
PHYSICAL REVIEW B 104, 155434 (2021)

Resonant nonlinear response of a nanomechanical system with broken symmetry
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We study the response of a weakly damped vibrational mode of a nanostring resonator to a moderately strong
resonant driving force. Because of the geometry of the experiment, the studied flexural vibrations lack inversion
symmetry. As we show, this leads to a nontrivial dependence of the vibration amplitude on the force parameters.
For a comparatively weak force, the response has the familiar Duffing form, but for a somewhat stronger
force, it becomes significantly different. Concurrently there emerge vibrations at twice the drive frequency, a
signature of the broken symmetry. Their amplitude and phase allow us to establish the cubic nonlinearity of the
potential of the mode as the mechanism responsible for both observations. The developed theory goes beyond
the standard rotating-wave approximation. It quantitatively describes the experiment and allows us to determine
the nonlinearity parameters.
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I. INTRODUCTION

Nanomechanical vibrational systems provide a natural
platform for studying a broad range of classical and quantum
phenomena in a well characterized setting, cf. Refs. [1–6]
for recent examples. An important advantageous feature of
such systems is a small decay rate, with the ratio Q of the
vibration eigenfrequency ω0 to the decay rate 2� reaching
5×1010 [6] for localized acoustic modes and 8×108 for flex-
ural modes [7]. This makes nanomechanical modes highly
sensitive to a resonant force, which underlies many of their
applications. A consequence of this sensitivity is that a com-
paratively weak resonant force can drive the vibrations into
a regime where their nonlinearity comes into play. This en-
ables using resonantly driven nanomechanical vibrations for
studying various nonlinear phenomena far from thermal equi-
librium, cf. Refs. [8–12] and papers cited therein.

In many cases, the nonlinear response of nanomechanical
vibrations to a comparatively weak resonant drive is well
described by the Duffing model [13]. In this model the non-
linearity comes from the term in the potential energy, which
is quartic in the mode coordinate q. This is the lowest-order
anharmonic term for a mode with the potential that has in-
version symmetry, and in this sense, the Duffing model is
minimalistic. The major effect of this term for comparatively
small vibration amplitudes comes from making the vibration
frequency amplitude dependent [14]. For a small decay rate,
the frequency change due to this dependence can exceed the
frequency uncertainty due to the decay, making the nonlin-
earity significant. At the same time, the vibrations remain
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close to sinusoidal as long as the drive is comparatively
weak. The response, in this case, is often analyzed using the
Bogoliubov-Krylov averaging method [15], which in this con-
text is equivalent to the rotating wave approximation (RWA)
of quantum optics [16].

Flexural modes, which are most frequently studied in
nanomechanics, do not necessarily have inversion symmetry.
Such symmetry implies that the nanoresonator lies in a plane
and the vibrations occur transverse to this plane. Typically,
nanoresonators like nanobeams, nanomembranes, or carbon
nanotubes, are bent because of an applied gate voltage [17]
or the asymmetry of the clamping [18] or, as in the system
studied here, because the asymmetry imposed by the dielec-
tric transduction electrodes [19], see Fig. 1. For asymmetric
modes, along with the term ∝ q4 in the mode potential energy,
it is necessary to take into account the lower-order term ∝ q3.
However, in the standard analysis based on the RWA, the ef-
fect of this term on the vibrations at the drive frequency comes
to renormalizing the Duffing parameter [14], such that the
standard Duffing model remains applicable with an effective
Duffing parameter.

Here we demonstrate that, for a nanoresonator with a bro-
ken symmetry, the resonant response can significantly deviate
from the standard Duffing response already for a moderately
strong driving. In the studied system this happens for the
vibration amplitudes where the mode frequency differs from
its zero-amplitude value ω0 by � 10−4ω0.

The physics of the effect can be understood from the
following argument. In our system the Duffing nonlinearity
is hardening, the frequency increases with the vibration am-
plitude. On the other hand, the RWA-induced change of the
effective Duffing parameter due to the broken symmetry is
negative [14]. This means that the symmetry breaking results
in a decrease of the Duffing parameter compared to its value in
the symmetric system. For a weak driving it is the decreased
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FIG. 1. Scanning electron micrograph of the doubly clamped sil-
icon nitride sting resonator (green) and two adjacent gold electrodes
(yellow) for dielectric drive and detection. Depicted is one of the
clamping pads (right), the onset of the string, and the two control
electrodes.

effective value that determines the resonant response. How-
ever, it is clear that, for sufficiently large amplitudes, the
quartic term in the potential becomes “stronger” than the
cubic term. Therefore for such amplitudes, the frequency
dependence on the amplitude should be different from the
small-amplitude range. Remarkably, this happens where the
amplitude is still small compared to the scale where the
change of the vibration frequency becomes comparable to ω0.

Another effect of a broken symmetry is the onset of vibra-
tions at the even multiples of the frequency of the resonant
drive (whereas odd multiples arise from the regular Duffing
model), and in particular at twice the drive frequency [20].
The occurrence of vibrations at twice the drive frequency is
often referred to as the second harmonic generation. Such
vibrations, which are also referred to as temporal harmonics
or overtones, were seen earlier in microscale vibrational sys-
tems, cf. Ref. [21] and references therein. Here we measure
the amplitude and phase of these vibrations directly, and by
comparing them to the amplitude and phase of the main tone
establish that they are indeed due to the nonlinearity of the
mode potential. This allows quantifying this potential experi-
mentally.

To describe the observations, the theoretical analysis
should go beyond the standard RWA. A simplifying factor is
the small decay rate of the nanoresonator studied in the experi-
ment. This suggests extending the methods of the Hamiltonian
nonlinear dynamics to the problem at hand [22]. Such an
extension should allow for both the nonlinearity and the weak
damping. A theory should also address the observation that,
even though the signal at twice the drive frequency has an
appreciable amplitude in the studied range, higher-order over-
tones remain very small.

Below in Sec. II we discuss the setup of the experiment
and in Sec. III summarize the experimental observations. In
Sec. IV we outline the theory. Section V provides a dis-
cussion of the results and a comparison between the theory

and the experiment. Section VI contains concluding remarks.
The Appendixes describe auxiliary experimental observa-
tions, including the observed dependence of the nonlinearity
parameters on the applied DC control voltage, a discussion of
potential other mechanisms leading to a vibration at twice the
drive frequency, and further details of the theory.

