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We consider static conductivity and cyclotron resonance in a normal two-dimen-
sional electron fluid and Wigner crystal. The analysis is nonperturbative in the
electron-electron interaction. It is based on the concept of a Coulomb force that
drives an electron due to thermal fluctuations of electron density. This force con-
trols electron dynamics in classical and semiclassical systems, where it is uniform
over the electron wavelength, and strongly affects electron scattering by helium
vapor atoms and ripplons, and thus electron transport. We derive and develop
techniques for solving the many-electron quantum transport equation in the range
from zero to quantizing magnetic fields B. We show that the static conductiv-
ity o is nonmonotonous as a function of B, and that many-electron effects give
rise to substantial narrowing of the cyclotron resonance absorption peak and to
strong nonlinearity of the current-voltage characteristic even in the absence of
electron heating. The results are in good qualitative and quantitative agreement
with experiment and explain why different types of B-dependence of o have been
observed.

1. Introduction

Electrons above the surface of liquid helium provide an example of a nearly
ideal two-dimensional (2D) electron system, where mobilities higher than
in any solid state conductor have been obtained [1,2]. For characteristic
electron densities n, ~ 107 — 108 cm~? and temperatures 0.1 K < T < 2 K
the interelectron distance n,_l/ 2 greatly exceeds the de Broglie wivelength
Xr = ﬁ./(2'mT)1/2 (we set kp = 1), and therefore the electron system is
nondegenerate. At the same time, the ratio of the characteristic Coulomb
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energy of the electron-electron interaction to the kinetic energy, the plasma
parameter

I = &*(mn,)/?/T (1)

is usually large, I'210. Therefore the electron-electron interaction is by
no means weak. The system is a strongly correlated normal fluid or, for
I'2127 (lower T), a Wigner crystal [3]-[5].

The normal electron fluid is a special type of many-electron system,
which is very different from the much better understood Fermi liquid (and
other quantum electron liquids) or low-density electron gas. Analysis of
this fluid is complicated by the absence of “good” quasiparticles — the
same problem encountered in the physics of liquids. In contrast to atomic
or molecular liquids, in an electron fluid the interparticle forces are the
long-range Coulomb forces. Another difference from 3D liquids is that
relaxation of the total momentum is due to scattering (by ripplons and
helium vapor atoms) of electrons which are inside the electron fluid, not
on its boundary. Analysis of electron dynamics and transport phenomena
in a normal electron fluid is necessary for understanding a large amount of
experimental data on transport accumulated over the last few years [5]-[15].

To a large extent, transport is determined by the momentum exchange
between electrons and scatterers. When the electron-electron interaction
is strong, as in the fluid or Wigner crystal, it controls the collisions with
the scatterers. The effect is expected to be particularly strong when a
2D electron system is placed into a transverse magnetic field B [16,17].
In the single-electron approximation the electron energy spectrum in the
magnetic field is a set of discrete Landau levels, with separation fiw, (where
w, = eB/m is the cyclotron frequency), and electrons do not have a finite
group velocity. Therefore the standard picture of well separated in time
elastic or quasielastic collisions of a moving electron with scatterers does
not apply. As a consequence, the scattering is always strong, irrespective
of the strength of the electron-scatterer coupling, with random potential of
the scatterers being the only reason for the centers of cyclotron orbits to
move.

The energy spectrum of the system of interacting electrons, on the con-
trary, is continuous even in the absence of scatterers. Therefore, although
the electron-electron interaction does not change the total momentum of
the electron system, it may mediate the momentum transfer to the scatter-
ers and thus strongly affect the transport.

In this chapter we will provide an outline of the many-electron theory of
static conductivity and cyclotron resonance of a normal electron fluid and a
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Wigner crystal. In Sec. 2 we introduce and analyze the fluctuational electric
field E¢ that drives an electron because of the electron-electron interaction.
In Sec. 3 we use the field Ef to provide qualitative picture of transport of
a strongly correlated electron system, from weak to strong magnetic fields,
and discuss nonlinear magnetoconductivity in a 2D electron fluid. In Sec. 4
we derive the many-electron quantum transport equation. The results are
used in Sec. 5 for quantitative analysis of linear many-electron transport;
at the end of Sec. 5 we discuss the Bragg-Cherenkov scattering by ripplons
for a 2D Wigner crystal and the related nonlinearity of the conductivity.
Sec. 6 contains concluding remarks. Detailed comparison of the theory
of many-electron conductivity with experiment is given in the companion
chapter by M.J. Lea.

2. Fluctuational Electric Field

2.1. CLASSICAL AND SEMICLASSICAL MANY-ELECTRON
DYNAMICS

A theory of the dynamics and transport of a normal electron fluid can be for-
mulated for not too low temperatures and/or for small enough electron den-
sities or high magnetic fields, where the major effect of the electron-electron
interaction on the electron dynamics may be described in terms of an elec-
tric field E¢ [17] that drives each electron. Unlike the long-wavelength
fluctuational field known in plasma physics {18}, the field Eg, although also
of fluctuational origin, determines the Coulomb force on an individual elec-
tron. This force affects the electron motion during collisions with scatterers,
and ultimately the momentum transfer from the many-electron system to
the scatterers. A special significance of the field Es for a 2D electron system
in a magnetic field stems from the fact that a cyclotron orbit center drifts
transverse to the fields E¢, B. A drifting electron occasionally collides with
scatterers, as would a single electron in the absence of a magnetic field,
and thus the field Ef may “restore” the simple Drude picture of electron
relaxation that results from well separated in time collisions. Clearly, in
this case E¢ determines the collision probabilities and thus the transport
coefficients.

The field E¢ is particularly useful for characterizing the electron dy-
namics in a many-electron system provided this field is uniform over the
electron wavelength X (otherwise the nonuniformity of the field would be as
important as the field itself). A simple estimate of the field E¢ and of the
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parameter range where it is uniform can be obtained if one assumes that
there is short-range order in the electron system in the interesting range
I'2 10, as has been established by Monte Carlo calculations [19]-[23]. In
this case the fields on the electrons are due to electron displacements from
their (quasi)equilibrium positions (see Fig. 1). The characteristic thermal
displacement é§ and E¢ can be estimated by linearizing electron equations
of motion and by setting the potential energy of a displaced electron equal

to T (cf. [17]):

2
eFgb ~ e? —691'—2— zllrn - rm!—l 6% ~ T, (2)

eq

(the derivative is evaluated for the equilib- °
rium electron positions; clearly, the char-

acteristic values of Ef,d are independent

of n). This gives te

(E}) ~ FTn3/?, &6~ TY?n;3/%e1 (2)

(the coefficient F in (2) is discussed below). .

It is clear from Fig. 1 that the character-
istic distance over which the field E¢ varies
is given by 4. The field is uniform over the
wavelength X provided that X <« §. In the
absence of the magnetic field the character-
istic X is given by the thermal de Broglie wavelength Xr= A(2mT)~/?,
whereas in a strong magnetic field it is given by the quantum magnetic
length I = (A/mw,)'/?. Therefore, with account taken of (2), the condition
X < § can be written in the form

1/2 \ 3 _3/2\ 1/2
T _ - 2me‘n,
X< (——2) , X =lg(2a+1)"Y? w, = (——————) o (3)

> m

Figure 1. Fluctuational
electron displacement in a
strongly correlated system.

where
Ip = (h/mwe)?, we = eB/m, & = [exp (hw./T) - 1]7*. (4)

The condition (3) means that the electron motion is classical or, in a
strong magnetic field, semiclassical. In the absence of the magnetic field
(we = 0) (3) reduces to the inequality T' >> fhw,. It is clear from Fig. 1
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that w, is the frequency of electron vibrations about (quasi)equilibrium
positions, and (3) is the condition for these vibrations to be classical. We
note that for T < hwp, quantum effects come into play and the normal
electron fluid becomes. nonclassical. These quantum effects are not related
to overlapping of the wave functions of different electrons; it is the motion
of an electron in the field of other electrons that gets quantized.

