (but not equality) of the Bohr
frequencies of electron transitions corresponding
to different occupation numbers of local vibrations
n, is a special feature of the problem. Complex
interference effects arise in such a "nearly degen-
erate" many-level system and the usual methods
of calculation of the line profile (of Weisskopf-Wig-
ner. type) are not applicable and new methods need
to be developed. Such methods have been develoepd
to study the spectra of nonlinear classicall® and
quantum?®!s 2 oscillators. We shall apply these new
methods to study the modulations of NP lines can
be expressed explicitly as an integral of an elemen-
tary function and it is possible to discuss in detail
the dependences of the line profile and of the width
of an NP line on the parameters V., and I, for an
arbitrary ratio of these two parameters.

Integral representations for the cross section
of the impurity absorption of light in the NP line
region o(w) are derived in Sec. 1 [the intensity
of emission of light from impurity centers is also
proportional to o(w) in this region and the propor-
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tionality factor is well known]. The profile and
fine structure of an NP line and their dependences
on the parameters of the electron-phonon interac-
tion, deamping of modes I, and on temperature are
discussed. in Sec. 2.

1. SPECTRAL DISTRIBUTION IN THE NO-PHONON
LINE REGION

We shall consider an optical transition between
the nondegenerate electron levels of an impurity
center (the separation between the levels is assumed

to be large compared with y in the case of multiplets);

we can then describe’ the centers using a two-
level model. It is also assumed that localized vibra-
tions x are nondegenerate. We shall consider only
systems in which the electron—phonon interaction

is weak, which means that only the lowest terms

in the interaction constant can be considered in

the calculation of the width y and of the other parame-

ters of the spectrum.

The Hamiltonian of a two-level center interacting
with lattice vibrations can be written in the form

HomHy+ Hy4 B}, Homs 3 Ebib, + 3 w,as, + 2, wiofore
] Y k

Hy= YV, bibate, Hi= g (8,4 8¢) hye (1)

Here, h = 1; b'g and bg are the creation and annihila-
tion opeRators of an electron in the states s (s =

1, 2); ai, ax and aj, akx are the creation and anni-
hilation operators of localized' vibrations « and of
phonons k; Hj is the diagonal part of the Hamilton-
ian describing the interaction of electrons with
localized modes; Hj is the part of the Hamiltonian
describing their interaction. with phonons which is
linear in the coordinates of such modes

hy=h,(ay, of) = ; Vaear -+ % Varnafon -+ 1;2:’ Viiwoxoy +He .00

The terms off-diagonal in b;, bg neglected in
H] of Eq. (1) (linear and quadratic in the vibration
coordinates) lead to a renormalization of the transi-
tion frequency

(2)

and of the coefficients V,gg, and also to a decay
broadening of the NP line vyq in the situation when
wo les in the region of normal or combination fre-
qgencies of vibrations.® The terms diagonal in

bg, bg which do not appear in H{ also lead to re-
normalizations of w, and Vgg, (including anharmoni-
city); moreover, terms blbgakay' lead to the well-
known phonon modulation broadening of the NP line

Ym(ph) (see Refs. 2-7). All these broadening
mechanism lead to a total profile of the NP line
which is a convolution of the distribution calculated
in the present paper with a Lorentzian distribution

of width 2(vq + Y(PJ,‘) ). We shall also assume that
wo and V gg in Eq. (1) are renormalized accordingly.

Wy == ES—EI

The cross section oxx(w) of the impurity absorp-
tion of light polarized parallel to the x axis is ex-
pressed in terms of the spectral representation of
the time correlation function of the dipole moment
operator M (t) (see Ref. 13)

see (o) = O [ 1 = oxp (- )] GSD et Uy () M (O, 'y
- (3)

Here, kg = 1; ME is an operator describing the
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G(t)= -ZE!-exp (—t 2 V,a:a,l) U (¢) bgd, exp(——

isolated electron subsystem; <...>ph
averaging over states of the phonon thermostat;

is due to large t.
Q(t) in this region using the method developed for
caclulating the spectral distribution of nonlinear
oscillators interacting with one another and with

a medium,??,??

interaction. of electrons. at a.center with the electric
field of ‘the wave; c.is the velocity of light; n(w)
is-the refractive index; N is.the concentration of
centers; <...> denotes quantum statistical averaging.

