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Electrons on the helium surface display sharp resonant absorption lines related to the transitions between
the subbands of quantized motion transverse to the surface. A magnetic field parallel to the surface strongly
affects the absorption spectrum. We show that the effect results from admixing the intersubband transitions
to the in-plane quantum dynamics of the strongly correlated electron liquid or a Wigner crystal. This is
similar to the admixing of electron transitions in color centers to phonons. The spectrum permits a direct
characterization of the many-electron dynamics and also enables testing the theory of color centers in a
system with controllable coupling.
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Electrons above the surface of liquid helium are local-
ized in a one-dimensional potential well, which is formed
by the high repulsive barrier at the surface and the image
potential. The energy levels in the well are quantized.
The electrons occupy the lowest level forming a two-
dimensional system [1,2]. The spectroscopic observation of
transitions between the quantized energy levels [3] was a
direct proof of the picture of the electron confinement and
the overall nature of the potential. Since then much work
has been done on the exact positions and the widths of the
spectral lines and their dependence on the temperature and
the electron density [4–12].
The electron system on helium is free from static

disorder. It is also weakly coupled to the vibrational
excitations in helium, ripplons and phonons. The observed
spectral lines are narrow, with width as small as ∼2 MHz
for T ¼ 0.3 K [8]. In the nomenclature of the solid-state
spectroscopy they correspond to zero-phonon lines. Such
lines in the spectra of point defects result from transitions
between the defect energy levels with no energy transfer
to or from phonons [13]. The physics of point defects and
the defect spectroscopy have been the focus of attention
recently in the context of quantum computing and quantum
sensing [14]. On their side, electrons on helium themselves
have been also considered as a viable candidate system for
a scalable quantum computer [15–19].

One of the major attractive features of electrons on
helium is the possibility to study many-electron effects. The
electron-electron interaction is strong, the ratio of its energy
to the electron kinetic energy is Γ ¼ e2ðπnsÞ1=2=kBT > 30

for the electron density ns ≥ 107 cm−2 and T ≤ 0.3 K. The
electrons form a Wigner crystal [20,21] or a classical
or quantum nondegenerate liquid with unusual transport
properties, cf. Refs. [22–29] and references therein.
Spectroscopy would be expected to provide a most detailed

insight into the correlated many-electron dynamics.
However, the only spectral effect of the electron-electron
interaction studied so far is a small density-dependent
line shift [5,10].
In this Letter we show that, by applying a magnetic field

along the helium surface, one can use spectroscopy to study
quantum dynamics of a nondegenerate electron liquid and a
Wigner solid. Importantly, in the cases where this dynamics
has been already understood, the system can serve as a
quantum simulator of color center spectroscopy, with the
unique opportunity of controlling the strength of the
coupling of the electron transition and many-body excita-
tions in the system. The importance of such simulations
follows from the broad applications of color centers,
including the color centers in diamond such as NV centers,
cf. Refs. [14,30,31].
The change of the interband absorption spectrum by an

in-plane magnetic field has been studied for degenerate
quasi-two-dimensional electron systems in semiconduc-
tors, see Ref. [32] and references therein. The results were
interpreted in the mean-field approximation. The field-
induced high-temperature spectral broadening was also
reported for electrons on helium [33,34]. Here we show
that, for electrons on helium in the quantum regime, the
spectrum is qualitatively different from what the mean-field
theory predicts. It has to be analyzed using an approach
that explicitly takes into account the interplay of the
strong correlations and fluctuations in the quantum electron
system.
The effect of the parallel magnetic field on the electron

spectrum and the similarity with the physics of color
centers can be understood from Fig. 1. We choose the z
axis as the direction of quantized motion normal to the
surface. In different quantized states of the out-of-plane
motion jμi the electron is at a different average distance
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from the surface. If a magnetic field Bk is applied parallel to
the surface, an interstate transition leads to the electron shift
transverse to Bk. Therefore the electron in-plane momen-
tum is changed by the Lorentz force in the ẑ ×Bk direction.
For the transition j1i → j2i from the ground to the first
excited state the change ΔpB is

ΔpB ¼ mωkΔz; Δz ¼ z̄22 − z̄11;

ωk ¼ eBk=mc; z̄μμ ¼ hμjzjμi ðμ ¼ 1; 2Þ: ð1Þ

Thus the minima of the energy bands ε1ðpÞ and ε2ðpÞ of the
in-plane motion (p is the in-plane momentum) are shifted
with respect to each other. We assume mω2

kΔ
2
z ≪ ε21≡

min½ε2ðpÞ − ε1ðpÞ�.
The right panel of Fig. 1 has the familiar form of the

sketch of the energy of a point defect coupled to a
vibrational mode in a crystal [13]. In the case of a defect,
the horizontal axis is the coordinate of the vibrational
mode, and the parabolas show the potential energy of
the mode in the two electron states with the energy
difference ε21. The zero-phonon spectral line corresponds
to a transition at frequency ε21=ℏ between the minima of
the parabolas. The vertical transition from the minimum of
the lower parabola (the Franck-Condon transition) occurs at
a higher energy. Usually the electron is coupled to many
modes (phonons), which significantly complicates the
analysis, as has been known since the work of Pekar
[35] and Huang and Rhys [36].
In distinction from a defect, the parabolas in Fig. 1 show

the single-electron energy as a function of the in-plane
momentum. In a strongly correlated electron system the
momentum can be transferred to other electrons. Such
recoil reminds us of the recoil from the absorption of a

gamma-quantum by an impurity in a crystal, which under-
lies the Mössbauer effect. By analogy with the Mössbauer
effect and the spectra of color centers, the absorption
spectrum of electrons on helium should strongly depend
on the in-plane many-electron dynamics.
To analyze the spectrum in the presence of strong electron

correlations, one should start with the full Hamiltonian of the
system. It is a sum of the termsHk; H⊥, andHi that describe,
respectively, the in-plane motion, the motion normal to the
helium surface in the image potential [1,2], and the coupling
of these two motions by the in-plane field Bk ≡ Bx. In the
presence of a magnetic field B⊥ ≡ Bz normal to the surface

