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We investigate disease extinction in an epidemic model described by a birth-death process. We show
that, in the absence of vaccination, the effective entropic barrier for extinction displays scaling with the
distance to the bifurcation point, with an unusual critical exponent. Even a comparatively weak Poisson-
distributed random vaccination leads to an exponential increase in the extinction rate, with the exponent
that strongly depends on the vaccination parameters.
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Practically all epidemics exhibit randomness. Childhood
diseases [1–3], meningitis [4], dengue fever, and malaria
[5] are but a few examples where incidence rates fluctuate.
These fluctuations arise from fluctuations in population,
epidemic parameters, and intrinsically random contacts
within the population [6,7]. As diseases evolve in large
populations, there is the possibility of extinction and re-
introduction of the disease [8,9]. Extinction occurs where
the number of infectives becomes so small that there is
insufficient transmission to keep the disease in its endemic
state [10–12]. To gain insight into disease fade out, one can
think of the dynamics as coming from a nonlinear physical
system far from thermal equilibrium, with extinction re-
sulting from a large infrequent fluctuation.

A well-known model of population dynamics is the so-
called SIS model where only susceptibles (S) and infec-
tives (I) are present [1,13]. Here, in the absence of fluctua-
tions the disease spread is characterized by the
reproductive rate of infection, R0, which is defined so
that an endemic equilibrium exists along with the disease
free state for R0 > 1. The disease free state is unstable.
However, in the presence of fluctuations, this state may be
reached, albeit for a limited time [13–20].

A major characteristic of fluctuation-induced extinction
is the extinction rate, or the reciprocal mean first time the
number of infectives approaches zero. It has been studied
in the continuous limit using the Langevin approach with
fluctuations induced by external noise. An SIS model with
fluctuations described by a birth-death process was inves-
tigated recently and a comparison with the continuous
model was performed by Doering et al. [20]. The analysis
referred to the one-variable model with detailed balance,
which allows one to obtain an explicit solution. However, it
does not reveal some generic features related to the lack of
detailed balance characteristic of systems far from thermal
equilibrium.

The goal of this letter is two-fold: (i) to develop a
general approach to finding the extinction rate, to show
that this rate displays scaling behavior with the varying
control parameter R0, and (ii) to study the effect of vacci-

nation on extinction rate. We will be interested in the im-
portant case where the vaccine schedule is a Poisson pro-
cess. As we show, even comparatively weak vaccination
can increase the extinction rate exponentially strongly.
This is a dynamical effect which happens, because an ap-
propriate sequence of vaccine pulses can ‘‘resonate’’ with
the dynamics of the system followed during extinction.

We consider a model where susceptibles (S) are born at
rate �, both susceptibles and infectives (I) die at the same
rate �, and infectives recover at rate ß and immediately
become susceptible. If susceptibles contact infectives, they
may become infected at rate �. We assume strong mixing
in the population, so that it remains spatially uniform.
Time-dependent vaccination reduces the number of sus-
ceptibles at rate ��t� [1]. This rate will be assumed small,
on average. The events of birth, death, and contact happen
at random. They are transitions between the states of the
system with different S and I. Therefore the quantity of
interest is the probability ��S; I� to have given S and I. It is
described by the master equation

 _��X��
X
r

�W�X�r;r���X�r��W�X;r���X��: (1)

Here, we introduced vector X � �X1; X2�with components
X1 � S, X2 � I and vector r � �r1; r2� with components
r1 and r2 showing, respectively, the increments in S and I
in a single transition. The transition rates W�X; r� are

 

W�X; �1; 0�� � N��� ��t��; W�X; ��1; 0�� � �X1;

W�X; �0;�1�� � �X2; W�X; �1;�1�� � ßX2;

W�X; ��1; 1�� � �X1X2=N; (2)

where N is the scaling factor which we set equal to the
average population, N � 1.

For large S, I / N fluctuations of S, I are small on
average. If these fluctuations are disregarded, one arrives
at the deterministic equations for the mean values of S, I
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_X1 � N��� ��t�� ��X1 � ßX2 � �X1X2=N;

_X2 � ���� ß�X2 � �X1X2=N:
(3)

These are standard equations of the SIS model. In the
absence of vaccination, ��t� � 0, for R0 � �=��� ß�>
1 they have a stable endemic solution XA � NxA with
x1A � R�1

0 , x2A � 1� R�1
0 . In addition, Eqs. (3) have an

unstable stationary state (saddle point) XS � NxS with
x1S � 1, x2S � 0. This state corresponds to extinction of
infectives.