In-the presence of the magnetic field the fluid is classical provided

T > fuwp, hwe. (5)

For hw, > T the fluid may be semiclassical. The motion of an electron
in the field E¢ is then a superposition of a quantum cyclotron motion with
frequencies ~ w, and a semiclassical drift of the center of the cyclotron
orbit. The frequency 2 that characterizes the drift can be estimated from
Fig. 1 if one assumes that the field E¢ is pointing towards the equilibrium
position. Then the “displaced” electron drifts transverse to this field, with
a velocity eE¢/muw,, along a circle of radius §. The frequency Q is the
reciprocal period of the drift. For

T>hQ, Q=wlfw, (6)

the drift is classical. The inequality (6) follows from (3) for Aw.2T.
We note that (6) may be fulfilled in a sufficiently strong magnetic field,
We > wp, even if T' < fiwy, i.e., even if the fluid is non-classical for B = 0.

The conditions (5) and (6) show also where the dynamics of a Wigner
crystal are classical and semiclassical, respectively. The spectrum of phonons
of a crystal was analyzed in [24]; w, is a characteristic Debye frequency of
the crystal for B = 0, whereas for w. > w, the spectrum consists of the
optical branch (that starts at w,.) and a low frequency branch; the widths of
the branches are ~ 2. We note that the melting temperature of the crystal
T as given by the condition I' a2 127 [4,5] may be greater than or less than
huw, depending on the electron density (Tm o ns/ 2, wp X nd/ % for electrons
on helium fwy,/Tm = 1.3 when n, = 10% cm™?). From this perspective it
is particularly important that the magnetic field can be used to “switch”
the 2D system, whether a fluid or a crystal, from the domain of quantum
dynamics, Aiwp, > T, to the semiclassical domain, T > AQ.

2.2. DISTRIBUTION OF THE FLUCTUATIONAL FIELD
For classical and semiclassical electron systems the statistical averaging

over the electron coordinates (or the positions of the centers of cyclotron
orbits, in quantizing magnetic fields) may be performed independently from
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the averaging over the electron momenta (the occupation numbers of the
Landau levels, for fiw, > T') [17,23]. In particular, the distribution of the
Coulomb field on an electron, or of the components of the field, may be ob-
tained by integrating the appropriate function over the electron coordinates
with the weight exp(—Hee/T'), where

1 ! -
Hee = Eez Z Irn - r‘n'l ! (7)

n,n’

It is straightforward to show, by changing to dimensionless coordinates
er n/4T-1/ 2 that the distribution of the dimensionless field E¢/n3/4T'1/2
is determined by the single parameter I', and in particular the coefficient
F in Eq. (2) is a function of I' only. We note that (E?) can be expressed
in terms of the two-particle distribution function of the electron system

P(ry, ra):

e’T [ P(ry,r3)

ez<Et?) = ((V,,Hce)z) = —eT(V,E,) =
n,SJ |r; —ryf3

dl‘ldl‘z (8)

(S is the area of the system).
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Figure 2. The scaled mean square fluctuational field F(T') = (E?)/ Tn3/?
from Monte Carlo calculations [23]. The asymptotic value of F for a
harmonic Wigner crystal is shown dashed. Inset: the logarithm of the
distribution of a component of the field for I' = 60.
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The function F in (2) and the distribution of the field Ef can be eas-
ily found for large I' (low T') where electrons form a Wigner crystal and
electron vibrations about equilibrium positions can be described in the har-
monic approximation [25](b). Both transverse and longitudinal modes of
the crystal contribute to the field, and the numerical value of F' is = 8.91.
The distribution of the field is Gaussian, which is a standard result for the
distribution of the force per particle in a classical solid.

In the opposite limit of small I' the major contribution to the field Eg¢
comes from pair collisions, and

F(I)=~2r%’r"!, I« 1.

In the most interesting range of the electron fluid and the melting tran-
sition, the function F' and the distribution of the field were obtained from
Monte Carlo simulations [23]. We used the technique similar to that in
[19], with periodic boundary conditions and with the number of particles
equal to 324. The field on an electron was evaluated as the gradient of the
potential in which the electron was moving.

The results for the scaled mean square fluctuational field F(I') and
the logarithm of the probability density of a component of the field are
shown in Fig. 2. For I'2 10, the function F decreases monotonically with
increasing I'. Quite remarkably (but in qualitative agreement with the
above small-T' estimate which, when extrapolated to I' ~ 1, gives F(1) =
11), the variation of F is small in this range, although the structure of the
system changes dramatically, from a liquid where correlations in electron
positions decay within twice the mean electron separation, to a crystal.
The function F(I') has a smeared singularity at the melting point I' ~
127. We observed a small hysteresis of F' as well as hysteresis of the mean
electron potential energy and the effective diffusion constant for crystal and
random initial configurations in the range of the transition (the hysteresis
of the mean energy and the diffusion constant were observed earlier in
molecular dynamic simulations [20,22]). The behavior of F is a consequence
of (E?) being determined primarily by the short-range order in the system,
according to Eq. (8).

We note that, with account taken of Eqgs. (2), (8) and the above data for
(EZ), the criterion for the fluctuational field to be uniform over the electron
wavelength

X [(VaEn)| = e(BHX T < (B} (3a)

takes on a form that coincides with the inequality (3).
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The shape of the distribution of the field in its central part is close
to Gaussian for I' > 10, cf. Fig. 2. The tail of the distribution could be
investigated analytically by evaluating the minimal energy 7 in)[Ef] of
the many-electron configuration in which one of the electrons is driven by a
given field Er > (E2)}/? [23]. The logarithm of the distribution on the tail
is given by — ( (min)rp ) — g™ m)[0]) /T. The results are in a very good
agreement with the results of Monte Carlo simulations.

As I' decreases, the deviation of the field distribution from the Gaussian
shape becomes more substantial. However, the difference between the mean
reciprocal field (E; '), which is of interest for transport (see Secs. 4 and 5),
and its value for a Gaussian distribution 7*/2(E?)~1/2 ig less than 10% for

r'z20.

3. Qualitative Picture of Many-Electron Transport
3.1. WEAK TO MODERATELY STRONG MAGNETIC FIELDS

For several types of 2D electron systems, and for electrons on helium in par-
ticular, electron scattering is due to collisions with short-range scatterers,
and the scattering is elastic or quasielastic. Clearly, in a strongly correlated
electron fluid at most one electron at a time collides with a given short-
range scatterer. If the characteristic duration of a collision tcoy is small
compared to the characteristic time over which the field E¢ varies in order
of magnitude (the correlation time in the electron system), the effect of
the electron-electron interaction on the collisions may be fully described in
terms of E¢. Indeed, in this case the field E; is all that an electron “knows”
about other electrons during a collision.

We will first analyze the effect of the field E¢ on the collisions with
short-range scatterers for not too strong magnetic fields where

T > e(EHY?Xr ~ fhuwp > hw,, Xp = h(2mT)~1/2, (9)

We note that (9) does not mean that the magnetic field is weak. The
field may well be classically strong, i.e., there may hold the inequality
weT > 1, where 771 is the scattering rate. In what follows we use the term
“moderately strong fields” for classically strong magnetic fields that satisfy
condition (9).

In the range (9) the electron motion is classical (cf. (5)), and an electron
has a well-defined kinetic energy p*/2m ~ T and a well-defined potential
energy in the field of other electrons. Uncertainty of each of these energies is



97

determined by smearing X of the electron wave packet. For an electron in
an electric field E¢ this uncertainty is given by e F¢ X and is small compared
to T. This means that, in spite of the electron system being strongly
correlated, the electron-electron interaction has little effect on collisions
with short-range scatterers in the absence of a magnetic field. One can
also see this from the following arguments. The duration of a collision
is determined by the time it takes an electron to fly past the scatterer.
For short-range scatterers and for electrons with thermal velocities vy =
(2T/m)1/ 2 this time i8 feon ~ Xr/vr ~ A/T. The acceleration of the
electron in the field E over this time is ~ eEfXpvr/T < vp. We note that
the condition T > fhw, guarantees that tcoy = A/T is small compared to
the velocity correlation time w;! [21] (cf. Fig. 1).
The role of the field Ef becomes
very different in the presence of the

D b magnetic field, since the field E¢ tilts

W, Landau levels and makes the elec-
- _ - tron energy spectrum continuous. It

P _ - is clear from Fig. 3 that for an elec-
_ - _ - tron wave packet of size X7, the

- _ - discreteness of the one-electron en-
— - ergy spectrum due to Landau quan-

-~ = e tization is washed out by many-

~ .~ _ electron effects if e E¢X7 >> hw,. One
would therefore expect that even

(E-r)/E ——n in classically strong magnetic fields,

weT > 1, collisions with scatterers
will occur nearly as if there were
no magnetic field at all [12]. Then
the many-electron system should not
display magnetoresistance, and in
the whole range (9) the static con-
ductivity o is given by a simple ex-

Figure 3. Single-electron energy lev-
els W, in the electric field E and
transverse magnetic field (tilted Lan-
dau levels). Uncertainty of the elec-
tron kinetic energy exceeds fw, for the
shown size of the electron wave packet

Ar . pression
2
e n Th_ . -
o= azz(w = O) = m' T {jc;:'z . e(Eg)l/sz > huw, hTB=lo (10)
B=0

where 'r;__fo is the scattering rate in the absence of the magnetic field calcu-
lated in the approximation where the effect of the electron-electron inter-
action on collisions with scatterers is ignored.

