defined by Eq. (23); the vector representations Cg (n = 6),
Cy (n=4), Cy(n = 3), and the nonvector representations
Cg (n = 3) when the free energy depends on the invariants
defined by Egs. (23) and (24).

Our results for n = 4 corresponding to Eq. (23) hold
also for other n. It is only necessary to modify the pa-
rameter A defined by Eq. (8) as follows: A = (Bpfy,)
(@ —a)/,I"?1, The region of existence of the modu-
lated phase is modified accordingly: 0 < A < 1. For the
free energy depending on the invariants defined by Egs.
(23) and (24), it is necessary to introduce, in addition to
A, a parameter A' with By, replacing g,. The case n =3
requires a special discussion since, in the absence of the
gradient invariant with the coefficient ¢, the transition
from the initial to the homogeneous phase is of first type
because the free energy contains the third-order invari-

ants. The transition to the modulated phase can be of sec-

ond type provided the inequalities 33/48,0y <1 and g'3-
(48129 ™" < 1 are satisfied.

Our model can be applied to ammonium fluoroberyl-
late,! which exhibits two phase transitions with the char-
acteristic temperatures lying close to one another.” The
symmetry of the high-temperature phase is D} and the
symmetry of the low-temperature polarized phase (with
the doubled translation period in the direction of the x
axis) is C% (ref. 6). The symmetry of the intermediate

phase lying between the two critical temperatures is not

known. The only irreducible representation of the group
D}f, which contains the group C}!, with the doubling of the

lattice period in the direction of the x axis as its sub-
group is two~dimensional and it admits the gradient in~
variant with the coefficient ». The free energy corre-
sponding to this representation is given by Egs. (1) and
(19). Our dependences of y on T given by Egs. (20) and
(21) (Fig. 2b) reproduce well the measured dependences®
in all phases. The intermediate phase should be modu-
lated. The observation of such a modulated phase would
confirm the validity of our model of the phase transitions
in ammonium fluoroberyllate (the previously proposed
models were discussed in ref, 9).
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A study is made of the conductivity of nonequilibrium electrons (holes) whose energy spectrum consists of
a set.of discrete Landau levels. The range of frequencies near the cyclotron frequency is considered but the
relation between the nonequidistant separation of the levels and their width is not restricted. The
nonequidistant separation of the levels is caused by the nonparabolicity of the dispersion law and by the
polaron effect. The relaxation is due to a strongly inelastic scattering by phonons. An analysis is presented
of the steady-state conditions when the probability that an electron leaves the system (is transferred to a
contact, captured by a trap, etc.) is independent of the electron state. In this case, most favorable
conditions for the amplification of light are achieved when the difference between the gaps separating
individual levels is much greater than the width of the levels (in particular, in the degenerate case). Under
such conditions, it is necessary to impose restrictions on the average time spent by a carrier in the system
for some types of the electron-phonon interaction in order to achieve the amplification. The amplification
region grows rapidly when the magnetic field and the pumping energy are increased.

PACS numbers: 72.20.Kw, 72.20.My

When a strong transverse magnetic field H is applied to
a size-quantized system (a thin crystal film or a narrow
surface layer in a semiconductor), the energy spectrum
of carriers (to be specific we shall consider electrons)
transforms to a set of discrete Landau lévels. It is pos-

sible to create an inverted population! in such a system
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with a discrete spectrum, which can then give rise to the
amplification or even to the laser generation of light.
This can occur only in very pure crystals; we shall not
consider the scattering by impurities. For wery, > 1
(where w, is the cyclotron frequency and 7y the relaxa-
tion time), the electron relaxation is due to a strongly in-
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elastic scattering by phonons.?® The broadening of the
Landau levels is, to some extent, analogous to the broad-
ening of atomic levels, whichis due to the inelastic scat-
tering of electrons by photons (see, for example, ref. 4);.
however, in our case, the two-dimensional momentum of
the system is conserved in the scattering.. Since the Lan-
dau levels are almost equidistant, the same phonon can be
emitted due to transitions between different levels and,
therefore, the electron—phonon interaction leads not only
to damping of but also to an interference between electron
states. The interference is governed by the ratio of the
measure of the nonequidistant separation of the Landau
levels Awe to their width (~ 5.