For N � 1 and for small vaccination rate the distribu-
tion ��X� has a peak at the stable state XA with width
/N1=2. The probability of having a small number of in-
fected, X2 	 X2A, is determined by the far tail of this peak.
The tail can be obtained by seeking the solution of Eq. (1)
in the eikonal form,

 ��X� � exp��Ns�x��; x � X=N;

��X� r� 
 ��X� exp��pr�; p � @xs:
(4)

For time-independent parameters W this formulation was
used in a number of papers [18,20–25]. However, in the
present case it has special features, as shown below.

To leading order in N�1, the equation for s has a form of
the Hamilton-Jacobi equation _s � �H�x; @xs; t�, where s
is the effective action, and the effective Hamiltonian is

 H�x;p; t� �
X

r
w�x; r��epr � 1�; (5)

with w�x; r� � N�1W�X; r� being the transition rates per
person. Action s�x� can be found from classical trajectories
of the auxiliary system with Hamiltonian H that satisfy
equations

 

_x � @pH; _p � �@xH: (6)

We start with the case where there is no vaccine, ��t� �
0. In this case the transition rates w � w�0� and the
Hamiltonian H � H�0� are independent of time. Of interest
to us is the stationary distribution. The function s � s�0� is
independent of time. It has the form [22–25]

 s�0��xf� �
Z tf

�1
p _xdt; H�0��x;p� � 0: (7)

Here, the integral is calculated for a Hamiltonian trajectory
�x�t�;p�t�� that starts at t! �1 at x! xA, p! 0 and
arrives at time tf at a state xf. This trajectory describes the
most probable sequence of elementary events X! X� r
bringing the system to Xf � Nxf. It provides the absolute
minimum to s�0��xf� [s�0��xf� is independent of tf]. The
quantity Ns�0��x� is the entropic barrier for reaching X �
Nx; it gives also the exponent in the expression for the
mean first passage time for reaching X from the vicinity of
the attractor XA [26].

The extinction rate is determined by s�0� for x2 ! 0. It is
intuitively clear and can be shown from Eq. (5) that the
minimum of s�0��x� over x1 for x2 ! 0 is reached at the

saddle point xS of the fluctuation-free motion (3). Thus the
entropic barrier for extinction is Ns�0�ext � Ns�0��xS�.

The Hamiltonian trajectory xext�t�, pext�t� that gives
s�0��xS� is the optimal extinction trajectory. One can
show that it approaches xS as t! 1. This is similar to
other problems of an optimal trajectory leading from a
deterministic stable state to a saddle point [24,27].
However, in distinction from the more common situation,
for t!1 the momentum pext does not go to zero. Instead
pext�t� ! pS, with pS � �0;� logR0�. This is in spite of
the fact that, along with (xS , pS), the Hamiltonian H�0� has
a ‘‘standard’’ fixed point (xS , p � 0).

Indeed, the optimal extinction trajectory should lie on
the stable manifold of the fixed point with x � xS . The
stable manifold of (xS , p � 0) lies in the plane x2 � p1 �
0. The point (xA, p � 0), and thus the optimal extinction
trajectory do not lie on this plane. Therefore this trajectory
may not go to (xS, p � 0). In contrast, it may go to the
fixed point (xS , pS), whose stable manifold is not confined
to a plane in the (x, p) space.

The situation where an auxiliary Hamiltonian system
has two fixed points with the same xS was first noticed
for a system described by the Fokker-Planck equation with
a singular at xS diffusion matrix [14], and the ‘‘right’’ point
was chosen based on numerical simulations. This situation
was also found for a system described by a one-variable
master equation, where the Hamiltonian dynamics is inte-
grable [18]; it occurs also in a two-variable susceptible-
infected-recovered (SIR) model concurrently studied by
Kamenev and Meerson [28].