We emphasize that the absence of magnetoresistance in the range (9) for
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classically strong magnetic fields, known experimentally since [6], is a purely
many-electron effect. In the single-electron approximation, the character
of electron scattering for w.7 > 1 is qualitatively different from that in
the absence of the magnetic field even in the range of high temperatures
T > hw,, where there applies the notion of a classical electron orbit. For
an electron colliding with a short-range scatterer the orbit has the shape of
a rosette [26]. It is a nearly closed circle, with the characteristic cyclotron
radius Rg ~ (T/m)Y/2w7! and with the center slowly rotating around
the scatterer. The electron is coming back to the scatterer, over and over
again. Therefore it experiences multiple collisions with the same scatterer,
in contrast to a single collision in the absence of the magnetic field. In fact,
in the single-electron approximation the number of collisions is determined
by the probability to find another scatterer while spinning around the given
scatterer.

Single-electron magnetotransport is usually analyzed using the self-
consistent Born approximation (SCBA) [2,10,11]. In this approximation
the relaxation rate 7555 ,(B) is given by the relaxation rate 7 o1 multi-
phed by the factor of the increase of the density of states that results from

“squeezing” of the energy spectrum into (broadened) Landau levels. This
factor, in turn, is given by the ratio between the interlevel distance and the
level broadening which is itself due to scattering, we/T53p 4(B). The result
for the relaxation rate is of the form

TS—(}BA(B) Psonae /27';.}0/2’ Fsopa ~ 1 we>> TgéBA(B)° (11)
Detailed analysis of the SCBA for a nondegenerate 2D system is given in
[10]; an alternative approach to the single-electron theory is based on the
method of moments for the frequency-dependent conductivity o-(w), and
for quantizing magnetic fields it gives results similar to the SCBA [27]. If
TscBA(B) is used instead of 7,_, in Eq. (10), the magnetoconductivity in
classically strong fields is oc B=3/2 (the resistivity is o< B1/2); it differs from
the result (10) by a large factor (w.7,_, )/ > 1.

2. “STRONG” STRONG MAGNETIC FIELDS

Onset of magnetoresistance in classically strong magnetic fields, T > Aw, >
e(E?)Y/2Xr, can be qualitatively understood in the following way [12]. If
there were no fluctuational electric field, an electron in the magnetic field
would be moving along a rosette described above, coming back to the scat-
terer with period 27 /w.. In the presence of the field E¢ the center of the
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electron cyclotron orbit drifts with a velocity vy = F¢/B. Therefore the
number of times the scatterer is encountered is finite. It is clear from Fig. 4
that in order of magnitude, this number is ¢ = X{27 E¢/Bw,)™! (here, Xp
stands for the characteristic “size” of the scatterer; if scatterers are not
point-like and their size exceeds X7, the above expression should be appro-
priately modified). One would expect classical magnetoresistance to arise
in the many-electron system for'¢ > 1.

The magnetoconductivity o can be es-
timated using the Einstein relation be- Ry
tween the conductivity and the diffusion —-—
coefficient D, o = e*n,D/T. It is seen o
from Fig. 4 that scattering results in a
shift of the electron orbit by the cyclotron

radius Rp. Therefore R%/2 may be asso- l

ciated with the squared diffusion length,

and then D = R%/2r. The scattering -—
rate 7-1 is proportional to the encoun- 2nE, /Bay,

tering factor ¢ [28], and the expression

for o takes on the form Figure 4 Classical electron tra-

e’n, - ) . Jectory in the fluctuational elec-
g = WRBT y T~ (7'3___01 (12)  tric fiedd E¢ and transverse mag-
netic field B. The radius of the

¢ = Xw.B/2n(E}/2, spiral Rp ~ (T/hw,)Xr.

A distinctive feature of the many-electron magnetoconductivity (12) is
its independence of the field B for classically strong fields where Rg ~
(T/hw)Xr < B! and ¢ « B? (X = X7 for hw, < T).

The arguments used to obtain an estimate of o apply also if the elec-
tron system is in a quantizing magnetic field. For strongly quantizing
fields, fiw, > T, an electron is a “hard disk” -with characteristic size
I = (h/mw.)!/2. 1t drifts transverse to the magnetic field with a velocity
E¢/B, and the characteristic duration of a collision is [17]

te = lgB(E").

The scattering rate is increased compared to r;io by the encountering factor
¢ ~ wcte o< B3? (the same estimate can be obtained using density-of-states
arguments: the kinetic energy uncertainty of an electron wave packet of
a size Ip in the field Ef is ~ eF¢lp, and therefore the density of states
into which the electron may be scattered is increased by a factor ¢ ~
hwc/ eEle).
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In the whole domain fiw.2 T, the value of Rp in Eq. (12) is given by
the characteristic radius of the electron wave function, whereas ¢ is given
by the time-of-flight over the wavelength X (3),

Rp =lp(27 + 1)1/2, teoll = 13(27'1 + 1)—1/2B(E'f—1>. (13)

It follows from (10), (12), (13) that the magnetoconductivity o is non-
monotonic as a function of B. It decreases as B2 in the range (10), reaches
a minimum for “strong” classically strong fields where ¢ >> 1, and then in-
creases as B'/? for hw, > T (see Fig. 6).

Eq. (12) for 7~1 gives also the characteristic value of the halfwidth v
of the peak of cyclotron resonance of a many-electron system in a strong
magnetic field. We note that in the classical range T' > fiw, the expressions
for v and for the relaxation rate in Egs. (10), (12) for the static conductivity
coincide with each other. This is no longer true in the quantum range,
although still y ~ 71 [29].

3.3. INTERELECTRON MOMENTUM EXCHANGE

The exchange of momentum between electrons does not affect the long-
wavelength conductivity directly [30], since it does not change the total
momentum of the electron system. However, its role in the transport may
be substantial. This is well-known in the theory of low-density electron
plasma in semiconductors [31] from the analysis of the case where the single-
electron rate of collisions with scatterers 7;!(¢) depends on the electron
energy €. In the single-electron approximation the static conductivity o (for
B = 0) is a sum of the conductivities of electrons with different energies
and therefore different scattering rates; it is given by the averaged (over ¢)
reciprocal scattering rate, o = ezn,m/ m. The interelectron momentum
exchange occurs via pair electron-electron collisions. If the frequency of
these collisions greatly exceeds 7, 1(T), then o = e?n,/m7;'(¢). These
results were applied to 2D electrons on helium in [9].

Based on the discussion in Sec. 3.1 one would expect that similar ar-
guments apply to the static conductivity of a strongly correlated classical
electron fluid for weak magnetic fields. Here, an electron exchanges its mo-
mentum with other electrons not via pair collisions but by being accelerated
by the Coulomb force from these electrons. The rate of interelectron mo-
mentum exchange 7! is given by the frequency of the electron vibrations
wp, as it is clear from Fig. 1. If wyr > 1, as it was assumed in Eq. (10), the
conductivity is determined by the relaxation rate of the total momentum
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of the many-electron system, i.e., by the average rate 7, (¢).

The role of interelectron momentum exchange in strong fields B, where
collisions with scatterers are mediated by the electron-electron interaction,
is clear from the analysis of cyclotron resonance. Resonant absorption at
frequency w, is due to transitions between neighboring tilted Landau levels
in Fig. 3, |v) = |v +1). “Partial spectra” which correspond to different
transitions are broadened because of collisions with scatterers. Prior to
averaging over the many-electron ensemble the broadening of a spectrum
7.(E¢) depends both on the level number v and E¢. Even if all partial
spectra are Lorentzian, but with different widths, the total spectrum may
be non-Lorentzian (see [32] for a review of the theory of systems with
equidistant or nearly equidistant energy levels).