H ¼ Hk þH⊥ þHi;

Hk ¼
X

n

π2
n

2m
þ 1

2

X

n;m

0 e2

jrn − rmj
;

H⊥ ¼
X

n

�
p2
nz

2m
þ UðznÞ

�
; Hi ¼

X

n

ωkπnyðzn − z̄11Þ:

Here n enumerates electrons, rn ≡ ðxn; ynÞ and πn ¼
−iℏ∇n þ ðe=cÞA⊥ðrnÞ are the in-plane electron coordinate
and kinematic momentum [A⊥ðrÞ is the vector-potential
of the field B⊥ ≡ Bz], whereas UðzÞ is the confining
potential. The leading-order part of Hi is diagonal with
respect to the states jμin of the out-of-plane motion, Hi ¼
ωkΔz

P
n πnyj2in nh2j, see Supplemental Material [37].

The frequency ε21=ℏ of the interstate transition largely
exceeds all characteristic frequencies of the in-plane
electron motion. One therefore can think of the adiabatic
approximation in which the transition j1i → j2i occurs
“instantaneously” for a given in-plane many-electron state.
The transition frequency depends on this state. It is this
dependence that determines the shape of the spectrum.
Formally, the absorption of microwaves polarized in the

z direction is determined by the real part of the conductivity
σzzðωÞ. For a nondegenerate electron system it is given by
the sum of the contributions from individual electrons, i.e.,
by the conductivity of an nth electron multiplied by the in-
plane electron density ns. From the Kubo formula

ReσzzðωÞ ¼ CσRe
Z

∞

0

dteiωth½znðtÞ; znð0Þ�i: ð2Þ

Here, Cσ ¼ e2nsω=ℏ ≈ e2nsε21=ℏ2 in the considered range
of resonant absorption.
The evaluation of the conductivity depends on whether

the electron system is a liquid or a crystal. For a Wigner
crystal the operators πn are linear combinations of the
creation and annihilation operators of the Wigner crystal
phonons, making the form of the coupling Hi and the
problem as a whole largely the same as that of the spectra of
color centers [37]. However, in our experiment the electron
system is a strongly correlated liquid in a strong transverse

FIG. 1. Left: The many-electron system on helium in a
magnetic field with components parallel (Bk ≡ Bx) and
perpendicular (B⊥ ≡ Bz) to the helium surface. Right: The
energy spectrum of an electron in the two lowest bands of
motion normal to the surface. The energy difference between the
bands ε21 is the distance between the levels of the quantized
motion along the z axis. The single-electron kinetic energy of
motion along the surface is quadratic in the in-plane momentum p
for B⊥ ¼ 0. The field B⊥ transforms the spectrum into the
Landau levels, which are broadened by the electron-electron
interaction. The field Bk shifts the bands of the in-plane motion
by ΔpB, see Eq. (1).
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magnetic field B⊥. In such a field the in-plane electron
motion is a superposition of a fast quantized cyclotron
motion at frequencies ∼ωc ¼ eB⊥=mc and a slow
semiclassical drift of the guiding centers of the cyclotron
orbits. The drift comes from the fluctuational electric
field caused by the electron density fluctuations. The field
on an nth electron is En ¼ −e

P0
mðrn − rmÞ=jrn − rmj3.

It varies on the timescale ωc=ω2
p ≫ ω−1

c , where ωp ¼
ð2πe2n3=2s =mÞ1=2 [22].
The timescale separation allows describing the peak of

the absorption spectrum of the electron liquid in an explicit
form [37]. It is convenient to single out in the integrand in
Eq. (2) the factor that oscillates at the resonant frequency,
h½znðtÞ; znð0Þ�i ¼ jh1jzj2ij2 expð−iε21t=ℏÞQðtÞ. The func-
tion QðtÞ describes the effect of the in-plane many-electron
dynamics,

QðtÞ ¼ eiδkt exp½−ðγ2=2ÞwðtÞ�;
δk ¼ mω2

kΔ
2
z=2ℏ; γ2 ¼ δkω2

pkBT=2πℏω2
c;

wðtÞ ¼ ðn3=2s kBTÞ−1
ZZ

t

0

dt1dt2hEnðt1ÞEnðt2Þi: ð3Þ

We assumed Gaussian distribution of the fluctuational
field En. In a broad parameter range relevant for the
experiments on electrons on helium hE2

ni≈FðΓÞn3=2s kBT,
where FðΓÞ ≃ 9.
If the coupling to the in-plane fluctuations is strong,

γ ≫ ω2
p=ωc, from Eq. (3) the main part of the absorption

spectrum (2) is a Gaussian peak, reminiscent of the
spectrum of color center. The typical width of the peak
in the frequency units is γFðΓÞ1=2.
The absorption spectrum also has an analog of the zero-

phonon line. It is described by the long-time behavior
of wðtÞ and dominates the spectrum for small Bk. In the
electron liquid the line is Lorentzian with a half-width
which, unexpectedly, is determined by the self-diffusion
and is equal to mδkD=2, where D is the self-diffusion
coefficient [37]. One can switch from a Lorentzian to a
Gaussian spectrum by increasing the field Bk.
In the experiment, the absorption spectrum is measured

by varying the electric field Ez applied perpendicular to the
helium surface, using that the level spacing ε21 linearly
depends on Ez within the linewidth. In the units of Ez, the
typical width of the Gaussian peak is

