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Modulation broadening is considered for spectral lines corresponding to degenerate high-frequency localized
vibrations and electronic transitions. It is found that the processes occurring in fourth-order perturbation
theory with regard to the interaction linear in the phonon operators, which mixes impurity states having the
same energy, lead to a T° modulation broadening at temperatures much below the Debye temperature
(instead of T for nondegenerate levels). Detailed consideration is given to the case of threefold degenerate
dipole-active localized vibrations. The line widths at the fundamental frequency and the harmonic are related
in agreement with experiment. The influence of this mechanism of modulation broadening on the self-induced
change of polarization is studied, for radiation at a frequency close to the natural frequency of the impurity

transition.

The narrow lines in the optical spectra of
impurity centers in crystals may be due either
to transitions between different electron states ! or
to localized vibrations.?2 If the frequencies of the
relevant transitions are much greater than the
phonon frequencies, then at low temperatures
the zero-phonon lines are extremely narrow (if
there is no inhomogeneous broadening), but their
widths increase rapidly with rising temperature.
The basic mechanism of high-frequency line broad-
ening is usually a modulation mechanism, ~1° in-
volving phase fluctuations of the impurity center
wave function, due to phonon scattering by the
center. The modulation broadening is usually
associated with terms in the impurity excitation—
phonon interaction Hamiltonian that are quadratic
in the phonon operators.

Since, as the temperature rises, the occupation
numbers of the phonons scattered increase rapidly,
so does the modulation broadening, 3:%s%:1° as
(T/wp)? for T, > wp and as (T/up)? for T <« wup
(where wp is the Debye frequency; A = k = 1).

For impurities with nondegenerate levels, the inter-
action linear in the phonon operators. does not
affect the temperature dependence of the modulation
broadening. It simply alters the quadratic inter-
action in a way proportional to the ratio of the
squared linear interaction constant to the distance
between impurity levels, corresponding to the
nonadiabatic approximation.

For impurities with degenerate levels, the
role of the linear interaction is much more significant
even for weak coupling (when the binding energy

is much less than the characteristic phonon energies).

Since it mixes the impurity quantum states that
have equal energies, the corresponding change

in the quadratic interaction parameters is propor-
tional to the ratio of the squared coupling constant
to the phonon frequency (which is considerably

less than the distance between levels). It will be
shown below that for T « wp the modulation broad-
ening then varies not as (T/wp) ? but as (T/wp)®,
i.e., is considerably greater than for nondegenerate
levels. Note also that the number of modulation
broadening constants is greater than in the case
usually considered, where the Hamiltonian of the
impurity excitation-phonon interaction quadratic

in the phonon operators depends only on the atomic

displacements (and is the same as when the depen-
dence of the interaction both on the displacements
and on the velocities is taken into account). This
is reflected not only in the line widths but also

in the relationship between the line widths at local-
ized vibration harmonics, and also in the nonlinear
resonant response of the impurity and in the nature
of the self-induced change in the polarization of
the resonance radiation propagating in the crystal.

1. MODULATION BROADENING DUE TO THE
INTERACTION LINEAR IN THE PHONON
OPERATORS

Let us first consider the change inthe modula-
tion broadening for a degenerate localized vibra-
tion. The Hamiltonian of the localized vibration—
crystal system, neglecting the internal anharmonicity
of the vibration (see below), is
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Here, the subscript « labels the degrees
of freedom of the degenerate localized vibration;
k labels the continuous-spectrum vibrations; a.,
bk, are Bose operators for the respective vibra-
tions. Since high-frequency vibrations (w, » wg)
are under consideration, only the "adiabatic" terms
are kept in the anharmonic interaction Hamiltonian,
which relate localized vibration states with the
same energy (apart from the multiplet level split~
tings). When the interaction depends only on
the displacements of the atoms, i.e., on the opera-
tors a, + a¥, b + bfi, we evidently have
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The localized vibration optical spectrum profile
near the main peak, where w x w, and the phonon
wings can be neglected, is represented by
Im « a., a7t » +i,, Where « a,., af » i, is the
Fourier transform of the retarded Green function.
The equation of motion for this function is
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The terms with k = k' in this expression
modify the frequency w,, which we will call the
produced frequency; those with k # k' in second-
order perturbation theory determine the modula-
tion broadening as usually considered. The terms
in Eq. (4) due to the Hamiltonian H1(3) in system