0.3 Electron-electron interaction
gives rise to transitions between
the Landau levels of individual
electrons and to drift of the cy-
clotron orbit centers. Electron
motion results also in averaging
of the widths v,(Eg). The char-
acteristic frequency of the cor-
responding interelectron momen-
tum exchange is seen from Fig. 1
to be 73! = Q = w;/wc for
wp € w,. For fast momentum
exchange, 7;! > 771, this is re-
laxation of the total momentum
of the electron system that de-
termines the shape of the cy-
clotron resonance spectrum, and
the spectrum is Lorentzian with a
width given by the appropriately
averaged 7, (E¢) o< E;f! [29]. In
the opposite case 7! < 77! the
spectrum is non-Lorentzian. For
T <« hw, the conductivity is given
by the expression

G (w)

0.1

80 —

Figure 5. Reduced high-frequency con-
ductivity (14) near the cyclotron resonance
peak as a function of the reduced fre-
quency dw = (w — w.)/vo for Gaussian
distribution of E¢ (solid line); &(w) =
2mY00as(w)/men, (0 = Y((EF)Y?)).
Lorentzian distribution with the same area
and with the halfwidth 71/3+, is shown with
a dashed line (from [29]).

_ e’n, Yo(Es)
our) = Gt (B o) (14
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The shape of the peak of oz(w) depends on the shape of the distribution
of the fluctuational field. For the case of Gaussian distribution it is shown
in Fig. 5.

3.4. NONLINEAR EFFECTS IN A COLD 2D ELECTRON FLUID

An interesting feature of nondegenerate 2D electron systems is the possibil-
ity to observe strong nonlinear effects without heating the system. One of
such effects is the occurrence of negative differential conductivity in quan-
tizing magnetic fields [16,17(a),33] in a 2D electron fluid. It arises because
an external electric field E.y; affects the electron drift in the fluctuational
field E¢ and thus changes the rate of collisions with scatterers and the
electron motion during a collision. The nonlinearity may be expected to
be substantial if the field F.,: becomes of the same order of magnitude
as the fluctuational field (EZ)!/2. We will use the arguments of Sec. 3.2
and Eq. (12) to estimate the nonlinear longitudinal conductivity o which
determines the current density along the field j, = OEext.

One of the factors in Eq. (12) which are affected by the field Fey, is the
encountering factor {. Indeed, the mean square drift velocity of an electron
in the fluctuational and external fields, (v3(Eext)) = ((Eexs + Et)?)/B?, in-
creases with increasing Eey;. This results in the decrease of ¢, since ( is
proportional to the time of flight past the scatterer and thus inversely pro-
portional to the drift velocity, {(Eext) ~ ((0)(v7!(Eext))/{v7(0)). Clearly,
((Eext) E;lt for strong fields.

In the analysis of elastic or quasi-elastic collisions with short-range scat-
terers in the field E..; one should also take into account that, because of
the energy conservation law, an electron can “jump” away from the scat-
terer only transverse to the total field Eex;+Es. Therefore the jumps in the
direction of the field E . are suppressed, and the characteristic squared
diffusion length R%/2 for the jumps along the field in Eq. (12) should be
multiplied by a factor of the type (E?)/{(Eexs + E¢)?). In strong fields Eey
this gives an extra factor o< E2 in the conductivity as given by Eq. (12).

On the whole, the nonlinear conductivity decreases with the increas-
ing external field in a nondegenerate 2D electron fluid, and o < E53 for
Ee > (E3Y? [17). Negative differential conductivity in the magnetic
field was first found in [16] phenomenologically by assuming that the effect
of the electron-electron interaction may be described by a finite lifetime of
an individual electron. In this model o < EZ2 for strong field, in contradic-
tion with the above result. Recently negative differential conductivity was
obtained in the single-electron approximation using an appropriately mod-
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ified self-consistent Born approximation {33]. We note that, for the fields
E.. which are so strong that |eEey|Rp 2 fiw,, the current should sharply
increase [34], since elastic scattering may be accompanied by transitions
between the Landau levels.

4. Many-Electron Quantum Transport Equation

The analysis of the long-wavelength conductivity oz»(w) can be done
using the Kubo formula which relates 0q»(w) to the Fourier transform of
the correlation function of the total many-electron momentum P

(e"’?‘/’i P e—iBt/A Pa:> = Tr, [eiﬁot/h P, e-il%t/hg“x(t)] , P=) pa, (15)

A~

1 . - . . -
Hy = 3 Z p2 + He, Pn = —ihV, — eA(Tn).
m n

Here, H is the Hamiltonian of the whole system of electrons and scatterers,
Tr. is taken over the wave functions of the isolated many-electron system
with the Hamiltonian Hy, and A(r) is the vector-potential of the magnetic
field. The Hamiltonian of the electron-electron interaction H.. is given in
Eq. (7).

Interaction of the electrons with scatterers (ripplons, helium vapor atoms)
has been moved in (15) into the operator G (t),

Ca(t) = Z7'Try [S(t)f’,,e‘ﬂﬂ 5‘+(t)] | S(t) = eHot/hgiRt/n (16)
H=Ho+H+H, Hi=Y Vapa, ha=3 %"
q n

where the trace Tr; is taken over the wave functions of ripplons and/or the
positions of helium vapor atoms, H, is the Hamiltonian of ripplons (vapor
atoms), H; is the interaction Hamiltonian (Vq depends on the dynamical
variables of ripplons or vapor atoms), and Z = Tr.Tr; e}'cp(——ﬂI:I ). In the
case of scattering by a static random field other than that of ripplons or
vapor atoms the expression for G,(t) (16) should include averaging over
realizations of the field. The results below apply to this case provided the
random field is Gaussian and has a small correlation length.

We assume that the interaction H; is weak enough so that the dura-
tion of an electron collision with a scatterer teo is much smaller than the
intercollision interval which is given by the relaxation time 7,
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leoll KT (17)

(both tcon and 7 have to be found). In the range (17) the collisions occur
independently from each other, and therefore the transport equation for
the operator G, (t) should be Markovian.

The many-electron quantum transport equation (QTE) to second or-
der in H; can be written in a standard form which is known for systems
with a small number of degrees of freedom, like one-electron systems or
an atom coupled to radiation, and which contains the double commutator
[I:I,'(t), [f[i(t’),g’;,(t) exp(—,@ﬁb)]] (cf. [32,35]). We will assume that the
collisions are quasielastic, and in particula.r the frequencies of ripplons with
the characteristic g are small, wy < tcon, T/h. In this case ripplons create
a quasistatic random Gaussian field, as do vapor atoms. Then the QTE is
of the form [29]

0 =—-h~ ZZIVQI Z/ dtl ‘lql‘,,(t) [:qr,,,(t) g (t)]] (18)
f'n(t) = eiﬁot/hf.ne—iflot/h; |V | qu_q) g,,(O) - Z;lp,,e_ﬂﬁ°.

Here, ]Vqlz is the mean square Fourier component of the random field

of the scatterers; in the case of scattering by ripplons |Vq|2 xT; Z, =
Tr. exp(—,@ro). We note that the time ¢ in (18) is large, t ~ 7 >> teon.

In what follows we assume that the characteristic momentum transfer
in a collision ¢ > nil? (short-wavelength scattering), which means that
one electron at a time collides with a given scatterer. In this case only
the diagonal terms with n’ = n should be retained in the sum over n,n’
in (18). Still the QTE remains substantially many-electron, since time
evolution of the operators F,(t) may be strongly affected by the electron-
electron interaction.

4.1. SOLUTION OF THE QTE FOR FAST INTERELECTRON
MOMENTUM EXCHANGE

The standard way of solving quantum transport equations for systems with
a small number of degrees of freedom (e.g., one-electron systems) is to
change from the QTE in the operator form of the type (18) to the set
of equations for the matrix elements of the density operator on the wave
functions of the system isolated from scatterers; these equations may then
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be solved analytically or numerically {32,35]. This method does not apply
in the present case, since the wave functions of the many-electron sys-
tem (the eigenfunctions of the operator I:Io) are not known. If we use
approximate functions, an error in the matrix elements of the operators
exp[iqf, (t)], exp[—iqf, (t)] will be large for large t,t' ~ 7.