II. SETUP AND CHARACTERIZATION

We investigate a nanomechanical doubly clamped string
resonator fabricated from prestressed silicon nitride on a fused
silica substrate, similar to the one depicted in Fig. 1. The string
is 270 nm wide, 100 nm thick, and 55 μm long. It is flanked by
two adjacent gold electrodes, enabling the dielectric transduc-
tion. The two gold electrodes are placed asymmetrically with
respect to the string, leading to an inhomogeneous electrical
field when a DC voltage is applied between the electrodes. As
a consequence, the dielectric string resonator gets polarized
and experiences a gradient force which displaces it from its
original equilibrium position as it is getting pulled towards
the electrodes where the field is strongest. The correspond-
ing change in the field gradient alters the eigenfrequency,
enabling frequency tuning with the applied DC voltage [23].
Concurrently, it also leads to the breaking of the symmetry
of the restoring potential (see discussion of Sec. IV). We use
a microwave cavity-enhanced heterodyne detection scheme,
discussed in more detail in [19,23,24]. We have verified the
linearity of the measurement in the studied parameter range.

For the measurements shown in the following (except
Fig. 10 which discusses the DC-voltage dependence of the
observed nonlinearities), the DC voltage is fixed to 5 V, such
that the fundamental flexural out-of-plane mode, which will
be considered in the following, is well separated from the
corresponding in-plane mode. The experiment is performed
at a room temperature of 293 K and under vacuum at a
pressure below 10−4 mbar. The response of the fundamental
out-of-plane mode (referred to as mode M in the following)
to a comparatively weak resonant field is described by the
Duffing model. In this model the equation of motion for the
mode coordinate q(t ) reads

q̈ + 2�q̇ + ω2
0q + γeffq

3 = Fd cos(ωdt ). (1)

Here ω0 = 2π f0 is the angular mode eigenfrequency, � is the
damping rate, and γeff is the effective Duffing nonlinearity
parameter. The parameter γeff describes the resonant response
in the range of the driving amplitude Fd where the RWA
applies, i.e., this is the Duffing parameter renormalized by the
cubic nonlinearity of the potential. The driving amplitude Fd

in Eq. (1) is scaled by the mass. The driving angular frequency
ωd = 2π fd is assumed to be close to ω0, with |ωd−ω0|�ω0.

In the experiment, both the drive tone and the measured
signal are voltage signals. Therefore we calibrate the system
in units of volts, as discussed in detail in the Supplemental
Material of Ref. [25], and apply the driving amplitude as an
RF voltage Vd . For Vd < 1 mV the mode dynamics is linear.
The spectrum of the linear response in this range, including
the Lorentzian fit, is shown in Fig. 7 in Appendix A. We
find f0 = 6.528 MHz and 2�/(2π ) = 20 Hz, which gives the
quality factor Q ≈ 325 000.
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FIG. 2. Duffing response and non-Duffing response. Measured
nonlinear response curves at drive voltages of Vd = 9 (gray) and
40 mV (black). Both traces display unprocessed raw data; the noise
level remains below the size of the dots. A fit to the Duffing
model at Vd = 9 mV as well as a theory curve using the obtained
γ

(V)
eff /(2π )2 = 2.48×1015 V−2 s−2 for Vd = 40 mV are included (red

lines). The deviation of the data from the Duffing model is clearly
visible for the Vd = 40 mV data. A better agreement is achieved
by taking the influence of the cubic nonlinearity of the potential β

into account (green line). The curve is calculated for β (V)/(2π )2 =
2.08×1015 V−1 s−2 and is truncated at a detuning of 2 kHz.

III. EXPERIMENTAL OBSERVATIONS

When the drive voltage is increased but remains close to the
linear regime, the measured response is well described by the
solution of Eq. (1). The corresponding bidirectional scan at a
drive voltage of 9 mV is shown in Fig. 2 as gray dots. A fit (red
line) yields the effective nonlinear Duffing parameter. Since
the signals are measured in volts, in what follows we use the
superscript (V) to indicate that the appropriate nonlinearity
parameters obtained by fitting the signals are also in volts.
Using the measured value of the signal q(t ) in volts, we obtain
γ

(V)
eff /(2π )2 = 2.48×1015 V−2 s−2.

The measured response for a stronger drive voltage Vd =
40 mV is shown in Fig. 2 by the black dots. The red curve in
this figure, on the other hand, shows the response for this volt-
age calculated using the above value of γ

(V)
eff . Clearly Eq. (1)

does not fit the data. We thus conclude that the Duffing model
no longer applies for Vd = 40 mV.

Along with the deviation from the Duffing response curve,
we have also observed the onset of a signal at twice the drive
frequency. This is depicted for a drive voltage Vd = 100 mV
applied at the eigenfrequency of the mode, i.e., fd = f0, in
Fig. 3. The spectrum clearly shows the forced vibrations at the
eigenfrequency of the driven mode (labeled M), along with a
pronounced peak at the overtone frequency (O) 2 fd = 2 f0 =
13.056 MHz. We note that the second spatial eigenmode of
out-of-plane vibrations of the nanostring has the frequency
13.2 MHz, almost 200 kHz above 2 fd . A frequency response
measurement, indicating the frequency separation of the two

M
O

FIG. 3. Spectrum of the resonantly driven fundamental mode
(M). For a resonant drive at fd = f0 = 6.528 MHz with Vd =
100 mV, the overtone (O) at 13.056 MHz is clearly visible.
Higher-order overtones are barely discerned in this representation.
A constant noise background has been subtracted from the data.

features, is shown in Fig. 8 in Appendix B. With a frequency
separation much larger than the damping rate, both features
can clearly be distinguished. This in itself allows us to un-
ambiguously associate the signal overtone at 2 fd with the
(nonsinusoidal) oscillation of the resonantly driven fundamen-
tal mode.

The dependence on the drive amplitude Vd of the ampli-
tudes of the fundamental mode as well as the signals at 2 fd

and 3 fd are shown in Fig. 4(a). The data refer to the drive
frequency fd = f0. The drive voltage Vd is swept between 0
and 400 mV. The three vibration amplitudes are measured
simultaneously with a high-frequency lock-in amplifier by
using multiple demodulators. As already seen in the spectral
measurements in Fig. 3, the signal at 2 fd is significantly
stronger than the signals at 3 fd and 4 fd (the signal at 4 fd is
not shown).