The spectrum is nonequidistant because of the elec-
tron dispersion and because of the polaron effect. It in-
fluences the profile of the cyclotron resonance peak at
T ~ Hwg (ref. 2) when several excited levels are occu-
pied by electrons. Roughly speaking, the spectrum is
then the envelope of several lines ¢orresponding to transi-
tions from different levels, whichare separated by a dis-
tance Awg. The effect of the nonequidistant separation of
the levels under nonequilibrium conditions can best be
studied at low temperatures, when there is no thermal
smearing. In particular, in systems with Awg > -r;’, a
strong amplification of light should occur (as shown be-
low).

We shall consider mainly the case when nonequi-
librium electrons occupy one two-dimensional subband
and their density is so low that the electron—electron in-
teraction can be neglected. For |gupH —Hhwc|> 77!, the
effects resulting in a spin flip have low probability and,
therefore, we shall assume that all the electrons have
equal spin projections. For simplicity, we shall restrict
our discussion to a two-dimensional isotropic system of
electrons and phonons (the results can then be easily gen-
eralized to the anisotropic case).

Assuming that the electron momentum p and its co-
ordinate r = (x, v) as well as the vector potential A =
(0, Hx) are two-dimensional, we can write the Hamiltonian
of the electron—phonon system in the following form (see
ref, 2):

K m Ky #y Hy=ger P '—bm"w Smta: 0 *24 a1

P=p—SA; h=1; wo=|el Hilme);

x;=2cqjexp (iqr)ag; +Hacyy (2)
4 : :

where q is‘the two-dimensional phonon wave vector.and j
labels the phonon branch, its polarization, and the wave
number of the motion across a layer. It is assumed.that
the parameter governing the nonequidistant separation be-
tween the levels V and the interaction constants £qj are
small so that the corrections ~ |V| g, 1 Ty, and
jdr7!/dwe| can be neglected.

1. CONDUCTIVITY OF NONEQUILIBRIUM
ELECTRONS

We shall assume that an electron at a time-t; is de-
scribed by a density matrix p, and the phonons are in
thermal equilibrium. Many properties.of a gas of non-
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equilibrium electrons can he described by the two-dimen-~
sional correlation function

(At — o) Bz —tgid s Tels (b1 A 8 —tg} B (3 — tol], (3)

where A and B-are one-particle operators and p is the
density matrix of the system consisting of an electron and
the phonons, p(ty) = popph In the most interesting time
interval t ~t,, T —t, »wg!, it is possible to carry out the
averaging over phonons in Eq. (3) and express the corre-
lation function (A(t —tyB(T —ty)) interms of the two-
particle electron Green's function G(t), which satisfies a
linear equation derived in ref, 3.

We shall study the linear response of a nonequilibri-
um electron to an electric field. The resonance case of
field frequencies w close to w, is of greatest interest. We
shall introduce the nonequiltbrium conductivity o@w, t—
to) = oy, (, t —tg) of a single electron

Qg (019g =3 (w, t -~ tg) E, oxp (—iwt), @)

where (jx)y is the component of the current due to the
field (the current due to nonequilibrium electrons can be
nonzero even for E = 0). Using the standard methods, we
can show that the following equations hold with the ac~'
curacy up to terms ~V/we:

ot ty) = S Q(t = s —tg) e ds;
t

Q@ =01(t 9 —Qalt, 3 (5)

2 IQ,(!-—-‘:,!—!,), t=r,

mea, (Palt—~to) P,(r—to)>=l Ou(emt, t—te)s £ <5
At a time t, the average (over a period) energy ab-
sorbed by an electron in a real classical field Ey(w) 18

given by

W (w, :-m:% E2 (w) Rea (0, t—1t). ' (6)

To calculate the luminescence of a nonequilibrium
electron, we shall study its interaction with the quantized
equilibrium radiation (at the phonon temperature) in the
linear approximation following the method applied to an
oscillator in ref. 5. The kinetics of the luminescence,

‘the total luminescence spectrum during the relaxation

time, and the conductivity (5) are governed by the corre-
lation functions Q, , (see. ref. §).