δEz ¼
Bk

B⊥
ffiffiffi
2

p ½kBTn3=2s FðΓÞ�1=2: ð4Þ

All parameters in Eq. (4) can be controlled in the experi-
ment. This enables testing the theoretical prediction with
high accuracy.
We measured the change of the low-frequency

helium cell admittance Y due to absorption of microwave

radiation, as explained in the Supplemental Material [37].
Such photoassisted transport spectroscopy provides a
sensitive way to measuring resonant microwave absorption
[10]. The method has been used to study the rich out-of-
equilibrium physics and a variety of nontrivial nonlinear
effects associated with moderately strong resonant micro-
wave excitation of the electron system [10,12,27,28]. Here
we focus on the linear response. The microwave power was
attenuated down to μW levels. The experimental technique
used here is very close to [12], however, improvements
were made to work at very low microwave power and to
ensure that the helium filling level in the sample cell was
close to 50% to provide a good compensation between the
electric field created by the top and bottom image charges.
These steps are described in detail in the Supplemental
Material [37].
The spectra of the resonant j1i → j2i photoexcitation are

shown in Fig. 2. For Bk ≳ 0.4 T, where the strong-coupling
condition holds, the observed shape of the spectra is very
well described by a Gaussian fit (dashed lines) with the
variance δEz given by Eq. (4), with no fitting parameters.
The overall area of the spectral peaks is determined by the
photoassisted transport response of electrons on helium,
which depends on Bk; the discussion of this dependence is
beyond the scope of this Letter.
In Fig. 3 we show the linewidth δEz as a function of Bk

for several refrigerator temperatures. The observed linear
dependence quantitatively agrees with Eq. (4) in the
strong-coupling regime, which corresponds to BkT1=2 ≳
0.15 T × K1=2, for the used ns and B⊥. The linewidth
at Bk ¼ 0 is attributed to residual inhomogeneous
broadening in our system. The linear fits to the data at
different temperatures all intersect near Bk ¼ 0, supporting
this interpretation. The inset shows the ratio δEz=Bk
as a function of the square root of the temperature.
The black line depicts this ratio as given by Eq. (4)
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FIG. 2. The spectra of the relative microwave-induced change
of the low-frequency admittance Y for different Bk ≡ Bx. The
data refer to the microwave frequency f ¼ 150 GHz, T ¼ 0.2 K,
B⊥ ≡ Bz ¼ 0.5 T, and ns ¼ 21.5 × 106 cm−2. The ac bias is
30 mV. The dashed lines show Gaussian fit to the data with the
variance δE2

z given by Eq. (4).
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with no adjustable parameters [Eq. (4) holds for
T1=2 < ðℏωc=kBÞ1=2 ≈ 0.6 K1=2].
To further check Eq. (4) we investigated the density

dependence of the linewidth for different magnetic fields
Bk ≡ Bx and B⊥ ≡ Bz. In order to reduce the averaging
time and increase the sensitivity for small ns we used a
stronger microwave power, in the 100 μW range. This
resulted in an additional spectral broadening, which we
attribute to an effective electron temperature Te ¼ 0.6 K
(the refrigerator temperature is 0.3 K; the dependence of the
linewidth on the microwave power is shown in the inset in
Fig. 4). With this assumption the data are in full agreement
with Eq. (4). As shown in Fig. 4, ðδEzÞ2 ∝ n3=2s .

By rescaling the linewidth, we see that the results for
different Bk and B⊥ collapse onto the same curve.
The many-electron theory of the interband absorption

spectra developed in this Letter and the experimental
observations are in full quantitative agreement, with no
adjustable parameters. In contrast to the previous work on
the electron absorption spectra, the theory explicitly takes
into account strong electron correlations. The experimental
data were obtained by extending the measurements to low
microwave power, which made it possible to investigate the
spectra in the linear-response regime.
The experimental data provide the first direct measure-

ment of the fluctuational electric field which an electron is
experiencing in a nondegenerate electron liquid and which,
as we show, determines the shape of the spectrum. The
results refer to a broad range of the electron densities,
temperature, and the coupling strength of the in-plane and
out-of-plane motions, where the in-plane motion is quan-
tized by the magnetic field. Such quantization is advanta-
geous for revealing nontrivial aspects of the many-electron
dynamics in a strongly correlated two-dimensional system.
Our results demonstrate that, by applying an in-plane

magnetic field, one can directly study intimate features of
the quantum physics of an electron liquid and a Wigner
crystal. The regimes other than the one explored here
experimentally can be also investigated with the developed
technique. Those include the regime of Wigner crystal-
lization, in which case the closed-form expression for the
spectrum is obtained. Self-diffusion in the electron liquid,
which is hard to characterize otherwise, can be also
explored. Importantly, the results demonstrate that elec-
trons on helium can be used as a test bed for the quantum
theory of the effect of the electron-phonon coupling on the
optical spectra of color centers. The system provides a
unique setting where both the effective coupling strength
and the spectrum of elementary excitations coupled to the
electron transition can be varied in situ by varying the in-
plane and out-of-plane magnetic fields.
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Supplemental Material for the paper
Many-electron system on helium and color center spectroscopy

by A. Chepelianskii, D. Konstantinov, and M. I. Dykman

I. MANY-ELECTRON THEORY OF THE
ABSORPTION SPECTRUM

A. The Hamiltonian

We recall for completeness that we consider the ab-
sorption spectrum due to transitions between the states
|1〉 and |2〉 of the out-of-plane electron motion and the
effect on this motion of the magnetic field B‖ parallel to
the helium surface. In the presence of the in-plane field
B‖ ≡ Bx and a magnetic field B⊥ ≡ Bz normal to the
surface, the Hamiltonian of the many-electron system is

H = H‖ +H⊥ +Hi, H‖ =
∑
n

π2
n

2m
+

1

2

∑
n,m

′ e2

|rn − rm|
,

H⊥ =
∑
n

[
p2nz
2m

+ U(zn)

]
, Hi =

∑
n

ω‖πny(zn − z̄11).

(1)

Here n enumerates electrons, rn ≡ (xn, yn) and πn =
−i~∇n + (e/c)A⊥(rn) are the in-plane electron coor-
dinate and kinematic momentum [A⊥(r) is the vector-
potential of the field B⊥ ≡ Bz] [1]. The coordinate z is
normal to the helium surface and U(z) is the confining
potential. The states |µ〉 (with µ = 1, 2) are the quan-
tized states of motion in this potential, and in Eq. (1) we
use notations

ω‖ = eB‖/mc, z̄µµ = 〈µ| z |µ〉 .