One way to avoid the problem is to change from Gz(t) to the operator

é,(t) _ e Bot/hG (1) Bt/ (P ()P (0) = Tre [PaGa(t)] . (19)

The equation for éz(t) is of the form

0G. i s , 8G,
= s lew ] ] 2

§ —_— t
[26e] e a SR [ [0 e, 6]
coll q n -

The collision term in (20) contains the operators exp[tiqi,(¢1)] for
ty = 0 and t; = ¢/ — t. Although the time ¢ is large, t ~ T > tcon, the
interval ¢t —t’ that contributes to the integral over t' in (20) is small, as it is
given by the duration of a collision tco (in fact, it was assumed in deriving
(18) that G,(t) remains nearly constant for the time ~ ¢ —t'). Smallness of
t—t' makes it possible to express #,(t' —t) in terms of the electron operators
for t = 0 and then to find the matrix elements of exp[—-iqf,(t' — t)] on
appropriately chosen wave functions.

It is straightforward to estimate the two terms in the rhs of Eq. (20).
The operator G(t) depends on the coordinates and momenta of all elec-
trons. The electron-electron interaction results in the change of the mo-
menta of individual electrons, and therefore h‘l[Ga, ﬂee] ~ Tl G, [29],
where 7! is the interelectron momentum exchange rate discussed in Sec. 3.3.
The collision term gives rise, additionally, to a change of the total momen-
tum of the electron system. This term is ~ T—lé,,,, and for fast interelectron
momentum exchange rate it is smaller than the first term in the rhs of (20).

If we drop the collision term, the solution of (20), which has the required
symmetry of the z-component of a vector and satisfies the initial condition
(18), will be of the form

Ga(t) = Z Ja(t)Baemiowete=BHo 7ol 5 71 (21)
a=%

B, =2"12 (IE’z - ianpy) , [Pa, I:Io] = —ahw Py, k = eB,/mw, (|k| = 1)
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with time-independent (and equal, see below) g+. Time evolution of g4 (t)
is due to the collision term in (20). This evolution may depend on Hy
and 15+f’._. However, in the case of elastic scattering the form of G, as a
function of the total energy of the electron system Hp should not change
in time; one can also show that, in the statistical limit of a large number
of electrons 7,5, the terms o (}5+15_)m with m > 1 that could be present

in g4(t) are decoupled from the term allowed for in (21) and thus do not
arise.

The equations for g..(¢) follow from (20), (21). They are derived below
for classical and quantizing magnetic fields, and in both cases, to the leading
order of perturbation theory, for £ > t.o they have a simple form

%ﬁ = —7da(t), 9+(0) = 9-(0) =27V/*Z]}, Z. = Tr. exp(-BHo),
with the appropriate relaxation rate -y (see Eqs. (25), (45)). We note that
Egs. (20), (21) do not describe static conductivity in quantizing magnetic
fields, which is evaluated using a different approach in Sec. 4.3.1. However,
they describe the cyclotron resonance, and in the analysis of the cyclotron
resonance for w & w, the nonresonant term o g_ exp(iw,t) in (21) should
be dropped.

4.2. THE COLLISION TERM FOR A CLASSICAL SYSTEM

In the range T >> fiwp, fuw, (5) the electron motion on the time scale ~ teoy
is a semiclassical motion in crossed uniform electric and magnetic fields.
Therefore it is straightforward to express the electron coordinates £,(¢;)
in the collision term in (20), for small |t;] = |t' — t| ~ tcon, in terms of
Fp = £,(0) and pp, = Pn(0). As a result we obtain

~igP —iqf . . . hg?
e igi,{t1) ~e igf,(0) exp [_ulF (tly pn(O)) + 1,2"3“) sin wctl]

F(t, pn) = £ (8, Ba) — £ (£, mvi®) + v, (22)

~ ~

B
£(t,Bn) = 2 sinwgt + P22 2 (1~ coswit), v = (B, x B) /B,

< A

It is convenient to evaluate matrix elements of the electron operators in
the Wigner representation,
. 1
L(ipa}, {ra}) = [ |T] dnexp (iCara)| { {n + 3¢}
n

Eka = 563),
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[{kn}) = H(27r exp (iknrn), Pn=kp -~ eA(r,). (23)

In the WKB approximation, which applies in the classical range (5), the
matrix elements (23) of the operator G,(t) (21) and of the collision term in
(20) can be obtained, with account taken of (22), by replacing the operators
fn = F4(0) and Pp = Pn(0) by c-numbers r, and p,, respectively.. In
particular

Gz (t; {Pn}, {ra}) = Z ga(t)e—iawet exp [~BHo ({Pn}, {rn})] Pa. (24)

a=1

where Py = 2712 % (ppz — iappy).

The collision term is given by the (appropriately weighted) sum over q
of the difference between the matrix elements (24) and the matrix elements
of G4 (t) for the same energy (the collisions are elastic), but for the total
momentum of the electron system changed by q. In evaluating this dif-
ference one should replace q = P [(qP) /P?], P? = (P?) ~ 2n,SmT (to
some extent, this is similar to what is done in deriving the collision term in
the single-electron Boltzmann equation for elastic scattering, see [31]; for
Tex' > 771 the only singled out momentum is the total momentum of the
many-electron system P).

Further calculations are quite straightforward. The functions g4 (t) de-
cay in time as exp(—t/7)g+(0). The expression for the relaxation rate !
is of the form:

1 bt P . A
o= ExTzf‘*zZqleqlzf(Q), €q) = / dt (e UFn(B)g=iata(0)y  (o5)
q —oo

(in deriving (25) we took into account that the major contribution to the
integral over t' in the collision term (20) comes from the range of small
t —t' ~ teon and extended the limits of the integration over ¢ to infinity).
The expression for the correlator £(q) immediately follows from (22),

€@ = [ drae)es(), (26)

2 2

R
T;(l-—coswct) —i2 1

c c

#(t) = exp [“ sin wct]

(d)
Pgp(t) = <exp [i q:" (wet — sinwet) — i:qu x v (1 = cos w,_.t)]> .

c c
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Here, we have taken into account that statistical averagings over the elec-
tron momenta p, and coordinates r, are performed independently, for a
classical system.

The factor ®5(t) describes the effect of electron-electron interaction on
collisions with scatterers. Averaging in ®g(t) is performed over electron
configurations, with the weight Z;! exp [~ Hee ({ra})] (the drift velocity
of an nth electron v{?) (22) is determined by the fluctuational field on the
electron and depends on the positions of all electrons). Clearly, this av-
eraging can be reduced to averaging over the distribution of the field E¢
discussed in Sec. 2. We note that, if not for the factor ®g(t), the integral
over time in £(q) would diverge for B # 0, which is the mathematical man-
ifestation of the inapplicability of the single-electron Boltzmann equation
in the magnetic field. The explicit form of £(q) in various limiting cases
will be analyzed in Sec. 5.

4.3. QUANTUM THEORY

In quantizing magnetic fields, fiw.2 T, the evaluation of the collision term
in (20) for fast interelectron momentum exchange, ™! <« Q = w?/w,,
should be done in a way different from that used above. Qualitatively, this
is a consequence of the electrons no longer having well-defined trajectories
shown in Fig. 4 and implied in Eq. (22). Formally, the non-commutativity
of the operators p, and p, X B in f in (22) becomes substantial for ¢ and q
that contribute to the collision term, and quantization of the kinetic energy
should be taken into account when averaging is performed.

In the semiclassical range (6) electron motion is a superposition of “vi-
brations” around quasiequilibrium positions with frequencies 2 < w, (see
Fig. 1) and fast cyclotron motion. It is convenient to introduce the opera-
tors £y, of the positions of the centers of electron wave packets,

2 . pn X B 1. .. 2oz .
Ip=rn,+ 3p";;2w3 ) [rnjypnj’] =0 (.71.7’ = z1y)1 [wmyn] = —“""l% (27)
(x = £1), and the raising and lowering operators pn, that move an electron
to an upper (for a = +) or lower (for @ = —) Landau level
DPna = (2hmwc)_1/2 (ﬁm - iaﬂpny) y @ =, [ﬁn—yﬁrﬁ] = 1. (28)

The operators p,o commute with the operators f',,.
The centers of electron orbits ¥, move because of electron-electron in-
teraction. In the range (6) the characteristic values of the momenta p, are
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~ %i/X, and the p,-dependent terms in Fy, 13pn/h ~ lp, are much smaller
than the characteristic radius & (2) of the vibrations of the orbit centers in
Fig. 1. To lowest order in X/é < eF¢lg/T the motion of F, is described by
the Hamiltonian Hee = Hee ({rn}) (7) in which the electron coordinates ry,
are replaced by #n. The increment of ¥, over a small time interval [t1] ~ teon
< Q71 (the duration of a collision tcoy is given in (13)) may be expressed
in terms of the field on an electron as

~

2 2 - - E, X ~ 1 5H,., r
Fale) = 3a0) + IO, 49 = P, B = L2 (a9

The many-electron field E,, = E,, ({fn}) may be assumed to be a c-number,
to lowest order in eE¢lpg/T. Clearly, this is just the fluctuational field.