IV. THEORY

A. The effect of the broken inversion symmetry

To account for the experimental observations, the conven-
tionally used theory of a weakly nonlinear Duffing oscillator
needs to be extended. First, it has to allow for the broken inver-
sion symmetry. This requires including the cubic nonlinearity
in the mode potential U (q) along with the quartic nonlinearity.
The cubic nonlinearity has several sources. It comes from the
electrostatic energy of the capacitor in Fig. 1, which has cubic
terms in its expansion in the mode displacement. Another
source is the geometric nonlinearity of the nanoresonator. Yet
another source is the nonlinearity of the stress-strain relation.
A detailed analysis of these mechanisms is beyond the scope
of this paper, but all of them lead to a term cubic in q in the
potential energy once the symmetry is broken. The other, and
in a way less trivial, aspect of the extension of the theory is
the need to go beyond the standard RWA as discussed in more
detail below.
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M

O

M

O

FIG. 4. (a) Drive voltage dependence of the resonant amplitude of the fundamental mode (M, black) as well as the amplitudes of the
vibrations at twice (O, blue) and three times the drive frequency (dark blue); the amplitudes of the vibrations at the overtones have been
rescaled to account for the different frequency-dependent displacement-to-voltage conversion factor. The drive frequency fd is fixed at the
resonance frequency of the fundamental mode f0. (b) The amplitude of the vibrations at 2 fd [marked by O in (a)] depends quadratically on the
amplitude of the fundamental mode. Data shown in blue. The red line is a quadratic fit.

With the account taken of the cubic and the conventional
quartic nonlinearity the equation of motion reads

q̈ = −2�q̇ − ∂qU (q) + Fd cos(ωdt ), (2)

where

U (q) = 1
2ω2

0q2 + 1
3βq3 + 1

4γ q4. (3)

Here β and γ are the parameters of the cubic and quartic
nonlinearity, respectively. In what follows, we consider a
comparatively weak nonlinearity, so that the nonlinear part
of the vibration energy remains smaller than the harmonic
part ∼ω2

0〈q2〉. For concreteness we set β > 0; the sign of β

can be changed by changing the sign of the coordinate q and
incrementing the phase of the drive by π . We note that in the
engineering literature Eq. (2) in the absence of the driving
is sometimes called the Helmholtz-Duffing equation. In the
context of elastic cables a numerical analysis of Eq. (2) was
done in Ref. [26].

For a resonantly driven nonlinear oscillator, a major conse-
quence of the broken symmetry is the occurrence of vibrations
at even multiples of the drive frequency beyond the odd
multiples expected for a Duffing oscillator. For a weak non-
linearity, forced vibrations are almost sinusoidal. For a small
vibration amplitude one can seek the solution of the equa-
tion of motion (2) iteratively by perturbation theory, q(t ) ≈
q(1)(t ) + q(2)(t ) + · · · with q(1)(t ) = A cos(ωdt + ϕ). To the
leading order, the cubic nonlinearity β causes the onset of
vibrations at 2 fd . They are described by the expression

q(2)(t ) = 1

6ω2
0

βA2 cos(2ωdt + 2ϕ). (4)

We use that |ωd − ω0| � ω0 and � � ω0. An observation of
such vibrations is an unambiguous signature of the broken
inversion symmetry of the vibrational mode. There are, how-
ever, other contributions to the signal at 2 fd , which are also
related to the broken symmetry, as discussed in Appendix B.

We note also that q(2)(t ) contains a time-independent term
−βA2/2ω2

0; in the experiment, we do not measure this term.
Besides leading to the onset of vibrations at the even

multiples of the drive frequency, the cubic nonlinearity mod-
ifies the dependence of the amplitude of forced vibrations
on the drive amplitude compared to the Duffing response.
The Duffing model (1) has been very successful in describ-
ing many observations in nanomechanical systems and, as
mentioned in the Introduction, in the majority of cases the
analysis was based on the RWA. In the RWA, one changes
from the fast oscillating coordinate q(t ) and momentum
p(t ) to slowly varying in-phase and quadrature components
q(t ) − iω−1

d p(t ) = [Q(t ) − iP(t )] exp(iωdt ). In the equations
for Q, P one then disregards the terms that oscillate at the
frequency ωd and its overtones. Then the major effect of the
Duffing nonlinearity is the dependence of the mode frequency
on the vibration amplitude A [14],

ω → ωeff ≈ ω0 + 3γ

8ω0
A2, (5)

with A given by the value of (Q2 + P2)1/2 in the stable vibra-
tional state.

The RWA is often applied also to a vibrational system with
additional cubic nonlinearity β. In this approximation the re-
sponse to the resonant field is mapped onto that of the Duffing
model (1) with the renormalized nonlinearity parameter γeff

replacing the bare Duffing parameter γ [14],

γ → γeff = γ − 10β2

9ω2
0

. (6)

It is seen from Eq. (6) that the cubic nonlinearity can
strongly affect the amplitude dependence of the mode fre-
quency (5). Indeed, if γ > 0, but γeff < 0, even the sign of
dωeff/dA2 changes. This leads to the so-called zero-dispersion
behavior [27] (see Ref. [28] for a comprehensive review). In
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what follows we consider the case γ and γeff > 0, which is
relevant for the experiment described in this paper.

The strong change of dωeff/dA2 occurs only in the region
of comparatively small amplitudes A. Indeed, for large am-
plitudes the term ∝ q4 in U (q) becomes more important than
the term ∝ q3. Simple dimensional arguments show that for
amplitudes A2 � ω2

0γeff/γ
2, the approximation (6) becomes

inapplicable. For small γeff/γ the RWA breaks down where
the nonlinear part of the energy ∼γ A4 is still small compared
to the harmonic part ∼ω2

0A2. The analysis of the dynamics
in this range requires going beyond the standard Bogoliubov-
Kryloff or multiscale methods of averaging in the theory of
nonlinear vibrations (see Appendix D).

B. Beyond the RWA

To perform the analysis of the resonant response beyond
the renormalization (6) we take advantage of the significant
simplification related to the weak damping in the studied
system � � ω0. To this end we change from the coordinate
and momentum of the mode to its action-angle variables. This
is a canonical transformation. For an isolated mode with the
Hamiltonian

H = 1
2 p2 + U (q) (7)

the action I and the angle (phase) φ are defined as I =
(2π )−1

∮
p dq and φ = ∂I

∫
p dq [14]. The natural vibration

frequency of the mode is

ω(I ) = (∂I/∂E )−1,

where E is the mode energy. The coordinate and momentum
are functions of I and φ and are periodic in φ,

q(I, φ + 2π ) = q(I, φ), p(I, φ + 2π ) = p(I, φ).