~Expressing My in terms of the electron operators
Mxv = ‘mb1 2 + H.c. ] we can Write Oxx(w) in the maxi-
mum ‘region (s % wy) in the form

) . . ! "
©
1 v
8 (w) == Re S deefota(t), 3 (¢)mm(b (£)ba (2) b3 (0) 6 (0)).
¥ :

It is convenient to introduce in Eq. (4) the
interaction representation and treat the interaction

‘131" of localized modes with phonons as a perturbation.

e shall define an operator .

0

U (t)==exp [t (Ho 4 Hy)t) exp [—tHt] =T exp [—t S Lil': () d‘t] . }
' ’ (5)
HY(x)=exp [t (Hy+ H) <) Hyexp[—i (Ho+ Hi)t)e

The correlation function o(t) can be then written
in the form

3 (8) =oxp(—tust) Z5* exp(— 7-) @ (1),

e =3 Comeen L8] 5me ) 800 = (216 ()1 1)

PERT IO 61

H—E
T l)w(‘)'

Vi=Vae — V.

Here, Z is the total partition function of the system;
Z,=2°"P(— E'IT)

tion function which can be separated since: the inter-
action is weak; the matrix element (2|G |1) is
evaluated between the wave functions |s) of the
denotes,

is the electron part of the parti-

|...n\...) is the wave function of the isolated sub-
system of local vibrations.

It follows from Eqs. (4) and.(8) that the profile

of the NP line is determined by the spectral distri-
bution of the function Q(t)

@ -_—.-‘1; Re S dte’®Q (1), . Q== w— wy,
‘ m

so) =25 exp(— )0 (@)

The main contribution to the integral in Eq.
(7) in the relevant region of small |Q| < wpy Wy
We can calculate the function

As in the case of nonlinear oscillators, the

spectral distribution for our system of impurity
electrons interacting with oscillators is a superposi-
tion of a large nubmer of partial spectra corre-
sponding to transitions with close frequencies. Such
partial spectra are not independent and the inter-
‘ference of various transitions is important.??

The

set of transition frequencies "’H’z Vane  corresponds

to a set of occupation numbers n ' of oscillators
interacting with electrons.

A similar set of frequen-
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cies for a'system of ‘oscillators:is deternmined by

the ‘interaction of a chosen: oscillator x-absorbing
light- with ‘the‘other. oscillators «';: but: there-is:also
an’additional frequency  scatter since optical transi<
.tion. of. the. nonlinear oscillator «. can take. plaQe from
different states n.. Only if the oscillator « & SOrb-
ing light is a high-frequency oscillator (u..: .
we may assume that only its lowest state n,
is occupied and the problem:of calculating its spec-
tral distribution is equivalent to the: corresponding
problem for a two-level electron system interacting
with localized modes.  ~As-in Ref.:11:.and"12, the
problem reduces to a system of differential-difference
equanons for the matrix elements of g(t), which

is analogous to .a quantum transport equation.

Following the ‘method of  Refs. 11 and 12 (see
the Appendix F of Ref. 12), we can-derive an:opera-
tor equation for g(t). The operator equation takes
the form

= 2 Vistos = (0 1) ete — eaet + sste).

+ n, (“:a:“"' 2“:5“: +“uat)’ rx -1 2 l“t‘fl:! " th (8)

=1
n,=[exp(-';¢")—i] .
Here, I, is the decay damping of localized transitions

due to the interaction with phonons and P, is the
frequency shift

®
T,+iP, = S at exp (gt — s) <y (1), Ay (O)Dpye &= +0.
[

9)

The -initial condition imposed on Eq. (8) is given
by

g(O)‘=H (A, 1) texp (——‘;’- a:a,). (;1.0)

Small ‘terms Vg, Ti/we, and:  Vi.91InT, /3w, and
analogous ‘terms ‘with- P, have ‘been neglected in
Egs. (8)=(10).