The effect of electron-electron interaction on time evolution of the op-
erators . is small over the times [t;1]< teol & Tex ~ Q7. Therefore for
such ¢; the operators in the collision term in (20) are of the form

e~Hn(t1)  e=i9n) exp | - 3™ alpg_afna(0)e™<h — iqi (O)tl] (30)

where go = (gz — taKgy)/Vv/2.
Although the collision time oy, i.e., the range of ¢’ that contributes to

the integral over ¢’ in (20), is small compared to the relaxation time 7 and
Q1) it substantially exceeds w;!. The major contribution to the integral
over t' comes from the terms in (30) that do not contain fast oscillating
factors exp[+iw.(t — t')] (in (30), as well as in (22), we have set t; =t/ —t).
These terms are obtained if we replace in (30)

- iaw, y 1 L
exp | — Zaqu_ap,me @ “‘] = M, (51%q2> exp {—Zl%qz] ) (31)
o

(> <]
Mo () = 3 [(=m)" /()] B4 5
s=0
(the operator exp[iqf,(0)] in (20) should be expressed in terms of Fn, fns
in a way similar to (30), (31)).

The equation for the function g, (¢) in (21), which describes the shape of
the cyclotron resonance spectrum, can be obtained by substituting (21) into
Eq. (20), multiplying the resulting equation by P_ (from the left) and taking
the trace over the states of the many-electron system (the contribution
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to the conductivity ogzz(w) from the other terms in B,, G, is small for
w ~ we > 771). Since the operators pn4+ and fn commute and the motion
of the centers of cyclotron orbits ¥, is semiclassical, the trace Tr. (15) is
reduced to the sum over the wave functions of the Landau levels in the
occupation number representation |v,) and the integral over F,. It can be
shown [17,29] that the Boltzmann factor is factorized in the semiclassical
range,

exp[~Ho] ~ exp [—ﬂ"wc S (#nsn- + %)] exp [~fHee ({Fa})]. (32)

The matrix elements of the operators pn, on the wave functions |v,) are of
the standard form (v + 1| fnst. [Vn) = (vm + 1)V/2.

With account taken of (30)-(32) the calculations become straightfor-
ward, although cumbersome. The result is that the function g.(t) decays
in time exponentially,

9+(t) = 94+ (0) exp(—7t), t>> tcon- (33)

The shape of the cyclotron resonance peak that corresponds to (33) is
Lorentzian, and v is the halfwidth of the peak. The explicit form of v is
discussed in Sec. 5 below. We note that in the approximation (30), (31)
the only time-dependent term that remains in the collision integral over ¢/
in (20) and that enters the expression for -y is seen from (30) to be of the
form of exp [—iqﬁs‘d)(O)(t -t )] Integration and subsequent averaging of
this term gives k

Re /0 ~ dt (exp [~iq{t]) =7 (6 (a?)) = qtlg , te = IgB(E;Y). (34)

For short-range scatterers the characteristic value of the transferred mo-
mentum f%igq is given by the reciprocal electron wavelength AX~!, and there-
fore from Eq. (34) we obtain the expression (13) for the duration of a
collision tcoj1.

4.3.1. Static Conductivity
The many-electron static conductivity o is not described by Eq. (33) be-

cause of the frequency dispersion of the polarization operator in quantiz-
ing magnetic fields. This dispersion is substantial in the frequency range
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Aw3 teon™?!, and since weteon> 1 for Aw, > T, the characteristic scatter-
ing rate in the expression for the static conductivity should differ from the
broadening of the cyclotron resonance peak.

For weak enough coupling, where w7 > 1 and, in addition, f.; <€ T
so that electron-scatterer collisions are well separated in time, o can be
obtained from simple perturbation theory in the coupling to scatterers (see
[29]). To lowest order in (w.7)~! and for the case of short-range scatterers
the result is

e?n,

o= azz(o) 4m2 2T Z qzlvql £(q) (35)

where the correlator £(q) is defined in Eq. (25).

Eq. (35) applies for both classically strong and quantizing magnetic
fields. For classically strong fields it gives the same result as that which
follows from Egs. (25), (26). The evaluation of £(q) in the range Aw.2 T
can be done using Egs. (30)-(32). We note that the derivation of Eq. (35)
requires that collisions be short compared to the intercollision intervals
(~ 7); however, the relation between the rate of interelectron momentum
exchange and 7! may be arbitrary.

5. Results and Discussion
5.1. STATIC CONDUCTIVITY.

It follows from the solution of the transport equation and from Eq. (35)
that the static conductivity of the many-electron system can be written in
the form

en, T

—'r'n—m, weTS1, wpT > 1; (36)

0 = 022(0) =

he?n, _ _ 1 -
= en (2 +1)r L wer>1; rl= 5*25 zzqzlvqlzf(q)'
q

qQ

2mT

Here |Vq|2 is the mean square Fourier component of the field of the scatter-
ers, i = [exp (Aw,/T) — 1]7}, and X = lp(27+1)~1/2, Eq. (36) has the same
form as Eqgs. (10), (12), (13) obtained above from qualitative arguments,
with 7=1 having the meaning of the electron relaxation rate.

The effect of electron-electron interaction on the conductivity is con-
tained in the electron density correlator £(q) which is defined in (25). For
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T > eE¢Xp>> hw, the correlator £(q) is given by Eq. (26). The integral
over ¢ in (26) can be evaluated by the steepest descent method, and it is
sufficient to allow for one saddle point in the integrand (at ¢ = —ih/2T).
As expected (see Sec. 3.1), because of the many-electron factor ®g(¢t) in
the integrand in (26) the value of 7= turns out to be nearly B-independent
(the corrections are ~ (1/48)(fw,./T)?),

/
£(q) = (m\l 2exp [— h2q2] . T > e(EHY?xr > hue. (37)

Tq?, 8mT

For stronger magnetic fields the scattering rate becomes B-dependent
and also density-dependent. The integrand in (26) has saddle points at
t =2msw;! - ik(2T)"!, s = 0,+£1,..., and

2rm\ /2 | & . 27rs] >
— — — — >
é(q) (qu ) exp |~ o7 E <exp [qufch , B2 Bg, (38)

4=-—00

where
1/4
Bo = (2mmT/h%e (E7YY?) /* (39)

The encountering factor { in Eq. (12) is given by the number of terms
in the sum over s that contribute substantially to £(q) in Eq. (38),{ -1~
B?/B2 in classical magnetic fields. It is seen from (38) that, in agreement
with the arguments in Sec. 3.2, it is for BZ2 B2 that the dependence of

£é(q), and thus of 771, on B becomes substantial.
Eq. (38) is further simplified if B/Bg > 1,

1/2 2 2
gzr-'r_n:\ . [ = ] wCB<E;1>! B > Bo, T > huw. (40)

f(q): (qul P —_8777._1; rq

As expected, the scattering rate as given by (36), (40) is proportional to
B? and inversely proportional to the fluctuational field. Therefore decrease
of o with the increasing B displays characteristic saturation. The limiting
B-independent value of the conductivity, owas ¢ (Ef 1y, is determined by
the fluctuational field.
The expression for o is simplified in the important case of a §-
correlated random potential,

5 A i
Vo= —=S7'r (41)

; B=0
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(772 introduced in (41) is equal
to the scattering rate 7! as given
by (36), (37) for B = 0 and q-
independent |Vg|* of the form (41)).

In particular

o
¥

s
T

B=0"

/ If one further assumes that the dis-

tribution of the fluctuational field is
Gaussian, the averaging over Ef in
BB B/B (38) and integration over q in (36)
can be done explicitly. The result is
shown by the left curve in Fig. 6.