In the presence of friction and dissipation, the second-order
equation of motion (2) becomes a set of two first-order equa-
tions for I and φ,

İ = R ∂φq, φ̇ = ω(I ) − R ∂I q, R = −2�p + Fd cos ωdt .

(8)

In the stationary regime forced vibrations occur at the drive
frequency ωd . This means that φ̇ ≈ ωd , if we neglect terms
oscillating at ωd . The action I in this regime has a time-
independent component and components oscillating at ωd .
However, as seen from Eq. (8), keeping oscillating terms on
the right-hand sides of the equations for İ and φ̇ lead to small
corrections to I and φ for a comparatively weak drive; in
particular, the corrections to I are ∼�I/ωd and |Fd∂φq /ωd |.
The smallness of these corrections is the condition of the
applicability of the analysis.

If we disregard the fast-oscillating corrections, the right-
hand sides of the equations for İ and φ̇ can be averaged over
the period 2π/ωd . In this approximation the equations for the
stationary states read

dI/dt = R ∂φq = 0, dφ/dt = ω(I ) − R ∂I q = ωd , (9)

where the overbar implies period averaging. It is clear from
Eq. (9) in particular that only the component of q(I, φ) that
oscillates as cos φ, i.e., the main tone, contributes to the terms
that multiply Fd cos ωdt .

Equation (9) gives two parameters of the stationary vibra-
tional state, the action I = Ist and the time-independent part
ϕ ≡ ϕst of the phase φ(t ) = ωdt + ϕst. The solution of Eq. (9)
is provided in Appendix D. The calculation is significantly
simplified by the fact that the functions q(I, φ), p(I, φ) can
be expressed in terms of the Jacobi elliptic functions. This
property allows one to find the frequency ω(I ) as well as the
amplitudes of vibrations at ω(I ) and its overtones as functions
of I in terms of the elliptic integrals. Inversely, for not too
strong nonlinearity, it allows one to express the action I in
terms of the amplitude A of the main tone, i.e., of the vibra-
tions at frequency ω(I ).

In Fig. 5(a) we plot the frequency ω(I ) vs the square of the
amplitude A scaled by the typical displacement (2ω2

0/γ )1/2

at which the Duffing nonlinearity becomes pronounced. The
plots refer to different values of the scaled cubic nonlin-
earity β/ω0

√
γ . For β = 0 (brown line) the frequency is

linear in A2 for small amplitudes. In contrast, for the critical
value βcr/ω0

√
γ = √

0.9 (light green line), where the effec-
tive Duffing parameter γeff = 0, the frequency is parabolic in
A2 for small A2. For intermediate 0 < β < βcr (petrol line)
the frequency displays a significant curvature as function of
A2 in the small-A2 range. The curve with the experimental
value of β obtained in Sec. V (dark green line) is very close to
the line for the critical β, as the effective Duffing parameter
is much smaller than the bare Duffing parameter. A zoom
into the small amplitude regime is shown in Fig. 5(b) where
the experimental range of the solution for the experimental
value of β (dark green line) is compared to the solution of the
renormalized Duffing model, Eq. (6). The two curves clearly
disagree.

We note that a simple formal way to think of the cubic
term in the potential of a nanoresonator mode is to relate it to
a linear bias. Such bias can come, for example, from a gate
voltage that “pulls” the nanoresonator. The potential of the
Duffing oscillator with linear bias is

UB(q) = −ξbiasq + 1
2ω2

0q2 + 1
4γ q4, (10)

where ξbias is the bias strength.
The potential UB has the same form as the potential (3)

for |β| < (4γω2
0 )1/2. This is seen if one shifts the equilibrium

position q → q + δq to compensate the linear term; in the
limit of small nonlinearity δq ≈ ξbias/ω

2
0. After the shift UB(q)

becomes of the same form as U (q) with

β = 3γ δq, ω2
0 → ω2

0 + 3γ (δq)2.

The condition β2 < 4γω2
0 corresponds to the experimental

situation where the potential U (q) has a single minimum.

V. RESULTS

A. Anomalous response curve

The response curve shown in Fig. 2 is anomalous in the
sense that it significantly differs from the conventional Duff-
ing curve. The theoretical model of Sec. IV, which takes into
account the cubic nonlinearity of the potential beyond the
RWA, allows us to describe this curve quantitatively and to
find the nonlinearity parameter β (V). The analysis is based
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FIG. 5. The dependence of the vibration frequency as a function of the action variable of the mode ω(I ) on the amplitude A of the first
harmonic. The squared amplitude is scaled by its characteristic value γ /2ω2

0 for a Duffing oscillator, whereas ω(I ) − ω0 is scaled by the
eigenfrequency ω0 ≡ ω(0) of small-amplitude vibrations. (a) The brown, petrol, and light green curves refer, respectively, to β/ω0

√
γ =

0, 0.6, and
√

0.9; the latter value corresponds to the critical cubic nonlinearity for which γeff = 0. The dark green curve is computed for
the value of β/ω0

√
γ used in the comparison with the experiment in Fig. 2. (b) Closeup showing ω(I ) for the same β as in Fig. 2 (dark

green) compared with the result of the RWA for the Duffing model with the effective Duffing parameter γeff calculated for the same β (light
gray). The deviation of the green curve from the straight line demonstrates the inapplicability of the conventional RWA. Remarkably, for the
considered case where γ /γeff � 1 this deviation is pronounced in the range where the amplitude is still comparatively small, A2 � 2ω2

0/γ ,
but A2 ∼ |γeff |ω2

0/γ
2.

on Eqs. (9) and uses the experimentally determined eigenfre-
quency ω0 and linewidth 2�.

The effective Duffing parameter γ
(V)

eff (in volts) is extracted
from the measurements for a moderately weak driving, where
the effective Duffing model applies, cf. the data for Vd =
9 mV in Fig. 2. The cubic nonlinearity parameter β (V) is
then chosen to match the theoretical result to the experimental
curve for a stronger drive. The green line in Fig. 2 displays the
theoretical curve for β (V)/(2π )2 = 2.08×1015 V−1 s−2. With
this parameter value, we find good agreement between the
theory and the experiment.

However, it is seen from Fig. 2 that the upper branch of
the experimental response curve for Vd = 40 mV ends at a
detuning of approximately 1.5 kHz, whereas the theoretical
branch extends much further and is truncated at a detuning of
2 kHz. We attribute this discrepancy to a comparatively short
lifetime of the large-amplitude state. Our data acquisition
system does not allow us to observe state with a short lifetime,
and therefore we do not observe the stable large-amplitude
state beyond a certain frequency.