The matrix elements of the normal coordinate zn are the
same for all electrons; therefore we skip the subscript n in
the definition of z̄µµ as well as in the off-diagonal matrix
elements 〈µ| z |µ′〉 below.

The electron confinement in the z-direction is deter-
mined by a (practically) infinite barrier at the helium
surface at z = 0 and the attractive potential for z > 0
[2, 3]. The potential U(z) for z > 0 is formed by the im-
age force and the electric field Ez normal to the surface,
which is applied to further confine the electrons. In the
presence of the magnetic field B‖ the potential acquires

the term mω2
‖(z − z̄11)2/2. This term leads to a com-

paratively small change of the distance ε21 between the
energy levels of the out-of-plane motion,

ε21 → ε21+(mω2
‖/2)[〈2| z2 |2〉−〈1| z2 |1〉−2z̄11(z̄22−z̄11)].

In Eq. (1) we have disregarded the part of Hi that is
non-diagonal with respect to the states |µ〉n of individual
electrons. This part can be treated by the perturbation

theory for the considered low temperatures, kBT � ε21.
To the leading order, it causes a shift of the Landau lev-
els of the in-plane motion in the field B⊥ normal to the
surface. In the interesting case where ε21 � ~ωc (here
ωc = eB⊥/mc) this shift has an opposite sign for the
Landau levels in the states |1〉 and |2〉. For the kth Lan-
dau level (k = 0, 1, . . .) in the out-of-plane state |1〉 it is
≈ −(~ωc/2ε21)mω2

‖(2k + 1)| 〈1| z |2〉 |2. The analysis can

be extended to the case where the ratio ~ωc/ε21 is not
small.

We have also omitted in REq. (1) the out-of-plane com-
ponent of the electron-electron interaction. It makes ε21
weakly density-dependent [4, 5]. The corresponding shift
of ε21 is ∼ mω2

p(z̄22 − z̄11)2. The full expression is given
in [5].

B. The adiabatic approximation

The first step toward calculating the absorption spec-
trum at frequency ω ∼ ε21/~ is to note that this fre-
quency largely exceeds all characteristic frequencies of
the in-plane electron motion. Therefore one can think
of the adiabatic approximation in which a transition be-
tween the states |1〉 and |2〉 occurs “instantaneously” for
a given in-plane many-electron state. The transition fre-
quency depends on this state, and it is this dependence
that determines the shape of the spectrum.

Formally, the shape of the spectrum of absorption of
radiation polarized in the z-direction is given by the
Fourier transform of the commutator 〈[zn(t), zn(0)]〉 at
frequency ω ≈ ε21/~,

Reσzz(ω) ∝ Re

∫ ∞
0

dteiωt〈[zn(t), zn(0)]〉.

As indicated in the main text, this immediately follows
from the standard Kubo formula. To describe the absorp-
tion peak, we need to single out in the above commutator
the resonant term ∝ exp(−iε21t/~). This can be conve-
niently done by switching to the interaction representa-
tion with the operator Uint(t) = exp[−i(H‖+H⊥)t/~]. In
this representation the corresponding term in the com-
mutator takes the form

〈[zn(t), zn(0)]〉 =
∣∣〈1| z |2〉∣∣2 exp(−iε21t/~)Q(t),

Q(t) =

〈
Tτ exp

[
−i(ω‖∆z/~)

∫ t

0

dτπny(τ)

]〉
. (2)

We assumed here that the electrons are in the ground
state of the out-of-plane motion, exp(−ε21/kBT ) � 1.
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Therefore the averaging 〈·〉 is the thermal averaging over
the in-plane many-electron states; Tτ is the time-ordering
operator.

The Fourier transform of function Q(t) at frequency
ω − ε21/~ gives the shape of the absorption spectrum.
As seen from Eq. (2), the effect of the in-plane motion
on the spectrum is controlled by the magnetic field B‖
and the parameter

∆z = z̄22 − z̄11, (3)

which gives the change of the mean distance of the elec-
tron from the helium surface in the excited and ground
states of the out-of-plane motion. We note that Q(t) is
independent of the electron number n, it is the same for
all electrons.

We note also that we have not taken into account the
fact that the lifetime of the electrons in the state |2〉
is finite. Therefore for B‖ = 0, where Q(t) = 1, the
real part of the Fourier transform of the commutator (2)
becomes ∝ δ[ω − ε21/~], i.e., the absorption peak is a
δ-function at the transition frequency.

C. Slow variables in the electron liquid in a strong
magnetic field

The calculation of Q(t) is done differently for an elec-
tron liquid and a Wigner solid, with the calculation for
a Wigner solid being simpler, see Sec. I E. In the both
cases the result depends on the interrelation between the
frequency ω‖, the frequencies that determine the electron
dynamics

ωp = (2πe2n3/2s /m)1/2, ωc = eB⊥/mc, (4)

and the temperature. Here ns is the electron density and
ωc is the cyclotron frequency. The frequency ωp is the
characteristic short-wavelength plasma frequency of the
2D electron system in the absence of a magnetic field;
it is obtained from the standard expression for the long-
wavelength plasma frequency as a function of the in-plane
wave number (cf. [2]) by setting this wave number equal

to n
1/2
s . This is the analog of the Debye frequency of

the Wigner crystal in the absence of a magnetic field.
The experimental results in the paper refer to the case

where the electrons form a liquid and this liquid is placed
into a strong a strong magnetic field B⊥, where the cy-
clotron frequency ωc exceeds ωp. An important frequency
in this case is ω2

p/ωc. This is the limiting frequency of
the lower branch of phonons in the Wigner crystal in a
strong field B⊥ [6]. In the case of the electron liquid, this
frequency gives the reciprocal time scale for the motion
of the guiding centers of the cyclotron orbits, as shown
below. We will concentrate on calculating Q(t) for the
case that was studied in the experiment in most detail,

ωc & kBT/~� ω2
p/ωc. (5)

where the electrons are mostly in the ground Landau
level, which is smeared by the electron-electron interac-
tion, and the motion of the guiding centers of the cy-
clotron orbits is semiclassical.