Passing from the operator equation (8) to an
equation for the matrix elements (...n,... Ig(t)l
n,...) and solving“the resultant system by the
method of generating ‘functions, % 1% we:‘obtain “the
following explicit expression for Q(t):

i
QY —II exp (I’,,tv +7 iV.t) (),

(11)
¥, () =ch a,,¢+[i -|-'a7Vﬂ- (28, + 1)]-5—: shat.
Here
A /s :
a =[P§+i(2n,+1){‘*V,—-z-V§] » 'Rea,>0 (12)

Equation (11) is. analogous to the time correlation
function of a nonlinear oscillator interacting with
other oscillators and with the surroundine medium. !’

2. DISCUSSION OF “THE ‘PROFILE AND FINE
STRUCTURE OF-A NO-PHONON ‘LINE

It can be seen from Egs..(4), (6), and (11)_
that the spectrum of an NP .line o(w) is determined
by an integral of an elementary function. The spec-
tral distribution G(w) « Q (%) depends on the parame-
ters on the parameters V¢s Ty and ne and-can be
calculated numerically given any values of these
parameters. Simple analytic expressions for Q(a)
or 5(w) can ‘be obtained in some limiting cases.
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‘When the .electron-phonon::interaction coupling
parameter V. is small:or the damping I, is large

and the condition 1V, |(ﬂ +- )< T,, is satisfied, we
can expand Eqs. (12) and (11) in powers of VT

up_to fourth-order terms in V/Ic. Substituting
such expansions in Eq. (7) we obtain

Q (9)==0' (Q)r-O' @),

o @mit L L +n, L @)= D0 (@), (13)
x - 4 1 g
a@-3 IR ni(n+3)<r.

Q'@ — D (ALY, — ),

P2 ».,1;[1 -7.11’% (582 + 51, 4 1)] ,

0. = n - v‘ —12 v'ln‘l (‘ + 23"])’ : T’ -zr' + 22 .'lr‘l (‘ + 26"1)'
, - h &

.,_2.,, ..=2.,s2, :,-%-;}u,(u,-{—i). .’;...-}'f-(za,+1).
(14)

The parameters ¢ in Eq. (13) are now small
quantities. The term Q'(2) -near the maximum of
the gpectral distribution resembles a Lorentzian
function of width 2y' at half the height and with

a maximumat 2 NE #,V,. ‘Retaining in the expres-

sions for ', @' only the first nonvanishing terms
in V,/r;, we obtain- Q) which reduces to the

result of Refs. 4 and 5. - 'The width of the peak

2y' is determined by V%/T, and is ‘small compared
with the damping of localized modes TI,. The func-
tion Q"(ﬂ) in ‘Eq. (13) has‘'a considerable width

~Te » y' and is small in the ‘central" reg'lon of the
peak compared with Q'(2). However, in the wings
of the distribution (0| » I ). Q"(R ) we find that
Q"(2 ) in comparable with Q‘(Q) and these two terms
in Q(q) largely cancel one another.

We shall now discuss the opposite limiting case
Vel > 2I‘,<(2n,< + 1), Tt'is convenient to transforn
Eq. (11) for Q(t) by separating in (t) a factor
exp(a,t) and expanding .~ !(t)exp (a,t) in powers

AIa(®)

FIG. 1. Spectral’distributions.Q(Q) of .an impurity electron
interacting with a local vibration K 'in the classical limit:
curves 1-5 correspond to the values of A = 0.5, 1, 2, 5, and
10.
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of exp(~Za,t). Integrating with respect to t in
Eq. (7), we arrive at the following exact expres~
sion for Q(Q) in the form of a series:

T (m) cos a (m) — R (m) sin a (m)

T (@) T O (m) » (19

0@=% 31D (m)|
m

: 16a,T, d(a, =D+ V2
2om =1 @ TP+ V] [ “a AT+ 73

Q) =0t D Vam S mt ),

%y
] y a(m)==ArgD (m),

T(m)=Y [(2m + 1) a;—Ts], ta=moi+ia), m={..m...).
) (16)

The summation over m in Eq. (15) is over all values
ofm, =0, 1, 2, ... .