We now comment on the lifetime of the large-amplitude
state. As seen from Fig. 2, the theoretical values of the ampli-
tudes of this state and the unstable state are very close. In the
considered very weakly damped system these amplitudes are
determined by the quasienergies (Floquet eigenvalues) of the
periodically driven mode in the corresponding states, which
indicates that the corresponding quasienergies are also close.
Thermal noise, which is invariably present in the system, leads
to escape from a dynamically stable vibrational state [29]. In
the system investigated here such escape was seen earlier [25].

In the weak-damping regime, periodically driven systems
escape via diffusion over quasienergy. Generically, the es-
cape rate increases exponentially with the decreasing distance

between the quasienergies of the stable and unstable (saddle-
type) states [30]. Therefore we expect it to be comparatively
large where the amplitude of the stable state is close to that
of the unstable state. A full calculation of the escape rate is
beyond the scope of the present paper.

B. Cubic and quartic nonlinearity in the critical
regime of small |γeff |

The values of γ
(V)

eff and β (V) allow us to find the “bare”
Duffing parameter γ (V) using Eq. (6). The value of this
parameter γ (V)/(2π )2 ≈ 1.16×1017 V−2 s−2 is two orders
of magnitude larger than the effective Duffing coefficient
γ

(V)
eff /(2π )2 = 2.48×1015 V−2 s−2 measured for the moder-

ately weak driving regime. As a consequence of the small
value of γeff only a small variation of the applied DC voltage
is sufficient to reach the critical point where the effective
Duffing nonlinearity becomes zero and to subsequently enter
the softening regime γeff < 0. This is shown in more detail in
Appendix C. In particular, a quadratic tuning of the effective
nonlinearity γeff , as well as the cubic nonlinearity β with the
applied DC voltage, is observed, which is a consequence of
the nonlinearity of the electrostatic energy of the capacitor
formed by the two electrodes, 1

2C(q)V 2 in the displacement
of the nanobeam.

C. Alternative mechanisms of the nonlinearity

The signal observed in the experiment at twice the drive
frequency arises from the broken inversion symmetry of the
nanostring under investigation. The symmetry breaking is
caused primarily by the asymmetric arrangement of the di-
electric transduction electrodes (Fig. 1). However, besides the
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FIG. 6. Resonant excitation of the overtone for a drive at half the eigenfrequency. (a) Amplitude of the resonantly excited vibrations at 2 fd

as a function of the drive frequency fd swept around f0/2 with Vd = 100 mV. The red line displays a Lorentzian fit with half-width �. (b) Peak
amplitude of the resonantly excited vibrations at f0 for fd = f0/2 as a function of the drive voltage. The red line corresponds to a quadratic fit.

mechanism described in the previous section and associated
with the cubic nonlinearity of the potential ∝ β, other mecha-
nisms originating from the broken inversion symmetry could
also contribute. They include the nonlinear excitation of the
second spatial harmonic eigenmode of the nanostring and the
nonlinear coupling to the driving force resulting in a direct
as well as a parametric drive at 2 fd . These mechanisms are
discussed in more detail in Appendix B. Notably, some of
them lead to a different dependence of the signal at 2 fd on the
amplitude and phase of the fundamental mode M. This can be
used to identify the origin of the signal. In the following we
compare our experimental observations with the theoretical
predictions for all these mechanisms and indeed find that
the nonlinearity of the potential energy of the nanoresonator
characterized by the parameter β is the dominant source of the
signal at 2 fd .

Figure 4(b) displays the amplitude of the overtone sig-
nal (in volts) Vout,O at 2 fd as a function of the amplitude
Vout,M of the resonant response of the mode M. A fit with
Vout,O = cV 2

out,M clearly shows that the overtone amplitude
scales quadratically with that of the main tone. In addition,
we have determined the phase of the signal measured at 2 fd

with respect to the phase ϕ of the mode M with the lock-in
amplifier. The measurement indeed reveals that the phase of
the overtone coincides with 2ϕ for a comparatively weak
driving used to derive Eq. (4). Both observations are in agree-
ment with Eq. (4). This suggests that the nonlinear driving
terms (B2) and (B3) discussed in Appendix B make a small
contribution to the signal at 2 fd at most, since they exhibit a
different dependence on the amplitude and phase of the main
tone.

However, this is not sufficient to establish the nonlinearity
of the mode potential U (q) as the only source of the signal at
2 fd , as the experimental observations are also compatible with
the nonlinear coupling to the second spatial harmonic of the
nanostring, see Eq. (B1). In order to estimate the role of this
mechanism as the remaining alternative source of the over-
tone signal, we repeat the experiment for a drive frequency
at half the eigenfrequency of the fundamental mode ω0/2.

In this regime, according to Eq. (2), the force Fd cos(ωdt )
still excites forced vibrations with a displacement q(0)(t ) ≈
[Fd/(ω2

0 − ωd
2)] cos ωdt , even when nonresonant as it is the

case for ωd ≈ ω0/2. Because of the nonlinearity of the mode,
which is characterized by the parameter β in Eq. (3), these
vibrations resonantly excite vibrations at 2 fd , which is the
effect of resonant second harmonic generation,

q(2)(t ) ≈ βFd
2

2
(
ω2

0 − ωd
2
)2 Re

exp(2iωdt )

ω2
0 − 4ωd

2 + 4i�ωd
,

ωd ≈ ω0/2. (11)

As seen from Fig. 6, we clearly observe the correspond-
ing overtone at 2 fd ≈ f0, whereas the response at the drive
frequency fd could not be resolved for bandwidth limitations
of the experimental setup. Figure 6(a) displays the overtone
amplitude for a sweep of the drive frequency around f0/2
along with a Lorentzian fit. The fit is in full agreement with
Eq. (11). Figure 6(b) shows the scaling of the overtone am-
plitude for fd = f0/2 with the drive voltage fitted with a
quadratic function.

The response of the second spatial harmonic of the nanos-
tring is nonresonant for fd ≈ f0/2 and may not lead to an
appreciable signal. This demonstrates that the cubic nonlin-
earity of the potential U (q) of the mode M is the major
contributor to the response at twice the drive frequency and
suggests that it is also a major contributor in the case of the
driving at fd ≈ f0. In Appendix B we provide an argument
why the nonlinear coupling to the second spatial harmonic
of the nanostring should be weak in addition to being just
nonlinear.