1. Dynamics of the guiding center

To calculate the function Q(t) it is necessary to find
the time evolution of the operators of the kinematic mo-
mentum of an electron πn(t) in the interaction repre-
sentation. In the parameter range Eq. (5), it is conve-
nient to change to new variables from the in-plane coor-
dinate rn and kinematic momentum πn. These variables
are the fast oscillating momentum components πn± and
the slowly varying guiding center coordinates Rn±, which
commute with πn±,

πn± = (`/~
√

2)(πnx ∓ iπny), [πn−, πn′+] = δnn′ .
(6)

Here ` = (~c/eB⊥)1/2 is the quantum magnetic length
(we chose the sign of the magnetic field B⊥ ≡ Bz so that
eB⊥ > 0). The guiding center operators are

Rn± = xn ∓ iyn ± i`
√

2πn±, [Rn±, πn′±] = 0,

[Rn+, Rn′−] = 2`2δnn′. (7)

The underlying physical picture is that the guiding
centers of the electron cyclotron orbits fluctuate about
their quasiequilibrium position in the electron liquid
or equilibrium positions in the Wigner crystal. The
fluctuations are thermal, with the typical mean square
displacement ∼ kBT/mω

2
p. This estimate is obtained

by considering a displacement of an electron from its
(quasi)equilibrium position in the field of other electrons,
given that this displacement is small compared to the

inter-electron distance ∼ n
−1/2
s . Still the displacement

largely exceeds the quantum magnetic length ` in the pa-
rameter range (5). Therefore the dynamics of the guiding
centers in this range is semiclassical [7].

On the formal side, the electron kinetic energy
in terms of the operators πn± is

∑
n(π2

n/2m) →
~ωc

∑
n πn+πn−+ const. Operators πn± play the role of

the ladder operators with respect to the Landau energy
levels. The equation of motion for Rn± in the interaction

representation is Ṙn± = −(i/~)[Rn±, H‖] with H‖ given
by Eq. (1). As seen from Eq. (7), to the leading order in
`2ns this equation can be written as

Ṙn± = ∓icẼn±/B⊥, Ẽn± = −e
∑
m

′
Rnm±/|Rnm+|3,

Rnm± = Rn± −Rm±, Ẽn± ≡ (Ẽnx ∓ iẼny). (8)

Here we have used that the magnetic length ` is small
compared to the interelectron distance |rn − rm| ≈
|Rnm±|. If we disregard corrections ∼ `2ns, the field

Ẽn coincides with the field En used in the main text. In
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the approximation `2ns � 1 we have also disregarded
the non-commutativity of the position operators of the
guiding centers Rn+ and Rn−. This semiclassical approx-
imation breaks down for kBT < ~ω2

p/ωc. The analysis of
the low-temperature case can be done assuming that the
electrons form a Wigner crystal, see Sec. I E.

With the account taken of the relation |Rnm±| &

n
−1/2
s , one can see from Eq. (8) that the time scale on

which the guiding orbit centers Rn± are changing is given

by ωc/ω
2
p. The field Ẽn± varies on the same time scale.

To the first order in `n
1/2
s , the equation of motion for

the operators πn± in the interaction representation is

π̇n± ≡ −
i

~
[πn±, H0] = ±iωcπn± −

`

~
√

2
eEn±, (9)

En± ≈ Ẽn± ∓ i
e`√

2

∑
m

′
[
πnm±
|Rnm+|3

− 3
R2
nm±πnm∓

|Rnm+|5

]
,

where πnm± = πn± − πm±.
It is seen from Eq. (9) that the operators πn± oscillate

in time as exp(±iωct). The field Ẽn±, on the other hand,
varies on a much slower time scale ∼ (ω2

p/ωc)
−1 . For

ωc � ω2
p/ωc we can write the solution of Eq. (9) in the

adiabatic approximation as

πn±(t) ≈ π̃n±(t)e±iωct ∓ i e`

~ωc
√

2
Ẽn±(t) (10)

The time dependence of the operators π̃n± is deter-
mined, to the lowest order, by the first term in the
square bracket in the expression (9) for En±. To the ze-
roth order in the electron-electron interaction, this term
is oscillating as exp(±iωct), i.e., in the same way as
πn±, whereas the last term in the expression for En±
is counter-rotating, it oscillates as exp(∓iωct). As seen
from Eq. (9), π̃n± varies on the time scale (ω2

p/ωc)
−1 [7].

D. Averaging over fluctuations in the quantum
nondegenerate electron liquid

An important consequence of the results of the pre-
vious section is that in the considered parameter range
(5), the averaging over the quantum cyclotron motion
and over the positions of the guiding centers in Eq. (2)
can be done separately. The first averaging is essen-
tially the summation over the Landau levels, and for
exp(~ωc/kBT ) � 1 the major contribution to the av-
erage comes from the lowest Landau level. The second
averaging is the integration over the electron positions in
the electron liquid,

Q(t) ≈ I(1)(t)I(2)(t); I(1)(t) =

〈
Tτ exp

[
ω‖∆z

`
√

2

×
∫ t

0

dτ
(
π̃n+(τ)eiωcτ − π̃n−(τ)e−iωcτ

)]〉
,

I(2)(t) =

〈
Tτ exp

[
i
eω‖∆z

~ωc

∫ t

0

dτẼnx(τ)

]〉
. (11)

Function Q(t) should be found for t of the order of
the reciprocal width of the absorption spectrum. We will
assume that this width is much smaller than ωc. Respec-
tively, we are interested in the values of I(1,2) for ωct� 1.
To find I(1) in this range one can use the approximation
of non-intersecting diagrams. Odd-order terms in the se-
ries expansion of I(1)(t) in π̃n± vanish: they contain an
odd number of the operators π̃n±, and their diagonal ma-
trix element on the wave functions of the Landau levels
is zero. We can write the 2kth term in the expansion of
I(1)(t) as

I
(1)
k (t) =α2k

∫ t

t2

dt1f̂(t1)

∫ t

t3

dt2f̂(t2)

∫ t

0

dt3f̂(t3)...