Equations (6) allow finding the extinction rate for any
values of the parameters of the system. An explicit ana-
lytical solution in the absence of vaccination can be ob-
tained near the saddle-node bifurcation point R0 � 1
where states xA and xS merge. For � � ��R0 � 1�=R0 	
1 we have x2A � �=�	 1. The relaxation time of x2 is
��1. It is much longer than the relaxation time of x1, which
is ��1, i.e., x2 is a soft mode, and x1 follows x2

adiabatically.
In the adiabatic approximation we have in Hamiltonian

equations (6) x1 � 1� x2, p1 � �x2p2=�, while x2 	 1,
jp2j 	 1. The equations for slow variables x2, p2 have a
Hamiltonian form

 _x 2 � @Had=@p2; _p2 � �@H
ad=@x2 (8)

with Hamiltonian Had � �x2p2 � �x2p2�x2 � p2�. The
Hamiltonian trajectory is

 p2�t� � x2�t� �
�
�
; x2�t� � x2A�1� e��t�t0���1: (9)

From Eqs. (7) and (9)

 s�0�ext � �2=2�2 � �R0 � 1�2=2R2
0: (10)

The entropic barrier for extinction Ns�0�ext (10) scales with
the distance to the bifurcation point� / R0 � 1 as�2. This
is in contrast to the standard scaling of the activation
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energy of escape near a saddle-node bifurcation point,
where the critical exponent is 3=2 [24], as has been seen
in various dynamical systems close and far from thermal
equilibrium. Such unusual scaling is related to pS being
nonzero. It emerges also in the SIR model [28].

Generally, the scaled barrier s�0�ext depends on two pa-
rameters, R0 and �0 � �=��� ß�. In Fig. 1 extrapolated
asymptotic expression (10) is compared with the results
obtained from Eqs. (6) and (7) for several �0. There is a
reasonably good agreement even far from R0 � 1. As R0

increases the dependence of s�0�ext on �0 becomes more
pronounced.

We now discuss the effect of vaccination. We are inter-
ested in the distribution h��X�i averaged over realizations
of noise ��t�. If ��t� is a stationary noise, h��X�i is sta-
tionary, too. The mean first time of reaching x from the
vicinity of the stable state is assumed to largely exceed the
correlation time tcorr of ��t�.

The full Hamiltonian of the system that determines s can
be written as H � H�0� �H�1�, with

 H�1��x;p; t� � ���t�h�x;p�; h � exp�p1� � 1: (11)

The term H�1� is small for weak noise ��t�. Because
s�xf; tf� provides a minimum to the integral of p _x�H
over time, to first order in ��t� we have [29]

 s�xf; tf� 
 s�0��xf� �
Z tf

�1
dt��t��f�t�: (12)

Here, �f�t� � h�x�tjxf; tf�;p�tjxf; tf��; the functions
x�tjxf; tf�, p�tjxftf� describe the Hamiltonian trajectory
(6) to xf calculated for H � H�0�.

From Eq. (12), the logarithm of the distribution
��Xf; tf� is linear in the force ��t�. The proportionality
coefficient is / �f�t�, and therefore we call �f�t� the
logarithmic susceptibility, as for continuous systems [30];
it is convenient to set �f�t� � 0 for t > tf.

Equations (4) and (12) give

 h��X�i�A�X���0��X�; A�Xf��
~P ��iN�f�t��; (13)

where ��0� is the distribution for ��t� � 0 and ~P ����t�� �
hexp�i

R
��t���t�dt�i is the characteristic functional of ��t�.

Because N � 1, an already weak noise ��t� can signifi-
cantly change the distribution h��X�i, the factor A can be
exponentially large.