The finding that the observed signal at 2 fd ≈ 2 f0 is pre-
dominantly caused by the nonlinearity β suggests that the
ratio c = Vout,O/V 2

out,M , which can be extracted from the
quadratic fit to the data in Fig. 4(b), could be employed to
quantitatively determine the cubic nonlinearity parameter in
units of volts, β (V), from Eq. (4). However, the displacement-
to-voltage conversion factor of our read-out apparatus at 2 f0
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does not coincide with the calibrated one at f0 [31], such that
β (V) cannot be directly extracted from the data.

VI. CONCLUSIONS

Conventionally, the nonlinear response of vibrational
modes to moderately strong resonant driving is described by
the Duffing model. In contrast, in this work we have observed
and explained a non-Duffing resonant nonlinear response of
the fundamental mode of an underdamped nanomechanical
resonator. We found that, even though the dependence of the
amplitude of forced vibrations on the frequency of the drive is
of the familiar Duffing form for moderately weak driving, its
shape changes significantly as the driving becomes stronger.
This happens in the range where the driving still remains
not too strong, so that the forced vibrations are still close to
sinusoidal. Our explanation is based on taking into account the
broken inversion symmetry of the resonator. The symmetry
breaking leads to the onset of a term in the potential energy of
the mode, which is cubic in the mode coordinate.

We show that, while the cubic term does not change the
form of the response to a moderately weak drive, it signifi-
cantly changes the response for a stronger drive. The analysis
required us to go beyond the standard rotating-wave approxi-
mation. The obtained results allow describing the spectrum of
the nonlinear response in a broad range of amplitudes of the
resonant drive, where the shape of the response curve changes
significantly. The comparison between the experimental data
and the theoretical model allows us to determine the param-
eters of the quartic and cubic nonlinearity of the potential of
the mode.

Along with the change of the response form, the broken
inversion symmetry leads to the onset of response at even
multiples of the drive frequency. For the drive at frequency
close to the mode eigenfrequency, we have observed vi-
brations at twice the drive frequency, i.e., second harmonic
generation, in optics terms. We have discussed several micro-
scopic mechanisms that lead to the onset of such vibrations.
The dependence of the vibration amplitude and phase on the
amplitude and phase of the vibrations at the drive frequency
suggests that the major contribution to the frequency doubling
comes from the cubic nonlinearity of the mode potential.
Characteristically, higher overtones have a very small ampli-
tude, consistent with the model.

We have also observed resonant second harmonic genera-
tion when the driving frequency was close to half the mode
eigenfrequency. The spectrum of the vibrations at twice the
drive frequency has a characteristic Lorentzian shape, while
the vibration amplitude is quadratic in the driving amplitude.

Our results demonstrate that weakly damped vibrations of
nanomechanical systems display very rich nonlinear dynam-
ics. It comes from the interplay and competition of different
nonlinearity parameters even in simple cases where the vibra-
tions remain close to sinusoidal. The significant compensation
of the nonlinearity that we have found in a certain range of the
vibration amplitudes, which is controlled by how strongly the
inversion symmetry is broken, can be used in applications as
it extends the practically important regime of almost linear
behavior of the mode. At the same time, the deviation from
the traditionally assumed Duffing behavior should be generic

for weakly damped nanomechanical modes, as in many cases
such modes lack inversion symmetry.
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APPENDIX A: LINEAR RESPONSE

The linear response of the fundamental out-of-plane mode
is found at an eigenfrequency of f0 = 6.528 MHz. It is shown
for a drive of Vd = 1 mV in Fig. 7 as black dots along with
a Lorentzian fit (red line). From the fit we extract a linewidth
2�/(2π ) = 20 Hz, yielding a quality factor of Q ≈ 325 000.

APPENDIX B: THE VIBRATIONS AT TWICE
THE DRIVE FREQUENCY

It is tempting to try to extract the value of the nonlinearity
parameter β from the amplitude of the signal at twice the
drive frequency. However, besides the cubic nonlinearity of
the mode potential, there are several other mechanisms giving
rise to the generation of the second temporal harmonic. The
simplest of them will be discussed in this Appendix.

FIG. 7. Linear response of the fundamental out-of-plane mode
(M) at a drive voltage of Vd = 1 mV. A Lorentzian fit (red line) yields
an eigenfrequency of 6.528 MHz, a linewidth of 2�/(2π ) = 20 Hz,
and a quality factor of Q ≈ 325 000.
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M

O

FIG. 8. Response of the second spatial harmonic out-of-plane
eigenmode M2 appearing 200 kHz higher in frequency than the
overtone O of the fundamental flexural out-of-plane eigenmode M.

1. Second spatial harmonic of the nanostring

A relevant mechanism generating a signal at twice the
driving force frequency for ωd ≈ ω0 is the nonlinear coupling
of the primary mode M and the second spatial harmonic of
the vibrations transverse to the nanostring, the eigenmode
M2. This mode appears at frequency ω2/2π = 13.2 MHz, as
shown in Fig. 8. It is almost 200 kHz above the overtone of the
fundamental mode M, indicated by the blue arrow and labeled
by O. This difference is a result of the non-negligible bending
rigidity of the high-tension nanobeam under investigation, and
thus the deviation from pure stringlike behavior.

The mode M2 could be excited by the drive at frequency
ωd ≈ ω0. If the coordinate of this mode is q2, the potential of
the nonlinear coupling of this mode to the main-tone mode
M has a term U12 = β12q2q2, where q is the coordinate of
the mode M. If the internal nonlinearity of the mode M2 is
disregarded, its equation of motion reads

q̈2 + ω2
2q2 = −β12q2.

The forced vibrations of this mode induced by the forced
vibrations q(t ) ≈ q(1)(t ) = A cos(ωdt + ϕ) of the mode M are
described by the expression

q2(t ) ≈ 1

2
β12

A2

4ω2
d − ω2

2

cos(2ωdt + 2ϕ) + const. (B1)

The denominator in this expression is small compared to
the denominator in expression (4) for the overtone of the
main tone, |4ω2

d − ω2
2| � ω2

0. However, it is important that
the parameter β12 would be equal to zero in a symmetric
nanoresonator. Moreover, it remains small in an asymmetric
resonator, as the coupling results only from the distortion of
the modes compared to the conventional sinusoidal shape. In
addition, our measurement scheme effectively averages out
the signal from the mode M2.