×
∫ t2k−1

0

dt2kf̂(t2k), α = ω‖∆z/`
√

2,

f̂(t) = π̃n+e
iωct − π̃n−e−iωct (12)

Integration over dt1 gives four terms. The first two of
them oscillate as exp(±iωct) whereas the second two of

them oscillate as exp(±iωct2). When multiplied by f̂(t2),
the first two terms will be fast oscillating as exp[±iωc(t±
t2)]. Their integral over t2 will be ∝ ω−1c . In contrast,

the second two terms, when multiplied by f̂(t2), will lead
to the onset of smooth terms. Integrating them over t2
will give a factor ∝ t− t3 � ω−1c ,∫ t

t2

dt1f̂(t1)

∫ t

t3

dt2f̂(t2)

≈ i

ωc

∫ t

t3

dt2[π̃n−(t2), π̃n+(t2)] =
i

ωc
(t− t3).

Substituting this expression into Eq. (12), differentiat-
ing over t, and integrating the resulting chain of equations

for I
(1)
k (t), we obtain:

dI
(1)
k

dt
= (iα2/ωc)I

(1)
k−1, I

(1)
k = (iα2t/ωc)

k/k! (13)

This gives, to the leading order in α2,

I(1)(t) = exp(iδ‖t),

δ‖ = ω2
‖∆

2
z/2`

2ωc ≡ mω2
‖∆

2
z/2~. (14)

The term I(2)(t) can be calculated assuming that the
distribution of the fluctuational field in the electron liquid
is Gaussian. This assumption was used in the main text.
Numerical simulations [8] have shown that the single-
time distribution of the fluctuational field is indeed very
close to Gaussian except for very far tails. The Gaus-
sian distribution is to be expected, since the electron dy-
namics is primarily random harmonic vibrations about
a (quasi)equilibrium position in the electron liquid or a
Wigner crystal. This argument also suggests that the
probability density functional of the fluctuational field
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P(En) is Gaussian,

P = exp

[
−1

2

∫∫
dtdt′En(t)Λ̂(t− t′)En(t′)

]
(15)

where Λ̂(t) is the reciprocal correlation function of the
fluctuational field. By symmetry,
Lambdaxx = Λyy, whereas Λxy = Λyx = 0.

It is seen from Eqs. (11) and (15) that

I(2)(t) = exp[−(γ2/2)w(t)], γ2 = δ‖ω
2
pkBT/2π~ω2

c ,

w(t) = (n3/2s kBT )−1
∫∫ t

0

dt1 dt2 〈En(t1)En(t2)〉. (16)

Equations (14) and (16) give the correlation function
Q(t) in the explicit form, which coincides with Eq. (3)
of the main text.

The correlation function of the fluctuational field in
Eq. (16) can be written as∫∫ t

0

dt1dt2〈En(t1)En(t2)〉 ≈
∫∫ t

0

dt1dt2〈Ẽn(t1)Ẽn(t2)〉

= (B⊥/c)
2

∫∫ t

0

dt1dt2〈Ṙn(t1)Ṙn(t2)〉

= (B⊥/c)
2〈[Rn(t)−Rn(0)]2〉. (17)

This expression relates I(2)(t), and thus Q(t) to the mean
square displacement of a guiding center of the cyclotron
orbit, providing an intuitive insight into the nature of the
broadening of the absorption spectrum by the electron-
electron interaction.

In the strong-coupling limit, γ2 � 1, the function
I(2)(t) is fast decaying with time. For comparatively

short times we have 〈[Rn(t)−Rn(0)]2〉 ≈ 〈Ṙ2
n〉t2, that is,

the decay of I(2)(t) is Gaussian. Respectively, the peak in
the absorption spectrum is also Gaussian. When calcu-
lating the dependence of the position of the peak on the
in-plane magnetic field one has to take into account the
factor exp(iδ‖t) in the expression for I(1)(t) and also the

renormalization of ε21 due to the term mω2
‖(z−z̄11)2/2 in

the potential U(z). This gives for the resonant frequency

ωres ≈ ~−1ε21+~−1(mω2
‖/2)(〈2| z2 |2〉 − 〈1| z2 |1〉

− 〈2| z |2〉2 + 〈1| z |1〉2) (18)

On the time scale much longer than ωc/ω
2
p, if electrons

form a liquid, they are diffusing. Self-diffusion involves
correlated many-electron motion, as seen in the simula-
tions [9]. Therefore it is reasonable to assume that the
distribution of the diffusion trajectories is Gaussian. We
can then again do the averaging over the fluctuational
field in I(2)(t) assuming the field distribution to be Gaus-
sian. From Eq. (17), on a long time scale, the leading-
order term in the integral of the correlation function of
the fluctuational field is∫∫ t

0

dt1dt2〈En(t1)En(t2)〉 ≈ 2(B⊥/c)
2Dt (19)

where D is the self-diffusion coefficient. Equation(19)
was used in the main text to describe the long-time limit
of the correlator Q(t) and thus the many-electron analog
of the zero-phonon line in the electron liquid. As in the
case of color centers, this line has an exponentially small
intensity for strong coupling.

E. Wigner crystal

In the case of a Wigner crystal, we write the Hamilto-
nian H‖ as

H‖ = ~
∑
kν

ωkνa
†
kνakν . (20)

Here, k is the wave vector of a phonon of the crystal and

ν = 1, 2 is the phonon branch. Operators a†kν and akν are
the phonon creation and annihilation operators and ωkν

is the phonon frequency. The operator of the kinematic
momentum of an nth electron is

πn = −im
∑
kν

eikXnωkνAkνakν + H.c. (21)

where Xn is the lattice site position. The coefficients
Akν ∝ (nsS)−1/2 (S is the area of the system) give

the electron displacement in terms of akν , a
†
kν . For the

Wigner crystal in a strong magnetic field B⊥ they were
obtained in Ref. 6.