(2) and proportional to V . 'k also cause modulation
broadening, but in higher orders of perturbation
theory. Retaining in the equations for these Green
functions only the terms having the same form

as the last one in Eq. (4) (and omitting the terms
causing line shift and decay processes), we find
that the second order the interaction H}3) changes

the last term in Eq. (4) as follows:

v .V \4 | 2
y wxk xgx’k’ xe k! aix k
f‘u'A-k' =1 xx'kk’ + 2[ : y + * : ]= Vu’kk'
L3

w——-wh+w,‘ 0 — W,

rdq ) 1
+ 2[_-:,;' Vx,xkvl}:’k’ _T‘;k_’. vn,k'vx’z,lc] .
*

The second equation here uses the fact that the
modulation broadening is considerably less than
the phonon frequency, and in the denominator small
terms w — w.; have been neglected in comparison
with wix and wy!'.

(5)

The solution of Eq. (4) in the second order
with respect to the parameters V.. ' then gives
the following expressions for the Green function
«a,., at > and the modulation broadening r(2) at
the fundamental frequency:
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The parameter T'y,, represents phonon scat-
tering which shifts the « vibration wave function
phase; Ty, represents phonon scattering which con-
verts the « vibration into another one «' with
the same energy but «' («x' = k).

For interaction with long-wave acoustic phonons,
which make the main contribution to the modulation
broadening (6) at low temperatures, the interaction
parameters V, k' « (kk')}/2, This gives ® T ~
T 7 when T <« wp. For interaction with these
phonons, V 1 ~ k¥/2, however. Accordingly,
the second term in V. rxk', Eq. (5), for wy = wy
is independent of k [the terms with wy = wy' are
those which contribute to I'y, and TIy,, system
(6)]. In the nondegenerate case (x = K, = k")
this term is zero. In the degenerate case, it
is much greater than V. xk' in modulus. It readily
follows that the temperature dependence of Iy, for
a degenerate localized vibration when T <« up has a
T ° form and can easily be observed (when T > WD
'm ~ T2, as in the nondegenerate case). There
is a similar temperature dependence ! for the
Raman broadening in low-frequency two-level systems
with a transition frequency much less than T and

LUD.
The Hamiltonian (1) also describes the kinetics

of a two-level electron transition with a degenerate
excited level and interdcting with phonons; w, here
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denotes the transition frequency, az, a, the projec-
tion operators for the excited state «. In general,
one has also to include, in this case, the Hamiltoniay
terms that correspond to the electron—phonon inter-
action in the ground state, but their effect amounts
to changing the interaction constants Vi .k's V ,cki
and wy. When the excited state occupation is
negligible, the expression for the modulation broad-
ening of the electron transition optical spectrum

is the same as in system (6). For two-dimensional
electron systems with a translationally degenerate
discrete energy spectrum in a magnetic field (Landay
leveis), the relaxation due to processes of the

type considered, in the fourth order with respect
to H1( 3), has been discussed.’?

2. MODULATION BROADENING FOR THREEFOLD
DEGENERATE DIPOLE-ACTIVE LOCALIZED
VIBRATIONS WITH CUBIC SYMMETRY

One of the most thoroughly studied types
of localized vibrations is threefold degenerate
ones with cubic symmetry. ** In the harmonic
approximation, these are a set of vibrations with
the same frequencies and dipole moments oriented
along <100> type crystal axes. The Hamiltonian
of isolated localized vibrations in this approximation
is represented by H, in Eq. (1), « taking the
values X, y, 2. The localized vibration energy
levels, .if anharmonicity is neglected, are (n + 1).
(n + 2)/2-fold degenerate, where n is the principal
quantum number. When the anharmonicity is taken
into account, these levels split into multiplets. *
The distances between levels in the low multiplets
are usually much less than that between the multi-
plets (zw,) and the crystal Debye frequency up.

To represent the pesk profiles in the optical
spectra of localized vibrations, it is convenient
to use a treatment developed previously 1%:& to
derive the quantum kinetic equation in operator
form for the density matrix p of an anharmonic
localized vibration. It can be shown that for de-
generate localized vibrations the term in the equa-
tion for p (in the collision integral) which describes
the modulation broadening is

op/ot = —Tp, (Ta)
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The relaxation parameters T, ;csc. 8re seen
from Eq. (7b) to be the components of a rank-four
tensor symmetric under interchange of pairs of
subscripts (but not the subscripts in a pair).