2. The effect of a nonlinear coupling to the driving force

a. Driving at ωd ≈ ω0

Another mechanism generating a signal at twice the drive
frequency can be understood by recalling that the force on the
nanostring under dielectric driving [19] comes from modu-
lating the potential of the surrounding electrodes, see Fig. 1.
The nanostring is a part of the capacitor formed by these
electrodes. The force on the mode with a coordinate q is
1
2 (∂C/∂q)V 2, where C is the capacitance and V is the potential
applied to the electrodes. This potential has an RF part that
oscillates at the drive frequency fd , VRF = Vd cos ωdt , and a
(usually large) DC part VDC. Therefore the force is periodic
with period 2π/ωd , but since the force as a whole is ∝ V 2, it
has terms that oscillate not just at fd , but also at 2 fd .

The force emerges only where ∂C/∂q is nonzero, which
in turn occurs where the system lacks inversion symmetry (on
the contrary, if the electrodes formed a parallel-plate capacitor
and the dielectric nanobeam was located symmetrically in the
middle of the capacitor, we would have ∂C/∂q = 0). In the
case of dielectric driving that we study, the system does not
have inversion symmetry, and therefore the force does have a
component at 2 fd . This force is much smaller than the force
at fd for Vd � VDC, but can become sizable for large Vd .

We write the dielectric force component at twice the drive
frequency as λF 2

d cos 2ωdt ; the parameter λ is determined by
∂C/∂q. The vibrations caused by this force have the form

q(2)
λ (t ) = Re

λF 2
d exp(2iωdt )

ω2
0 − 4ω2

d + 4i�ωd
. (B2)

Clearly they contribute to the signal observed at 2 fd . For close
to resonance driving, |ω0 − ωd | � ωd , the denominator in the
above expression becomes ≈ −3ω2

0.
For our experiment we find λ = 5.88×10−6 s2/m.

Figure 9 plots the theoretical contribution of Eq. (B2) to the
signal at 2 fd in comparison to the experimentally determined
amplitudes of the fundamental mode M and the overtone
signal O. For example, for a drive with Vd = 100 mV, we find
a contribution which is more than two orders of magnitude
smaller than the measured signal at 2 fd , suggesting only a
minor role of the mechanism described by Eq. (B2).

The force from modulating the capacitance by the vi-
brations of the nanobeam also contains the parametric
driving term λ′qFd cos ωdt . This term comes from the
derivative ∂2C/∂q2 evaluated at the equilibrium position of
the nanobeam. Because of this term, the mode vibrations
q(1)(t ) = A cos(ωdt + ϕ) lead to vibrations at twice the drive
frequency, with the displacement of the form

q(2)
λ′ (t ) = 1

2
Re

λ′AFd exp(2iωdt + ϕ)

ω2
0 − 4ω2

d + 4i�ωd
. (B3)

Here, again, for resonant driving the denominator becomes
≈ −3ω2

0.

b. Resonant excitation, ωd ≈ ω0/2

The vibrations at 2ωd can be excited resonantly (see
Fig. 6). This is a mechanical analog of the resonant second
harmonic generation in nonlinear optics. It occurs if the mode
lacks inversion symmetry and is driven close to a half of its
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FIG. 9. Influence of the nonlinear coupling to the driving force
on the signal at 2 fd . The green line shows the amplitude of vibrations
at 2 fd , which result from the nonlinear component of the drive and
are described by Eq. (B2). The black and dashed blue lines are
taken from Fig. 4 and show, respectively, the measured amplitudes
of the fundamental mode M and the signal at 2 fd (the amplitude
of the signal at 2 fd has been rescaled to account for the different
displacement-to-voltage conversion factor at this frequency). The
results demonstrate a negligible influence of nonlinear driving.

eigenfrequency, i.e., |2ωd − ω0| � ω0. The cubic nonlinear-
ity of the potential of the mode M contributes to this resonant
excitation, as described in Sec. V. The mechanisms of nonlin-
ear driving discussed in this Appendix contribute to the effect
as well. We now consider these latter contributions. They are
additive and therefore can be analyzed separately.

The effect of the direct nonlinear drive is described by
Eq. (B2) with ωd close to ω0/2. Therefore the denominator in
Eq. (B2) is small, a signature of the resonant second-harmonic
generation. In addition, forced vibrations at the angular fre-
quency ωd also resonantly excite vibrations at 2ωd ≈ ω0 via
the nonlinear (parametric) coupling to the force. This contri-
bution is described by Eq. (B3) in which one should set A =
Fd/(ω2

0 − ω2
d ) and ϕ = 0. Again, the denominator in Eq. (B3)

becomes resonantly large for ωd close to ω0/2. However, if the
effect of nonlinear driving is small for the driving at frequency
≈ ω0, it is expected to be small for the driving at frequency
ω0/2.

Importantly, the mode M2 is no longer close to resonance
with the overtone of the drive frequency. Given the weakness
of the coupling to this mode, excitation of its vibrations can
be disregarded. We expect therefore that, in our system, the
resonant second harmonic generation is due to the internal
cubic nonlinearity of the mode potential U (q).

APPENDIX C: DC VOLTAGE DEPENDENCE
OF NONLINEARITY PARAMETERS β AND γ

To explore in more detail how the broken symmetry arises
for the dielectrically controlled nanostring, we performed a se-
ries of measurements at different DC voltages VDC between 0
and 10 V. These measurements enable finding the DC voltage

FIG. 10. DC voltage dependence of the nonlinearity parameters.
Both β (V ) and γ

(V )
eff are plotted against the square of the applied DC

voltage. The sign of γ
(V )

eff changes from positive to negative near
VDC = 6 V. The cubic nonlinearity β (V ) has been determined using
the procedure described in Sec. V. It is only accessible in the region
of not too small |γ (V )

eff |.

dependence of the two nonlinearity parameters β (V ) and γ
(V )

eff .
The result of the experiment is shown in Fig. 10. A quadratic
dependence of the both parameters on VDC is observed. This
confirms the dielectric nature of the nonlinearities, which is
apparent from the cubic and quartic terms in the expansion
of the electrostatic energy of the capacitor formed by the two
electrodes 1

2C(q)V 2 in the mode displacement. The effective
Duffing parameter γ

(V )
eff changes sign near a DC voltage of 6 V,

indicating the transition from stiffening to softening behavior.
The value of β (V ) is only accessible in the region where γ

(V )
eff

is not very small, as close to γ
(V )

eff = 0 we observe the zero-
dispersion regime [27,28,32] where we cannot extract β (V )

using the procedure described in the main text.
It is seen from Fig. 10 that the change of β in the con-

sidered range of the DC voltage is only ∼10%, whereas
γeff changes very significantly. The small change of β is
qualitatively consistent with the relative change of the eigen-
frequency by � 5×10−3 that we have observed in the same
range. The strong relative change of γeff can be a result of the
small value of this parameter as it goes through zero with the
varying VDC in the considered range.