In the range of quantizing mag-

Ot = (mn,/vng) rt (42)

>
4

Figure 6. Reduced conductivity
& = 0/0st as a function of B/B,

for classical fields and of B/Br = netic fields we have
fuw,. /T for B 3> By, for a §-correlated
random potential and for a Gaussian £(q) = _22 { E;1> e~ L1343 (2A+1)
distribution of the fluctuational field q
(from [29]). o (1 s 2\ [R(R+ 1™
x Y (she?) ——5— (43)
m=0 2 (m!)

Eq.(43) goes over into (40) in the limit T >> fw,. In the opposite limit of
low T (strongly quantizing B), where #i € 1, only the term with m =0
should be kept in the sum in (43). For a é-correlated random potential the
integral over q in (36) can be evaluated explicitly. The result is shown by
the right curve in Fig. 6. In this case ¢ & (T0ue/4) (Awe/T)/? « B/
for i « 1. The overall dependence of o on B displays a characteristic
_minimum, as seen from Fig. 6. In quantizing fields, as well as in strong
classical fields, the value of o depends explicitly, and in a simple way, on
the fluctuational field, ¢ « (Ef 1), which makes it possible to measure
(Ef') experimentally.

5.2. CYCLOTRON RESONANCE

For fast interelectron momentum exchange compared to the momentum
relaxation due to collisions with the scatterers (i.e., for ™! « wp in the
range wp 2w, and for 77! « wﬁ/u.:c in the range w. > wp) the peak of
cyclotron resonance has a Lorentzian shape in strong magnetic fields,
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e?n, ¥

2m (w — we)? + 72

In the classical range T > hw, the halfwidth of the peak y = 77!,
where 77! is given by Eq. (36). The dependence of y on the magnetic field,
temperature, and electron density is described in this range by Egs. (36)—
(40): v = 7, is independent of B for eEfXr > fw., whereas, for a
d-correlated potential, ¥ = (B?/nBj) 7} for B> By .

In a quantizing magnetic field the expression for v is of the form [29]

for |w—-we), 7! € we. (44)

Orz(w) =

v =225 )5 Use) Vol e -3¢ n+1)]

2 2\ [A(A+ 1™
g mX—:o ( ‘54 , mi(m+1)! (45)
The dependence of ¥ on the fluctuational field, and thus on the electron
density, is given by v o (E;'). In the classical limit % > 1 Eq. (45) goes
over into the expression for 7! given by (36), (40).

In the limit of # « 1 the only term to be retained in the sum over m in
(45) is that with m = 0. The results for v and o in this case were obtained
earlier {17]. The corresponding expression for v and its specific depen-
dence on electron density have been shown [25](b) to be in good agreement
with the experimental data on cyclotron resonance [7](a) published simul-
taneously with [17](a). The value of 7 is a factor teonTgops < 1 smaller
than the width of the cyclotron resonance peak in the self-consistent Born
approximation. For a é-correlated random potential v o«c B3/2.

We note that the above expressions for static conductivity and cyclotron
resonance can be obtained in a different way if electrons form a Wigner
crystal. In this case electron relaxation is described in terms of the decay
of phonons of the Wigner crystal due to electron coupling to scatterers
(ripplons) [3(b),25,36—-38]. Phonon-ripplon coupling is strongly nonlinear
in the phonon operators due to divergence of the mean square electron
displacement from a lattice site in a 2D crystal for T > 0. The Green
function techniques which allow for this nonlinearity in a nonperturbative
way were considered in [25,36,39]. The technique [25] can be extended to
the parameter range (3) investigated in the present paper (however, the
above analysis does not require that electrons form a Wigner crystal). In
this range the decay processes are substantially multi-phonon. For example,
broadening of the cyclotron resonance peak is due to the ripplon-induced
decay of the long-wavelength phonon with a cyclotron frequency into a
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short-wavelength phonon, which is accompanied by birth and death of many
other short-wavelength phonons [25].

A corollary from the above arguments is that, in the case where Wigner
crystallization occurs in a strong magnetic field, so that Aw,., T > hwg Jwe
and the conditions of applicability of the semiclassical theory are fulfilled,
the static conductivity and the cyclotron resonance lineshape should remain
nearly constant through the crystallization transition. This is in contrast
with a comparatively sharp change in the transport properties observed in
[6] for crystallization at comparatively high electron densities, fiw,/T ~ 2.5,
and B = 0, where the semiclassical theory does not apply.

5.3. APPLICATION OF RESULTS TO ELECTRONS ON HELIUM

For electrons on helium with a density n, = 108 cm™? and T = 1 K
the fluctuational field is (E2)/2 = FY/¥(I)n¥/*T1/2 ~ 11 V/cm, and the
characteristic magnetic field for the onset of magnetoresistance is By =
(2m3F/h2e2)/4n3/®T1/2 ~ 0.54 T. Therefore the specific features of many-
electron transport are accessible to experimental investigation. The squared
matrix elements of the random potential of helium vapor atoms and ripplons
are, respectively, [40]

37rﬁ.4 IR SN
[Val? = ‘ub NoSTH= =57 [Ta-:o],,r (46)
Te 2
Vel = =57'— [EL + 2B Bpot + Bl (47)
2y 5o (a)
Epol pol(q) ome q (27—-'“ .

Here, v, and 7( ) are the variational parameters of the electron wave func-
tion transverse to the layer ¥(z) o zexp(—7yL,z), in the presence and ab-
sence of the electric field £/, that presses the electrons against the helium
surface, 710) = (me?/4h?)(e — 1)/(e + 1) (¢ is the dielectric constant of
helium). In Eq. (46), b}, is the helium atom cross-section, b}, =~ 5A2, N,
is the (3D) vapor density. In Eq. (47), a is surface tension; the function
p(z) is given in [40], p(z) = In(2/z) for z K 1.

In the temperature range T'2 1 K electrons are primarily scattered
by helium vapor atoms. These atoms create a nearly ideal é-correlated
random potential, and the results for this potential discussed in Secs. 5.1,
5.2 directly apply, with the effective strength of the potential given by
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(46). Experimental investigation of magnetotransport {6,12,13,15,41], using
different techniques, has shown that there is a range of strong magnetic
fields, wer > 1, where there is no magnetoresistance. Recent experiments
[42] have demonstrated that, for electron scattering by vapor atoms, the
range of the magnetic fields where w,7 > 1 and yet the conductivity o o
B~% may be in fact so broad that in this range o varies by more than two
orders of magnitude. This Drude-like behavior in a 2D system is in full
agreement with Eqs. (36), (37) of the many-electron: theory.

Both the relaxation rate 7=! and duration of a collision tco = XB(Ef 1)
increase with increasing B. Therefore, the criterion for applicability of
the above theory teo <« 7 does not hold for very strong B. The role of
many-electron effects then becomes less substantial, and transport becomes
essentially single-electron [17](b). The crossover from many-electron to
single-electron transport in strong magnetic fields was observed in [12,13].
It was described in a modified self-consistent Born approximation which
allowed for many-electron effects. The theory and experiment were shown
to be in a good quantitative agreement with each other.

We note that at high temperatures where, because of high vapor density,
the electron relaxation rate is high, TB_=10 > wy, !, the condition of the absence

of magnetoresistance e(E?)l/ 2Xr ~ hwp > hw, does not apply for strong
magnetic fields w.r > 1. Therefore, in contrast to the case discussed
above, magnetoresistance should arise as soon as the magnetic field becomes
strong. This is in agreement with the observations [10,11].

Experimental investigation of electron transport for lower temperatures,
T < 1 K, where ripplon scattering is dominating, has made it possible to
analyze the region of small scattering rates 7';:10 and to perform detailed
quantitative comparison with the many-electron theory of magnetoconduc-
tivity in Sec. 5.1 [42,43].

For B < By the conductivity as given by Eqs. (36), (37), (47) is de-
scribed by the universal Drude law, o o« 75_,/[1 + wf‘r':: ,J; where the scat-
tering rate 1'B‘=lo is given by the sum of the contributions from all three terms
in the mean square ripplon potential (47). On the other hand, in the range
of strong magnetic fields, B2 By, the B-dependences of the contributions
to the conductivity from each term in (47) are different. They were con-
sidered in [29]. For the ripplon scattering described by the term oc E2 in
Eq. (47), the sum over q in Eqs. (36), (40) for the classical relaxation rate
in the range B >> By diverges logarithmically at small q. The effect of this
term should be analyzed using quantum theory (43). The corresponding

contribution to the scattering rate 'r}}i is of the form
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2m—%>!