‘ Equation (15) is the resultant spectral distri-
bution representing a set of partial spectra’ corre-
sponding to transitions in the electron subsystem

for different occupation numbers of localized modes
m, . Since the frequencies of such transitions

are close to one another, the transitions interfere
and, therefore, the amplitudes and profiles of partial
spectra may differ considerably from the properties
of the spectra in systems with very different transi-
tion frequencies. 12

In the limit of small I, or large |V.|, the
interference is largely suppressed and various
parameters in Egs. (15) and.(16) simplify

1D (m)| =1’I(n,+1)'1 exp(rfi:fn—’.'- s
a(m) =42—I‘VL"(mx"‘nx)u

r2
Q(in)-sQ—ZV,m,—42(2mx+1)ﬂx(ﬂi+‘)7—;' an

£ ()= [ @me-+ 042+ (1 = 88, o+ H7F) = 4]0

1V 1320, 28+ 1)
The partial spectra then overlap only weakly and
the spectral distribution exhibits. a.fine. structure.
It consists of a set (with respect to «) of lines
corresponding to different m, and separated from
one another by *|V,|. The line widths aredeter-
minéd by T, for.all exrited vibrations and are pro-
portional tom, and n,. The asymmetry of the lines
is determined by the parameters o (m) and is small.

In addition to the limiting cases of large and
small values of the ratio I'./|V |, we can also con-
sider the limiting cases of low and high tempera-
tures. The condition n, <« 1 is satisfied at low
temperatures and the term with m = 0 is most im-
portant in the expansion (15); the terms with m, =
1, and m,t = 0 (x' # k) in the region of a maximum
of the distribution lead only to small corrections.
The resultant distribution is given by Eq. (13),
where we can now neglect terms ~n, compared with
unity

Q@43 Vs 17 =23 vt
k3 % "

0, =0V, =20, &=72¢, s=4 v, (18)
L z
4v. \4 1
s=vil( =Dt G=TT5T. =T m=Tr e Rl

A fine structure appears in the distribution
defined by Eqs. (13) and (18) for |V, | > 2r..
Almost all the intensity is in the peak Q'(®) and
in the peaks at frequencies shifted by {V,.| from
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the principal peak, i.e., the peaks ¢, _Q',}(Q) have
low total intensities (proportional to n,). The
widths of such weak peaks 4T, are determined by
damping of localized modes and the width of the

strong peak 2y ~4XT.f, for small n, is much

smaller and, therefore, this peak is much higher
than the weak peaks (by a factor of n,"? pro-
vided there is only one localized mode). It follows
from Egs. (18) or (17) that the intensities of weak
peaks are comparable with the intensities of the
wings of the narrow peak with m, = 0., The struc-
ture of the spectrum becomes smeared with decreas-
ing |V¢|/ T and disappears eventually (for |V | ~
T'e).

The condition of existence: of a‘fine structure
(17) ceases to be satisfied at high temperatures
and the distribution Q(2) becomes smooth. We shall
now discuss the distribution Q( Q) in the classical
limit h » 0 when the conditions

[ Vel €Ty MyxTihu > 1(V,% h),

are satisfied and restrict ourselves for simplicity
to the case of interaction with a single localized
mode «. It follows from Egs. (7), (11) and (12)
that the spectral distribution Q@) regarded as a

function of the dimensionless variable 9/r, depends

on a single dimensionless parameter

N V. (28, 4 1) _erT

r, = Lo,

(19)

The distribution Q(Q) can be studied analyti-
cally in the limiting cases |[A| « 1 and [A] » 1.
In the first case, Q(Q) is determined by Eqgs. (13)
and (14) where all the terms ~ V. together with
Va, * V. T/w, should be neglected. For |A| » 1,
the spectral distribution in the region Q/Ax > Ty is
formed during a time t s (T¢|A|)" « |ag|™ ~