APPENDIX D: THEORY OF FORCED VIBRATIONS
IN TERMS OF THE ACTION-ANGLE VARIABLES

Here we use the action and angle variables I and φ to
calculate the amplitude of the stable vibrational state of a
resonantly driven mode with cubic and quartic nonlinearity
with the potential energy U (q). Since the decay rate of the
mode is small, I and φ − ωdt remain almost constant over
the drive period 2π/ωd . Therefore the right-hand sides of
Eq. (8) for İ and φ̇ can be averaged over the vibration period.
Formally, we can define the averaging as

L(I, φ) = (2π )−1
∫ 2π

0
dφ L(I, φ).
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Averaging of the terms that contain the time-dependent factor
cos(ωdt ) can be done by writing this factor as cos[(ωdt −
φ) + φ] and averaging over φ for a given ωdt − φ. In the
stationary state φ = ωdt + ϕst.

Taking into account the explicit form of the function R in
Eq. (9), we write this equation for the stationary values I =
Ist, φ − ωdt = ϕst as

−2�Ist − 1

2
A1(Ist )Fd sin ϕst = 0,

ω(Ist ) − 1

2

∂A1(I )

∂I

∣∣∣∣
Ist

Fd cos ϕst = ωd , (D1)

where A1(I ) is the amplitude of the term in the periodic
function q(I, φ) that oscillates like cos φ, i.e., the term q(1) =
A1(I ) cos φ in the expansion q = ∑

n An(I ) cos nφ. It follows
from Eq. (D1) that

(
4�Ist

A1(Ist )Fd

)2

+ 4

[
ω(Ist ) − ωd
∂A1(I )

∂I

∣∣
Ist

Fd

]2

= 1. (D2)

We have used that p ∂I q = 0, as well as p q = 0, since the
function q(I, φ) is even in φ, whereas the function p(I, φ) is
odd.

The action I is a function of energy, I ≡ I (E ). This func-
tion is monotonic and invertible. Therefore we can rewrite
Eq. (D2) as the equation for the energy of the stable state.
We express the stationary equation as a function of the energy

(
4�IE (Est )

A1E (Est )Fd

)2

+
(

ωE (Est ) − ωd

1
2ωE (Est )

∂A1E (E )
∂E

∣∣
Est

Fd

)2

= 1, (D3)

Here we use the subscript E to indicate that the corresponding
parameter is considered as a function of energy E , not action
I .

The turning points qL and qR for the motion in the single-
well potential U (q) with energy E are given by the two real
roots of the quartic equation

E = 1
2ω2

0q2
ν + 1

3βq3
ν + 1

4γ q4
ν, ν = L, R, (D4)

with qR > 0 and qL < 0. The other two complex conjugate
roots are denoted as q3 ± iq4. Then we introduce the two
coefficients Bν with ν = L, R given by

Bν = |qν − q3 − iq4| (D5)

and the parameter

k =
√

(qR − qL )2 − (BR − BL )2

4BRBL
. (D6)

Then the frequency ωE (E ) is given by

ωE (E ) = π

2

√
γ

2

√
BLBR

K
, (D7)

with the complete elliptic integral of the first kind K = K[k].
The exact solution of the motion at given energy E reads

qE (τ ) = BRqL − BLqR

BR − BL
+ 2BRBL

(BR − BL )2

qR − qL
BR+BL
BR−BL

+ cnk (τ )
, (D8)

FIG. 11. Amplitudes AnE of the overtones at frequencies nωE

with n = 2, 3, 4. The amplitudes are calculated from Eq. (D9) by
varying the energy E and, respectively, the amplitude A1E of the
main tone. For convenience of the comparison with the experiment,
the amplitudes are scaled by the drive-dependent factor, but in fact
they are calculated from Eqs. (D8) and (D9) in the absence of
driving. Shown are the amplitudes A2E = 2|a2| (blue), A3E = 2|a3|
(mid blue), and A4E = 2|a4| (dark blue).

with the scaled time τ = √
(γ /2)BLBR t and the Jacobi elliptic

cosine function cn(τ ). The Fourier components of the motions
are

an = 1

4K

∫ 4K

0
dτ qE (τ ) e−in π

2K τ . (D9)

An example is shown in Fig. 11 in which we vary the
energy E in a given range and plot parametrically the compo-
nents A2E (E ) = 2|a2|, A3E (E ) = 2|a3|, and A4E (E ) = 2|a4|
as functions of the component A1E (E ) = 2|a1|. We recall that,
in the stationary state A1E gives the amplitude of the signal at
the drive frequency ωd , whereas A2E gives the amplitude of
the signal at frequency 2ωd .

The action as a function of the energy is

IE (E ) = 1

2π

∮
dq

√
2[E − U (q)] = ω(E )

2π

∫ 2π

0
dϕ

(
dq

dϕ

)2

(D10)

= 2 ωE (E )
∞∑

n=1

n2|an|2. (D11)

The explicit expression of the Fourier components an were
calculated in [33] for the potential UB(q) of Eq. (10).

For small energies counted off from the minimum of the
potential one can approximate IE (E ) ≈ E/ω0 and A1E (E ) ≈√

2E/ω2
0 and expand the frequency ωE to the second order in

E . Such an approximation works in the case |γeff | � γ , where
the linear in E term in ωE is comparatively small. One then
obtains from Eq. (D3) an explicit equation for the vibration
amplitude in the stationary state A ≡ A1E (Est ),

A2

[
�2 +

(
ω0 + 3γeff

8ω0
A2 + χγ 2

ω3
0

A4 − ωd

)2
]

≈ F 2
d

4ω2
0

, (D12)
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with the parameter

χ = 69

256

[
102

23

(
1 − γeff

γ

)
− 171

115

(
1 − γeff

γ

)2

− 1

]
. (D13)

Within the range of the applied force and detuning, and for
the parameters of the system studied in the experiments the

solutions of Eq. (D12) accurately reproduce the solution of
the full equation (D3).

We note that the standard RWA breaks down as soon as the
term ∝ A4 in the brackets in Eq. (D12) becomes relevant. This
occurs when A2 ∼ |γeff |ω2

0/γ
2 as stated in the main text. In

the range of parameters studied in the experiment, Eq. (D12)
can have one or three real solutions, as is the case also for
the standard Duffing equation. However, the dependence of
these solutions on the frequency of the drive is significantly
different from that for the Duffing model.
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