In the case considered, a threefold degenerate
localized vibration with cubic symmetry, this tensor
has four independent components; the operator
describing the modulation broadening is

Tp = Tan 3, [(6f8,)% ¢ — 20F0,00}0, + ¢ (630,)*] + Tms ) [630,0,.0%p
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where
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kk!
9

the prime to the sums in Eq. (8) signifies that
the terms with x = «' are to be omitted.
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ticular case Ty o = Tp,, the expres-
In t:;:-g:: with that found previgusly 16,
gion (8)n from Eqs. (5) and (8) that this condition
it is %e?ie d when V kk' = V! (kk's which occurs
is satis ount is taken of the change (5) in the
if no a;:crs V.. 'kk' @and the interaction of the local-
1 mqbiaﬁon;x with the lattice depends only on
i?:';d d‘ir;placements of atoms.
t The significance of the parameterg 'm: and
pearing in Eq. (8) and defined in system (6)
m2 g en explained above. The terms in TI'y, and
has B2 Eq. (8) arise from the interference o
'm ln scattering by different localized vibration
phono with equal energies. Accordingly, the param-
statzs I'ma @and Ty« do not have a definite sign
etel‘ugh tl}llgy are real by symmetry). It follows
t(.;:;; Egs. (6) and (9) with the Cauchy inequality

that
Iys < Tt (10)

when the localized vibration—phonon interaction
ends only on the coordinates, so that the condi-
(3) are satisﬁpd, at low temperatures Iy, =
Ty ® T 5, according to Eq. (5); TIpy, Tpg = T7
and are relatively small (Tym1, Tmg < Tmgs Tm ).

It is easy to see that, when the occupation
of the localized vibration excited state is negligible
Eq. (8) gives system (6); the Green function
<8y at » s#io is determined by the Fourier trans-

form,
(8,9 (t)) ~0xp [—(Tm1 + 2T\me) ¢].

Pyt < T'2e

dep
tions

Other characteristics of the optical spectra
accessible to direct measurements (along with the
fundamental frequency line width) are governed
by combinations of the TI'mj (i = 1...4).

Let us first consider the relationship of the
absorption line widths at the fundamental and
harmonics of high-frequency localized vibrations,
which have been studied experimentally!* for im-
purity centers with symmetry Tq (H"™ ions in cal-
cium fluoride). The half-width of the dipole absorp-
tion line at twice the frequency of the correspond-
ing localized vibrations is known !%s1* to be deter-
mined by the time decay of the dipole moment
quadratic in the coordinates of the localized vibra-
tions, that is, by the time decay of Tr(a.a.'p(t)),
(x = «'") or, equivalently, the imaginary part of
the polarization operator of the Green function
CaByly AF a! > io-

It follows from Eq. (8) that, if the occupa-
tion of the localized vibration excited levels is
neglected, the line half-width corresponding to
the transition to the T state is

1T = 2y - BT ,,2 - 2C . (11)

This agrees with the previous result. 7

) From Eq. (8), we get for the lines correspond-
Ing to dipole-forbidden transitions at twice the
frequency !) to the nondegenerate completely sym-
metric state A and to the doubly degenerate E

term, respectively,

TGN <4 (Ppy + Tz + Tmd) (12)

D) = 4 (Tpyy 4 Tpp) — 2.
We can also give expressions for the half-widths

of lines corresponding to dipole-allowed transitions

at three times the localized vibration frequency.

These depend on the decay of Tr(agp ) and Tr{a,

8 +alnp], (' = k" = k).

As a result of the localized vibration level
splitting due to internal anharmonicity, the spectrum
contains two dipole transitions at a frequency =3u,.
The wave functions of the corresponding excited
levels are

i
Yoo == 080, (a2 O + Yy sinb,0f [a3) + (af)?] | 0), (13a)

i==1, 2, 2"k

(13b)

~
“=2Z, Y, 3 62.=01+—2",

where |0> is the ground state. The quantities
8; are found by solving the secular equation ob-
tained by diagonalizing the Hamiltonian of an iso-
lated degenerate localized vibration with internal
anharmonicity, and have been determined!* for
specific values of the parameters. For transitions
to states with i = 1, 2, the half-widths are

T3 =3 cos30; (30 py + 20 pme) + 2 VB sin 26,7

+ sin? 0; (5T; + 10T g 4 4T3 + 2T). (14)