The dominant contribution to the luminescénce and
conductivity at frequencies w ~wg_is due to the terms
in Q5 similar to exp [~iwe(t = 7) ]Q, ot =T, T —tg), where
Q1 , are smooth functions which vary during a time ~ 7y
by lvl". They ¢an be expressed in the following form:

® ' 1 1 .
Qult —=, v —ty) = E @ (m, n;t—t)p(n-{-'f-{-‘g(-—l)‘,t—to).

m, nwal

t=1, 2. ) (7)

The quantity p(n, t —ty) is equal to the sum of all the
diagonal elements of the electron density matrix related
to the n-th Landau level. It determines the probability
density for an electron to be at the n-th level at a time
t, provided it was described. by the density matrix p, at
a time t; [p(n, 0) = pg(n)]. The matrix p(n, t —ty) satisfles
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9 (n, 1)
ot =

Fon .
k k
+ ¥ t-uar(nty - Kemn o, ®

k=m—kepy

—F, () (n t)

which is a rate equation. The teérms with k = 0 describe
an electron transition from the (n + k)-th to the n-th level
accompanied by the emission or absorption of a phonon.

In the Born approximation, the transition probability (after

averaging over the occupation numbers of phonons) is.
given by

2] k|

N\ 1
T, (n, k)=21:2,|tqj’%(]klw,—qu)(‘—zlq)
as

L 1.1 &k
xexp (= 7 #0t) 2 o 18D (et + 7 7a7) (9)
=[exp (| k|0 T) = 17 B=hm*a,
2kp

1 { 'z
Ly(n, k)-=L,’,‘(? l’q’)[ml v 30 Ly(n, k)=0, n<O0,

where Lg is a Laguerre polynomial. The probability that

an electron leaves the n-th level is given by

K :
Ty (m) = 2 (1 =3, o) I’P(n-[— ’; __|§_l‘ k)exp (_ﬁ“’rc>; (10)
L= :

km in Egs. (9) and (10) determines the maximum gap be-
tween the Landau levels which are connected by one-pho-
non transitions.

The function ¢ in Eq. (7) is given by the following
equation (see refs, 3 and 5):

XA (T m) + P (m)] 9 (m, m; 1)

Ry s
t2mtt) Y (=t o T(mt g~ k)

ke kyy
X(ﬂ 4.-12- +7|L)p(m+k n; t); ¢ (m, n; 0)= (m+1)é,n,g. (11)
The parameters I'(m), I'(m, k) and P(m) are given by
Egs. (4) and (5) of ref. 2, The system of linear equations
(8)-(11) completely determines the kinetics of the conduc-
tivity and of the electron luminescence under arbitrary
nonequilibrium conditions and for arbitrary ratio of the
measure of nonequidistant separation to the width of the
level.

2, STEADY-STATE CONDITIONS,
AMPLIFICATION OF LIGHT

The conductivity of two-dimensional magnetized elec-
trons under steady-state conditions isof considerable in-..
terest since: a)The field confining the carriers to a thin
layer depends very often on the electron density, in which
case the energy spectrum is well-defined only under
steady-state conditions; b) it is desirable to develop
steady-state sources of radiation with an easily tunable
frequency.. Equation (5) makes it possible to study the
steady-state conductivity mlcroscoplcally We shall de-
note by £(t, ty) the probability denslty that the electron
whose conductivity is being considered at a time t had
heen created at a time t;, Since, under steady-state con-
ditions, the time of observation is the only distinguished
moment of time, we can write {(t, t;) = ¢(t —ty) and the
steady-state conductivity is given by
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¢
o, () = Sdto‘;(t—-t,,):(m, t — tg)
—

2 @©
~ g [t [ drexp 0 1@ 9 = Qe W1t (12)
0

2m’
a

12| €.