Substituting Eq. (21) into Eq. (2) for the correlator
Q(t) and calculating the trace over the phonons in a stan-
dard way, we obtain

Q(t) = exp
[
−(mω2

‖∆
2
z/~ωc)g(t)

]
,

g(t) =
1

2`2

∑
kν

|Akν |2 [i (sinωkνt− ωkνt)

+(2n̄kν + 1)(1− cosωkνt)] , (22)

where n̄kν ≡ n̄(ωkν) is the phonon Planck number,
n̄(ω) = [exp(~ω/kBT ) − 1]−1. Equation (22) is not lim-
ited to the case of a strong magnetic field B⊥. It also
applies for an arbitrary temperature as long as the elec-
trons form a Wigner crystal.

Before discussing other limiting cases we show that
Eq. (22) coincides with Eqs. (11), (14) and (16) in a
strong magnetic field B⊥, when ωc � ωp, and when
kBT � ~ω2

p/ωc [except that Eq. (22) does not describe
electron diffusion in the liquid phase]. We note first
that, for a strong field B⊥, the phonon spectrum of the
Wigner crystal consists of a high-frequency magnetoplas-
mon branch ν = 1 and a low-frequency branch ν = 2.
The widths of the both branches are ∼ ω2

p/ωc. The
branch ν = 1 is an analog of the optical phonon branch,
ωk ν=1 → ωc for k → 0, whereas ωk ν=2 ∝ k3/2 for k → 0.

The contribution of the branch ν = 1 to g(t) con-
sists of fast-oscillating terms ∝ exp(±iωct), which make
a small contribution to the smooth part of Q(t), and also
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of a non-oscillating term ∝ t. Using the results [6], one
can show that |Ak 1|2 ≈ `2/nsS, to the leading order in
ωp/ωc. Therefore the term ∝ t in g(t) is ≈ −iωct/2 and
its effect on Q(t) is described by the factor exp(iδ‖t); the
correction to δ‖ from the branch ν = 2 can be shown to

be ∝ ω2
p/ω

2
c � 1.

The branch ν = 2 corresponds to vibrations of the
electron guiding centers. For kBT � ~ω2

p/ωc these vi-
brations are semiclassical and are described by Eq. (8)
linearized in Rn − Xn. The mean-square electron dis-
placement is 〈(Rn−Xn)2〉 � `2, it is determined by the
branch ν = 2 if we neglect corrections ∼ `2. Writing

Rn −Xn =
∑
k

eikXnAk ν=2ak ν=2 + H.c.,

we obtain from Eq. (17)

∫∫ t

dt1dt2〈En(t1)En(t2)〉 ≈ (B⊥/c)
2

×
∑
k

|Ak ν=2|2(2n̄k ν=2 + 1)(1− cosωk ν=2t)

(strictly speaking, we should have replaced 2n̄k ν=2+1→
2kBT/~ωk ν=2). This expression has the same form as the
corresponding term in Eq. (22). It shows that, indeed,
Eq. (3) of the main text coincides with Eq. (22) where
electrons form a Wigner crystal.

A somewhat unexpected result follows from Eq. (22)
in the classical limit, kBT � ωkν . Using the sum rule∑

kν |Ak ν |2ωkν = ~/m we find that

g(t) ≈ (ωckBT/2~)t2, ωkνt� 1. (23)

Then from Eq. (22), Q(t) ≈ exp[−(mω2
‖∆

2
zkBTt

2/2~2]

and the spectrum σzz(ω) is Gaussian with typical width

γclassicG = (mω2
‖∆

2
zkBT/~2)1/2.

The expansion where we keep only the term ∝ t2 in g(t)
applies provided γclassicG � maxωkν .

Interestingly, the same result for the absorption spec-
trum follows from the general expression (3) of the main
text if one assumes that there is no electron-electron in-
teraction and no transverse magnetic field B⊥, so that
πny is independent of time and the momentum distribu-
tion is of the Maxwell-Boltzmann form. This corresponds
to the Doppler broadening of the absorption spectrum
due to the thermal distribution of the electron momen-
tum.

Even for a strong in-plane magnetic field B‖ and high
temperatures, where Eq. (23) applies, the many-electron
interaction leads to the onset of an analog of the zero-
phonon line. For a Wigner crystal this line has zero
width. This means that, for low temperatures, the
width of this line in the system of electrons on helium
is determined by the electron scattering by ripplons and
phonons; for T & 0.7 K it is determined by scattering by
the helium vapor atoms [2, 3].

F. Estimation of the factor F (Γ) for a Wigner
crystal

As indicated in the main text, the mean square fluc-
tuational field that drives an electron due to the density

fluctuations has the form 〈E2
n〉 = F (Γ)n

3/2
s kBT . The fac-

tor F (Γ) in this expression can be explicitly calculated if
the electrons form a Wigner crystal. It is given by the
lattice sum [7, 8]

F (Γ) = n−3/2s

∑
m

′
|Xm −X0|−3. (24)

For a hexagonal lattice the lattice sites are Xm =
(2ns)

−1/23−1/4[(2m1+m2)x̂+m2

√
3ŷ] with integer m1,2

and with x̂ and ŷ being orthogonal unit vectors. Then

F (Γ) = 23/233/4
∑
m1,m2

′
[(2m1 +m2)2 + 3m2

2]−3/2, (25)

where the sum over m1,m2 runs from −∞ to ∞ and the
prime indicates that m2

1 +m2
2 > 0.