The measured !* relationship of the localized

vibration absorption line widths in the CaF,:H~
system at frequencies z2w, and =zw, at 100 K is
=2.5. If we assume that the main contribution
to the widths r(!) and r(2T) of dipole-active
transitions at the fundamental and double frequen-
cies comes from the modulation mechanism, and
the interaction depends only on the atomic displace-
ments, and the condition (3) is satisfied, so that
Tmis [Tmg| < Tmy = T %, then it follows im-
mediately from Eqs. (6) and (11) that r(2T);r(1) =
3. The agreement with the experimental results
can be regarded as entirely satisfactory, especially
if one remembers that in the experiment the ab-
sorption line width at the fundamental frequency
is fairly strongly exaggerated by the resolution
of the apparatus. This also prevents a correlation
with experiment at lower temperatures. The correla-
tion is still further hampered for the line at fre-
quency =3w,, since in that case the distances
between levels in the multiplet'* are comparabie
with the characteristic phonon frequencies, and
therefore decay processes are important in contrib-
uting to the line widths.

To separate the contributions of different
mechanisms to the line broadening and determine
the modulation broadening parameters for localized
vibrations and electronic centers with degenerate
levels, it is convenient to use nonlinear optical
resonance effects, namely absorption saturation®?®
and self-induced change in light polarization in
crystals. !9 The absorption saturation is due
to equalization of the populations of the levels
between which optical transitions take place; the
self-induced polarization change is due to the
effect on polarized radiation propagation of the
anisotropy induced by the radiation (in particular,
the different occupation of impurity states de-
generate as regards energy). Absorption satura-
tion has been observed?2° for localized vibrations
in the CaF,:H™ system.

A theory of nonlinear resonant response and
self-induced polarization change for a two-level
impurity where the ground state is completely
symmetric and the excited state is transformed
by the vector representation of the cubic group
has been evolved®?; it applies also to high-fre-
quency localized vibrations with fairly strong an-
harmonicity, where the transitions from the n =1
level to the multiplet levels with n = 2 are nonreso-



nant. No account was taken '° of the difference
between Ty, and Ty, due to the change in the
interaction with phonons, Eq. (5). It can be
shown with Eq. (8) that the qualitative results
and the general expressions }? for the nonlinear
susceptibilities which determine the absorption
saturation and the self-induced polarization change
remain valid. But the parameters a and Ty in
these expressions become
“=(‘rul_rmﬁ—rma_rm‘)/(r‘i'z;rm!)-

r, =T + Pml + zrm'.' - rm! b rml»-

(15)

where 2T is the reciprocal lifetime of the excited
state.

The parameter a determines the anisotropy
of the nonlinear polarizability of the system. When
a > 0, as the linearly polarized resonance radiation
propagates in the [001] direction in the impure
crystal, the electric field vector E (the polarization
plane) rotates to the [100] or [010] direction near-
est to its original direction; when a < 0, it rotates
to the nearest <110> direction.

When the conditions (3) are satisfied, for
T < wp, as already noted, I'y, = — Iy, and
Tme > Tmi» [Tmg |, and from Eq. (15) a « 1.
The polarization plane rotation is then small and
increases rapidly (as T?) with the temperature;
when T ~ wp, & becomes v1 and reaches saturation.

The sign and magnitude of I'y, can be deter-
mined directly in the realistic case Ty, > T using
the change in the polarization of elhptically polarized
radiation propagating in the [001] direction. It
can be shown that when I'y, = 0 the polarization
change occurs even when the radiation frequency
is in the center of the impurity absorption line.
When Ty, > 0, the phase difference of the compon-
ents Ey and Ey [with x along (100) and y along
(010) ] "approaches the nearest value wn, n = 0,
+1... (corresponding to linear polarization); when
I'm. < 0, it approaches a (1/2)n(2n + 1); that
is, the axis of the polarization ellipse approaches
a <100> type axis.

The, self-induced polarization change for
resonance radiation is thus very sensitive to the
modulation broadening parameters and in principle
allows all of these to be determined. In this re-
spect, it would be interesting to make an experi-
mental study of the self-induced polarization change
for degenerate weakly coupled centers.

The authors express their gratitude to the
late M. A. Krivoglaz for discussion of the results,
and to V. I. Perel' for pointing out that there
are four parameters which determine the transverse
relaxation of a two-level impurity with a threefold
degenerate excited level.
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1)It is assumed that the multiplet level splitting due to the
localized vibration anharmonicity is much greater than the line
widths, so that the lines corresponding to different transitions
are well resolved. The expressions (7) and (8) are then valid
so long as the distances between the multiplet levels are less
than min (T, wp).
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