Q=w — w,,

We shall consider the simplest steady-state case,
characterized by a recombination time T,.gq. In this con-
text, the recombination means an arbitrary effect which
results in the electron leaving the Landau levels (transi-
tion to a contact, capture at a trap, etc.). If Tpgc is in-
dependent of the electron state, the "recombination" and
"creation™ probabilities exhibit the same time dependences
and :

L(t—to) =hexp[—A(t —t)l; A=r;L,

A <€, (13)

In the case (13), the absorption coefficient of light is
given by

K (., )=Reg, (m)=%‘;2 [s(r, X)—o(n+1, V)] Rep(m, n; ). —iQ),

m,n (14)
where p(A) and ¢(\) are the Laplace transforms of the
corresponding functiohs,which satisfy a system of lmear
algebraic equations [see Eqs '(8) and (11)].

Since the condition S £t ~ty)dty = 1is satisfied un-
der arb;trary steg,dy-sta_t: conditions, it follows from Egs.
(7) and (11) that SReos(w)dw ~ (e¥/2m*)7, 1.e., in the

0

region of the cyclotron resonance peak [where the rela-
tion (12) is satisfied], the nonequilibrium electron absorbs
the energy of the classical field.? However, an amplifi-
cation can occur in certain frequency intervals. Under
the conditions (13), the maximum gain is obtained (see
ref. 5) in the case when the transitions between neighbor-
ing levels exhibit a frequency spread:

[P(m£1)=P(m)|>T(m)+T(mL1)+r [T(m k] (15)

The quantity K(X, w) represents a set of almost over-
lapping fine-structure lines:
T'(m)-- A

o
0 Um,

Re p (m, n; k-——iQ)::(m-]—i)W

Q= — P (m). (16)

It should be noted that 2I'(m) = Lp(m) + Tp(m + 1)
is the half-width of the line correspondmg to the transi-
tion jm) — |m + 1) calculated in the Born approximation
for the equilibrium case, and we + P(m) is.the corre-
sponding frequency (see refs. 2 and 3). It follows from
Eq. (14) that the amplification of light can occur inthe
neighborhood of Qp, only in the case of an inverted popu-
lation p(m, A) — p(m + 1, A) <0. It follows from Egs.

(8), (12), and (14) that p(m, A) = 2 Amn(X)pg(n) and,

therefore, a necessary condition for the amphficafion of
hght in the case (15) is given by
Amg1a (W] <0, an

min [Ap, (M) —

The criterion (17) determines A iy such that no am-
plification can occur for A < Apjp irrespective of the
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pumping energy (which is governed by the density ma-~
trix p,).

The matrix Amn(2) can be evaluated in the important
case of low temperatures, w, /T > 1. If, for simplicity,
we consider only the relaxation due to thLe transitions be-
tween neighboring Landau levels (i.e., we set ky, = 1,
which often represents a good approximation for wy S 10'2
sec™!, see refs. 2 and 3), we obtain from Eqs. (8)-(10) the
following equation:

S W) = (T (m)t T Ty Y+, ()], m €0y Ape(A)=0, m>n.
k=m .
The criterion of amplification (17) then assumes the
form ‘

The conditions (17) and (17a) can be explained qual-
itatively as follows: Electrons should "recombine" rapidly
enough (compared with the relaxation) to maintain a popu-
lation inversion. It follows from the condition (17a) that,
for Amin > 0, the Inequality w /T > 1 is satisfled pro-
vided the width of the Landau levels [', (m) increases
monotonically as a function of the number of the level.
When the inequalities (15) are weaker, the amplification
can occur even for A < Apyin due to the interference of
the electron states at different Landau levels. It should
be also noted that the condition (17) is only necessary but
not sufficient for a population inversion.

In the resonant scattering by acoustic phonons which
are not localized in a two-dimensional layer, I'p(m) is a
nondecreasing function in the deformation potential ap-
proximation.? For the scattering by phonons localized
within the layer (which occurs, for example, in films with
fixed or free surfaces), I' (m) is strongly nonmonotonic?
and T (m)/Tp (1) is very small for some m and a population
inversion can be thus easily achieved. The widths of the
levels Tp(m) can be obtained from measurements of the
equilibrium#? and nonequilibrium cyclotron resonance
spectra,