TEJ_ =

rhia [2(25 + 1)*? i

“[nm+1WM( )

@a+1)2] ~ (ml)?

For large 7 the sum over m goes over into (2/7)/21n [T /hw,), and the corre-
sponding term in the conductivity og, depends on B only logarithmically,
o5, « In[T/hw,]. In quantizing fields (& < 1) we have og, < B~!/2. On
the whole, og, slowly decreases with increasing B.
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Figure 7. Reduced conductivity
Gpol = Opol/Tpol,sat, Which is deter-

mined by the third (polarization) term
in the ripplon field intensity (47), as
a function of B/By for classical fields
and of B/Br = hw./T for B3 >
(B$/Bzr)(f-+%). The solid and dashed
lines refer to 2mT/h*y? = 0.1 and
0.01, respectively (from [29]).

The contributions to ¢ from the
terms oc Epe and o B3, in (47)
display a nonmonotonic dependence
on B. These contributions can be
found numerically both in classical
and quantizing magnetic fields. In
the classical fields they saturate for
B2By. For B >» Byand 7 <« 1
they increase with B, as in the case of
a d-correlated random potential. The
B-dependence of the contribution g,
from the third term in (47) is shown
in Fig. 7; the value of gp, is scaled by

Opol,sat ==

2
2mn, (7£°) T) _(2mT
nhaB? hiyz )’

P(z) = /:o dz ze"p? [(zm)l/z] .

The overall ripplon conductivity as a
function of B displays a characteris-
tic minimum similar to that shown in
Figs. 6, 7. The position of the mini-
mum depends on temperature and the
field F, .

The nonmonotonic behavior of the static conductivity as a function of
B has been observed in the experiments [14,42]. The experimental results,
which have been obtained for several values of the electron density and tem-
perature, are in good quantitative agreement with the theory. The data has
also made it possible to extract the value of the mean square fluctuational
field (E?) and to compare it with Monte Carlo data in Fig. 2 [43]. Detailed
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discussion of the experiment is given in the chapter by M.J. Lea in this
book. '

5.4. BRAGG-CHERENKOV SCATTERING FOR A WIGNER CRYSTAL

Recently several experimental groups observed [44~46] that, when elec-
trons above helium surface form a two-dimensional Wigner crystal, they dis-
play strongly nonlinear magnetoconductivity for comparatively weak driv-
ing fields. In [45] the effect was interpreted as due to the electron crystal
sliding out of the periodic array of polaron-type “dimples” on the helium
surface at a threshold value of the driving field Eey. This nonlinearity
mechanism was first suggested in [3(b)]. In this subsection we show that
there is a different mechanism which is due to strong nonlinearity of elec-
tron losses. This mechanism, which we call the Bragg-Cherenkov scattering,
describes experimental observations reasonably well [47], including the ob-
servation that the Hall velocity of a Wigner crystal displays saturation with
the increasing Eey; [46].

The Bragg-Cherenkov scattering is a coherent many-electron scattering
mechanism specific for electron solids. The conditions for the “conven-
tional” single-electron Cherenkov emission are that the electron velocity v
exceed the phase velocity of irradiated waves (ripplons), and the transferred
momentum %q be small compared to the electron momentum, in which case
the energy conservation law is of the form qv = w(q) (w(q) is the wave fre-
quency). If electrons form a solid and the above conditions hold for the
wave vector of the irradiated waves equal to a reciprocal lattice vector of
the solid G, then the Cherenkov waves emitted by different electrons are
coherent and interfere with each other. This is similar to the interference
in Bragg scattering. The Bragg-Cherenkov scattering should result in a
strong increase in the emission rate when the velocity of the electron solid
is such that vG becomes close to w(G). Respectively, the reaction (friction)
force F(v) should also dramatically increase for such velocities.

For finite temperatures the density correlation function in 2D crystals
decays, and the Bragg peaks have power-law tails [48]. One may expect that
the Bragg-Cherenkov peaks in the friction force F(v) (at Gv = w(G)) also
have tails as a function of the crystal velocity v. These tails are important
for the analysis of nonlinear conductivity of a Wigner crystal.

The force F from ripplons on an electron system is given by the time
derivative of the total electron momentum P defined in Eq. (15), F =

—iﬁ.‘l([f’,ﬁ;]), where H; is the Hamiltonian of electron-ripplon interac-
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tion. In evaluating F we will assume that the electron system as a whole
is moving with a velocity v with respect to the helium surface, but other
than that, the two systems are close to thermal equilibrium. Then, to the
lowest order in Hj, the force F can be expressed in terms of the electron
density correlator {fq(t)p-q(0))o for the isolated electron system [49]:

~h SRl [T e 0p a9

Here, fi(w) = [exp(Aw/T) — 1]7! is the Planck number, and Vg is the matrix
element of the electron-ripplon interaction. In a slightly different form (for
the electron losses due to F), Eq. (49) was obtained in [17(a)] for the
electron system in crossed electric and magnetic fields, in which case v is
the transverse drift velocity (in [17(a)] it was assumed that Aigv < T').

In contrast to Sec. 4 where we were interested in the Fourier-transformed
electron density correlator £{(q) (25) for large ¢ > na/?, in the analysis of
the peaks of F = F(v) near Bragg-Cherenkov resonances we are interested

in evaluating the electron density correlator for ¢ ~ n,/ 2, and the major
contribution to the integral over time in (49) comes from large times |t] ~
|Gv — w(G)|™!. The problem of the resonant friction force has much in
common with the problem of the tails of resonant absorption due to coupled
phonon-ripplon modes [3(b)], which was considered in {39]. The resulting
expression for the resonant term AF g in the force F(v) for Gv = w(G) is
of the form [47]

1-u(G) TG?

 #(G) = 4rmcin’

252
AFg = -hw

(50)

$(G)G (VG| (-———-——Gv e
$(G) = 2sin [ru(G)/2]T(1 - 4(G)), wm = min(wp,w?/w., T/h)

(c¢ is the transverse sound velocity of the Wigner crystal).

It follows from Eq. (50) that the force on the Wigner crystal increases
as a power of the reciprocal detuning |Gv — w(G)|™', with a fractional
temperature-dependent exponent 1 — u(G). Clearly, the friction force be-
comes large before the crystal reaches the velocity w(G)/G (for v parallel
to G), and it further increases as v approaches the resonant value.

Since the ripplon dispersion law is superlinear for relevant ¢ (w(q) o
¢*/?), the resonant condition vG = w(G) is first met for the minimal re-
ciprocal lattice vector G = Gmin = (87%n,/v/3)!/2%. This means that, if
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the crystal is driven along one of the vectors Gmp, its velocity as a func-
tion of the driving field Ey; will display saturation at the critical value
Ve = W(Gmin)/Gmin- Saturation of the Hall velocity vg of a Wigner crystal
at vg ~ v was observed in [46]. Detailed comparison with the experiment
[46] is given in [47].

We note that the Bragg-Cherenkov scattering does not arise if electrons
form a fluid. The nonlinearity in a fluid, which was discussed in Sec. 3.4,
arises for higher driving fields Fey.

6. Conclusions

We have presented an intuitive picture and detailed microscopic theory of
many-electron dynamics and transport in a normal electron fluid and a
Wigner crystal. In our approach, strong correlations in the electron system
are taken into account explicitly, in a nonperturbative way. We show that
electron-electron interaction can dramatically affect transport. The effect
is of fluctuational origin, for classical and semiclassical systems. It can be
described in terms of a characteristic parameter, the electric field that drives
an electron because of electron density fluctuations. The fluctuational field
is accessible to experimental measurement. The variation of its distribution
with electron density and temperature has been analyzed using Monte Carlo
simulations. The dependence of transport coefficients on electron density,
temperature, and magnetic field has been investigated in a broad range
of parameters over which the system displays different types of behavior.
Theoretical results are in good agreement with experiments.

[ am grateful to Michael Lea for continuing collaboration and numerous
useful discussions. I am also grateful for collaboration and useful discussions
to Chris Fang-Yen and Yuri Rubo.
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