In Refs. [7, 8] the lattice sum (25) was calculated by summing over a few terms with (2m1 + m2)2 + 3m2
2 ≤ K,

integrating over dm1dm2 for larger |m1,2|, and checking that the result weakly depended on K. A different way of
calculating the sum is to write it as

F (Γ) = 21/233/4
∑
m,n

′ 1 + (−1)m+n

(n2 + 3m2)3/2
= 2

123/4√
π

∫ ∞
0

∑
m,n

′
[1 + (−1)m+n]e−(n

2+3m2)x2

x2dx

= 2
123/4√
π

∫ ∞
0

[
θ3

(
0, e−x

2
)
θ3

(
0, e−3x

2
)

+ θ4

(
0, e−x

2
)
θ4

(
0, e−3x

2
)
− 2
]
x2dx. (26)

Here we are using the theta functions,

θ3(0, q) =

∞∑
n=−∞

qn
2

, θ4(0, q) =

∞∑
n=−∞

(−1)nqn
2

.
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The advantagious feature of Eq. (26) is that it expresses the lattice sum in terms of the standard functions. It gives
F (Γ) ≈ 8.893.

II. EXPERIMENTAL TECHNIQUES

The experimental method is similar to that previously
described [10], however two additional developments were
used for this experiment. A method to accurately check
the deviation of the helium level from the half filling po-
sition in the sample cell and an approach to measure at
very low excitation microwave powers. We will describe
these two aspects in more detail.

For transport experiments, electrons are trapped on
the liquid helium surface placed midway between two cir-
cular electrodes of a parallel-plate capacitor inside a leak-
tight experimental cell cooled below 1 K. The distance
between top and bottom electrodes was h = 2.6mm. An
electric field Ez normal to the surface from the voltages
on the electrodes confine electrons and provide shifts of
the quantized energies of the electron out-of-plane motion
due to the Stark effect. This allows us to bring the transi-
tion frequency f21 = ε21/h in resonance with the external
microwave radiation at a fixed frequency f = 150 GHz.

Resonant microwave absorption is observed via the
change in the electron magnetoresistance. This change
results from the irradiation-induced occupation of higher
Rydberg levels in which the matrix elements of the
electron-ripplon coupling are different. We employ the
capacitive-coupling (Sommer-Tanner [11]) method using
a pair of concentric electrodes which comprise the top
plate of the parallel-plate capacitor. An ac ( 1 kHz) volt-
age signal V is applied to one of the electrodes, thus
inducing an ac current I in the surface electrons which
are capacitively coupled to the other electrode. The in-
phase and quadrature components of the cell admittance
Y = I/V are measured using a lock-in amplifier.

A deviation of the free helium surface from the midway
position between top and bottom electrodes leads to a
shift of the transition frequency f21 proportional to the
electron density. This is due to the Stark shift from the
uncompensated attraction to top/bottom positive image
charges. Solving the plane capacitor electrostatics we
find that this additional perpendicular electric field Ez,He
is given by:

Ez,He = −ene
2ε0

(2x− 1) (27)

where x is the helium filling fraction (the complete ex-
pression can be found in [12]). The induced field Ez,He
cancels when the helium cell is half full, x = 1/2. Equa-
tion (27) thus provides a very accurate measurement of
the helium filling of the cell. For our experiments the con-
trol of the Helium filling level allowed us to minimize the
inhomgeneous broadening which may arise due to a com-
bination of the induced field effect [Eq. (27)] and density
gradients in the system. It also allowed us to study the
resonance position as function of the electron density as

 2.7
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E
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/m
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 cm
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He filling 38%
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FIG. 1. Adjustment of the helium level close to half fill-
ing. The resonance position was measured as function of
the electron density ne by sweeping Ez at f = 144GHz
Bz = 0.73 Tesla, Bx = 0. The helium level position was
brought closer to half filling by small injections of helium gas
using a needle valve.

otherwise such studies are complicated by a strong shift
of the resonance position.

After an approximate first filling of the helium cell
where the position of the half filling was estimated by the
change in the capacitance between the top and bottom
electrodes, we measured the shift of the resonance posi-
tion with electron density finding initial x = 38%. Then
we added small quantities of helium to the cell with the
needle valve monitoring the change of the resonance po-
sition. This allowed us to come to within 3% of the half
filling (see Fig. 1). We stopped at this value, because x
may continue to increase over time due to an influx of
liquid helium trapped in the feeding capillary. However
we did not observe any further noticeable increase in x
after the needle valve was closed. This leads us to expect
that values very close to x = 50% can be achieved with
this method in the future experiments.

In order to enhance sensitivity, the microwave power
was pulse modulated using a low-frequency (17 Hz)
square waveform, and a double-demodulation method
similar to [10] was used. To find the regime where the
linewidth of the resonance becomes independent of the
microwave power, the signal from the mm-wave multi-
plier had to be attenuated significantly. A problem we
faced was that our room temperature mm-wave power
detector was not sensitive enough for the power readout
after the attenuation. We thus used the coupling scheme
shown in Fig. 2, where 90% of the signal from the gen-
erator was sent directly to the power detector, with 10%
only used for sample excitation. The microwave mulit-
plier (Virginia diode WR6.5AMC-I) allowed us to change
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FIG. 2. Setup for power dependent experiments and the de-
pendence of the photo-induced change in admittance on the
microwave power. The plot shows the change of the real
part of the admittance for Bz = 0.5 Tesla, Bx = 0.75 Tesla,
T = 350 mK, f = 150 GHz.

the power by more than two orders of magnitude using
electrical analog modulation. However this attenuation
was not sufficient for our experiments and we used a me-
chanically tunable attenuator to introduce an additional
1/130 attenuation before coupling into the dilution re-
frigerator. The value of the added 1/130 attenuation was
deduced by comparing the power dependence of the mi-
crowave induced change in the cell admittance between
the configuration where the attenuator was fully opened
and closed to provide the desired attenuation (see Fig. 2).

We then measured the resonance linewidth as a func-
tion of microwave power obtaining the data shown in the
inset of Fig. 4 in the main text and chose the microwave
power at a level where the resonance linewidth was in-
dependent of the radiation intensity (300 nW). We note
that this power level corresponds to a relative value com-
pared to the estimated full power multiplier output (10
mW), it is not a quantitative measurement of the power
entering the helium cell.
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