It can be shown that, if the conditions (15) and wo/T »
1 are satisfied, our results can be applied to a degenerate
gas provided the electron density at the excited Landau
levels (n > ny) is low and all the levels below and including
n, are occupled. Since the scattering of an electron with
n > ng by electrons with n = n; is forbidden by the law of
conservation of the energy [because of the condition (15)],
the electrons at the excited levels behave like nondegen-
erate carriers [the expressions for I‘p(n, k) and I'(n, k)
are slightly modified since the scattering by phonons can-
not result in electron transitions to an occupied state].
To achieve the amplification in the degenerate case, the
inequality (15) has to be well satisfied since there is a
very strong absorption peak (high density) at the frequen-
cy corresponding to the transition |ng) — |n, + 1); the am-
plification region should be as far as possible from this
peak.

Nonequilibrium magnetized electrons (holes) can be
studied in experiments involving the flow of a current
across a film (or a size-quantized semiconductor layer),
optical excitation of the whole system, or abrupt switching
of a magnetic field, etc. The effects discussed in the
present paper can be detected only in pure crystals. The
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random field generated by imperfections should be very
smooth and vary over distances much greater than the
magnetic length!. For n-type InSh and w, = 51012

sec !, we find that ! = Vi/m*wg ~3:10% cm and |V] =
2wé /g ~ 10! sec™!. The fluctuations of wg due to the
1mpurﬁy field E; (inhomogeneous broadening) can be
small compared with V| only if (| 8E;/8x[) <|m*weV/e|w~
5-10% V/em?, Since this imposes very strong restrictions,
a more favorable situation is created in impurity crystals
with a weak degeneracy and a small screening radius. On
the other hand, it is difficult to achieve amplification In
the degenerate case (see our discussion). The optimum
conditions for the amplification and generation of light by
magnetized two-dimensional carriers are realized in 8yS-
tems where the impurities are screened by carriers of a
different type and the spectrum of Landau levels is )
strongly nonequidistant. For such systems, a maximum
gain can be obtained in a wide frequency range (propor-
tional to Awe). The frequeney range increases rapldly
when the pumping energy is increased and the spectrum
becomes more nonequidistant in stronger magnetic
fields.

For ws > wm (wm is the maximum phonon frequency),
the relaxation occurs as a result of inelastic transitions
with the participation of two phonons. Equations (8) and
(11) remain valid and the corresponding expressions for
the damping and the shift are obtained from ref. 3.

If the electrons occupy several two-dimensional sub-
bands, the effects discussed in the present paper remain
valid qualitatively but there are now several sets of Lan-
dau levels mutually coupled by phonons and, therefore,
the expressions for the widths of the levels should be
modified. The lines corresponding to transitions between
different Landau levels also Interfere in the case of the
amplification of light polarized perpendicularly to the two-
dimensional layer, whichoccurs as a result of the transi-
tions between subbands. Inthe degenerate case with two
subbands, amplification can occur only if the cyclotron
frequencies or the shift of the levels due to nonparabolicity
and due to the polaron effect are different in different sub-
bands.

Ywe shall not quote the corresponding general expression for < A(tB(Th,
since it is rather complex. It is similar to and can be obtained along the
same lines as Eq. (4) of ref, §, whichdescribes the correlation function of
the operators of a nonequilibrium nonlinear oscillator interacting with pho-
nons. The energy spectrum of the oscillator is similar to the spectrum of
a wo-dimensional electron in a magnetic fleld. However, the electron
wave function is governed not only by the number of the level but also (In
the chosen gauge) by the projection of the center of the cyclotron orbit on
the x axis (which does not affect the energy). Therefore, the two-particle
Green's funcuon f in ref, 5, which depends on four oscillator quantum num-
bers, should be replaced by the function G studied in ref, 3,which depends
on eight electron quantum numbers, :