(re/{x])"*. We then have _&P‘(t)wi—l--;—il’,)\t. in Eq.
(11). Integrating with respect to t in Eq. (7),
we obtain
2 20 Q
0@ =t b (1) TRL B>t ant (20)

Equation (20) is valid for large n. and for
{V¢lz T¢. The distribution defined by Eq. (20)

A=

Vi s
0 170 20 an

/T,
FIG. 2. Spectra of a no-phonon line corresponding to interaction

with a single localized vibration « for V,./ Ty = 20; curves 1-3

correspond to occupationnumbersnyg = 0.5, 1, and 2 (kpT/hw ©
0.91, l.4b, 2.47).
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is the enwelope of a .set of lines of fine structure
defined by Eq. (17). Long times make an important
contribution to Q(22) in the region @/A <« I, and
Eq. (20) is no longer applicable. It can be shown
that the spectral distribution reaches a maximum

of height *2/r|A| in this region and then decreases
rapidly with decreasing /). It follows that the
distribution Q(Q) is highly asymmetric. It can be
seen from Eq. (20) that the characteristic width

of the distribution ~|V | n is independent of the
damping T.

The form of the spectral distribution in ‘the
region of its wings'can be easily discussed for
arbitrary values of the parameters and temperatures
and it is also possible to find the first two moments
of the function Q(@). These properties of the. spec-
trum are determined by the behavior of the function
Q(t) during short times. Expanding Eq. (11) in
powers of t and using Eq. (7), we find that Q(Q)
decreases in the wings as T “

0@ =2 Frvin(n+ 1) gr (815Tw IVal@n+1).  (21)

The first and second centered moments M, and
M, of the function Q(Q) are given by

M=V, My=3 Vi, (5,4 1). (22)

It follows that M, is independent of T, i.e., of
the interaction of localized modes with the medium.

For |V,|<ﬁ, +-;—)<l‘, it can be seen from Egs. (13)

and (14) that the distribution Q(2) has a narrow
peak of width 2y' « VM, and the second moment

of the spectrum is formeé due mainly to wide smooth
wings of the spectrum. The characteristic width

of the central region of the distribution for |V, | »
I is given by WM,. Assuming that electrons inter-
act ‘strongly with a,ﬁarge number v » 1 of localized
modes, we find that the distribution Q(g ) for

|V| » ¢ is described in the central region by

a Gaussian function with a width at half its height
4/vIn2M,.

The spectral distributions for intermediate
values of the parameters, where simple approximate
expressions cannot be obtained, may be studied
numerically. It is most convenient to base any nu-:
merical study on Eq. (15). Our numerical calcula-
tions were made assuming interaction with a single
localized vibration.

The results of our calculation of Q(2) in the
classical limit |V .|« Ty, n, > 1 for a range of
parameters A in Eq. (19) are shown in Fig. 1. It
can be seen from Fig. 1 that the width of the dis-
tribution increases with increasing A (in units of
2|V,| ny and its asymmetry and maximum are
shifted toward smaller @/ V . Curve 1 for A = 0.5
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agrees with the analytic results (13) and (14) and
curve 5 in itssmooth right wing is described by
Eq. (20), but it also shows .the behavior of Q(%)
in its maximum region to the left of the wing.

To illustrate 'the fine structure of an NP line
and its smearing with increasing temperature, we
show in Fig. 2 Q@) calculated for a large value
V/Te = 20. It can be seen that a second peak
is weak at all temperatures: considered. It appears
in 1za\ range of temperatures bounded from above and
below.

It follows from our numerical calculations that
the dependences of the shift of the peak maximum
on the temperature and ratio | V. |/T, are weaker
in ‘the region ni v 1 than the corresponding depen-
dences of its width. The temperature dependences
of the positions and widths -of peaks for a-similar
problem of the spectra of localized vibrations of
adsorbed molecules were calculated in Ref. 14 for
a range of parameters characterizing such a sys-
tem.

The authors are grateful to E. V. Mozdor for
assistance in computations.
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