To extend the analysis to the problem of extinction, we
choose the final point to be xS . The corresponding loga-
rithmic susceptibility �ext�t� is determined by the unper-
turbed optimal extinction path �xext�t�;pext�t��. Since xS is
approached along the optimal path asymptotically as t!
1, the action sext for reaching this point is given by
Eq. (12) in which integration over time goes from �1 to
1. The noise-induced change of the extinction rate is then
determined by the factor

 Aext�
~P ��iN�ext�t��; �ext�t��h�xext�t�;pext�t��: (14)

We call Aext the noise-induced extinction factor.
The effect of noise on extinction can be illustrated using

an important model where the noise is a Poisson process: a
sequence of pulses g�t� tj� occurring at random times tj.
We assume that the pulses have a small amplitude and a
short duration compared to the relaxation time of the
system and the reciprocal average pulse frequency ��1

[the noise realizations of interest should satisfy the restric-
tion ��t�<�]. With account taken of the explicit form
[31] of the functional ~P �,

 Aext � AavAfl; Aav � exp
�
��

Z 1
�1

dt��t�
�
;

Afl � exp
�
�
Z 1
�1

dt�e���t� � 1� ��t��
� (15)

with ��t� � N
R
dt0�ext�t�g�t� t

0� 
 N�ext�t� �g, where
�g �

R
g�t�dt. The factor Aav describes the effect of the

average noise h��t�i, whereas the term Afl describes the
effect of the fluctuating part of ��t� with zero mean.

The general expression (15) is simplified in the limit-
ing cases. For weak noise, where j��t�j 	 1, we have
Afl � exp��

R
dt�2�t�=2�, implying logAfl / �g2. In the

opposite limit, max����t�� � 1, we have Afl �

exp���2	= ��m�
1=2 exp���m��, where ��m � ���tm� is

the maximum of ���t� and ��m � ���tm�. In this case
logAfl is exponential in the pulse intensity �g. Note that
the results apply for logAext 	 Ns�0�.

An explicit expression for Aext can be obtained near the
bifurcation point, �	 1. From Eq. (9), here �ext � _x2=�.
This gives Aav � exp��� �gN=���. The exponent in Aav

linearly scales with the distance to the bifurcation point �
and the pulse intensity �g.

For pulse duration small compared to ��1, the fluctua-
tion part of the extinction factor Afl is determined by the
parameter 
 � �g�2N=��. If 
	 1, then Afl 

exp��
2=12��. In the opposite limit, 
� 1, we have

R0

1 2 3 4

s(0)

0.0

0.1

0.2

0.3

ext

- µ'=0.2
- µ'=0.6
- µ'=0.8

FIG. 1 (color online). The scaled barrier for extinction s�0�ext vs
the reproductive rate of infection R0. The dashed line shows
expression (10). The data points for different �0 � �=��� ß�
are obtained from a numerical solution of Eqs. (6) and (7).
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Afl 
 exp��4�=���	=
�1=2 exp�
=4��. Here the depen-
dence of Afl on the vaccination pulse intensity �g is double
exponential.

The logarithm of Afl as a function of
 is shown in Fig. 2.
The parabolic small-
 asymptotics works reasonably well,
numerically, for 
 & 3, whereas the exponential large-

asymptotics is approached for 
 * 15.

The exponentially strong effect of random vaccine on
disease extinction results from a dynamical cooperation
between an outburst of noise of an appropriate temporal
shape and the evolution of the system along the optimal
path leading to extinction. One can think of the vaccine-
induced change of the extinction barrier as a generalized
work done by the corresponding noise realization along the
optimal path. In this picture, a zero-mean noise should be
expected to reduce the extinction barrier, and then the
respective part of the noise-induced extinction factor Afl

should exceed 1. This is indeed the case for Poisson noise,
as seen from Eq. (15).

In summary, we have considered fluctuations in the full
two-variable SIS model and found the rate of extinction of
disease with and without vaccination. We have developed a
general approach in which the problem is reduced to the
analysis of dynamics of an auxiliary Hamiltonian system,
with nontrivial boundary conditions. We show that the
entropic barrier for extinction displays scaling dependence
on the reproductive rate of infection R0 for small R0 � 1,
with exponent 2. Even comparatively weak vaccination can
exponentially strongly affect the extinction rate. A general
expression that describes this effect for random vaccine in
terms of its characteristic functional has been obtained. For
a Poisson-distributed vaccine, the change of the exponent
of the extinction rate may itself depend on the vaccine
strength exponentially.
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FIG. 2 (color online). The scaled fluctuation-induced change
of the barrier for extinction, �fl � ��=�� logAfl, vs the scaled
intensity of noise pulses 
 � �g�2N=�� (solid line). The results
refer to �	 1. The dashed lines show the asymptotic behavior
of �fl for small and large 
.
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