)This is due to the fact that the probability of 8 resonant transition from
the n-th to the (n + 1)-th level accompanied by the absorption of light is
greatet than the probability of the transitfon [n) = |n — 1) resulting in the
ernission of light (n+ 1 > n). Such arguments led to the following conclu-
ston in ref, 6: If the Landau levels are equidistant and, therefore, all the
transitions have the same resonance frequency, {solated electrons (1, = w)
cannot give rise to the amplification of light. However, it can be shown
that, if the relaxation is taken i{nto account, the amplification can occur
under steady-state conditions even for Awg = 0 (this was demonstrated in
ref, 5 for a harmonic oscillator). It should be also noted that the steady-
state luminescence due to the interaction with an equilibrium quantized
field occurs for arbitrary Oug 7.
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A theoretical investigation is made of the fluctuon states of conduction electrons in the spin-wave range of
conditions in a ferromagnetic semiconductor with a low Curie point. The analysis is made using the
adiabatic and quasiclassical approximations allowing for the spinor nature of the electron wave function.
Characteristics of the resultant self-localized states are investigated for various relationships between the
conduction band width, spin-electron interaction constant, and Curie temperature. It is shown that in the
case of sufficiently wide bands and moderately low temperatures allowance for the second component of
the electron spinor has little influence on fluctuons outside the region of transition to fluctuon states, but it
alters the temperature and nature of this transition, which is a broad phase transition of the first kind. In
the case of moderately wide bands the influence of the second component of the electron spinor may be

considerable throughout the low-temperature range.
PACS numbers: 71.50. 4t

Interaction with a medium may result in self-localization
of conduction electrons. Self-localized states were first
investigated in ionic crystals, where — in the case of wide
bands and sufficiently strong interaction with the crystal
polarization — one should observe large-radius polarons.!
Physically similar (and analyzed by similar methods)
electron states may also form in other ordered systems.
For example, in liquid helium? they are related to micro-
cavities, in metal—ammonia solutions® to microcavities
surrounded by a polarized medium, and in antiferromag-
netic semiconductors!~® to a parallel spin region.

Self-localized large-radius states, which have much
in common with polarons, may appear also in disordered
or partly ordered systems with relatively easily variable
parameters, for example, in semiconductor solutions or
in systems which are close to a phase transition point.”™®
They can be regarded as bound electron states and changes
(fluctuations) of the parameter under consideration: This
is why they are called fluctuons. A characteristic feature
of fluctuons, which distinguishes them from other polaron-
type electron excitations, is the property that the transi-
tion of most electrons to fluctuon states may occur in a
narrow range of temperatures and appear as a broad phase
transition in the electron system; moreover, fluctuons
usually exist only in a limited temperature range outside ab-
solute zero. Naturally, formation of fluctuons results
from a gain in the thermodynamic potential (and not of en-
ergy, as in the case of self-localization in ordered sys-
tems) and fluctuons occur in highly excited states of a
system. '

Under suitable conditions fluctuons may appear also
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in ferromagnetic and paramagnetic semiconductors in the
temperature range including the Curie point. In ferro-
magnets with low Curie points T this range covers the
spin-wave region (but it does not reach T = 0). Fluctuons
in such wide-band semiconductors are discussed in refs.
10-13 and 9, whereas those with narrow bands are con-
sidered in refs. 14 and 15 (the term "magnetic polaron®
is used in refs, 11-13 and 15 for such self-localized
states). Fluctuon states in these systems appear because
of the s—4d (or s—f) exchange interaction between elec~
tron spins and magnetic atoms.

The effective field due to this exchange interaction,
is exerted by an s electron on the spins of magnetic atoms
and it tends to orient these spins parallel to the magnet-
ization; the effective field acting on the s electron orients
its spin also parallel (or antiparallel) to this direction.
It is assumed in refs. 10-13 that the spin is exactly paral-
lel (antiparallel) to the magnetization and it is postulated
that only one component of the spinor wave function of the
electron differs from zero. As pointed out earlier,? we
can ignore the second spinor component only if the char-
acteristic size of a spin inhomogeneity (in the spin-wave
region this size is of the order of the spin wavelength) is
sufficiently small (then the rise of the kinetic energy of
an electron, associated with the second component of the
wave function varying rapidly in space, suppresses the
inhomogeneity). However, at sufficiently low tempera-~
tures the characteristic size of a spin inhomogenelity is
large and the s-electron spin becomes aligned with the
local magnetization in various ways in different points in
the localization region, i.e., the second component of the
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