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Phononic frequency combs have attracted increasing attention both as a qualitatively new type of
nonlinear phenomena in vibrational systems and from the point of view of applications. It is commonly
believed that at least two modes must be involved in generating a comb. We demonstrate that a comb can be
generated by a single nanomechanical mode driven by a resonant monochromatic drive. The comb emerges
where the drive is still weak, so the anharmonic part of the mode potential energy remains small. We relate
the experimental observation to a negative nonlinear friction induced by the resonant drive, which makes
the vibrations at the drive frequency unstable. We directly map the measured trajectories of the emerging
oscillations in the rotating frame and show how these oscillations lead to the frequency comb in the
laboratory frame. The results go beyond nanomechanics and suggest a qualitatively new approach to
generating tunable frequency combs in single-mode vibrational systems. They demonstrate new sides of
the interplay of conservative and dissipative nonlinearities in driven systems.
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I. INTRODUCTION

Since their discovery at the turn of the 21st century [1,2],
frequency combs have revolutionized the field of metrol-
ogy, from unprecedentedly accurate timekeeping to mol-
ecule sensing, to distance measurements [3–5]. Frequency
combs consist of a series of narrow spectral lines [1,2].
Of central importance for metrology is that the lines are
equally spaced. This feature is a consequence of the strong
nonlinearity of the radiation sources. In lasers, such non-
linearity can lead to mode locking, which, in turn, leads to
generation of frequency combs. It also underlies the
electro-optic comb generation. In laser-driven microreso-
nators, broadband optical combs with extremely narrow
peaks emerge as a result of four-wave mixing induced by

the Kerr nonlinearity [6,7]. A frequency comb associated
with a strongly nonlinear parametric excitation has been
seen in a superconducting microwave cavity [8].
Frequency combs have also been observed in nano-

mechanical vibrational systems [9–22]. Such combs are
often called phononic. They cover a broad frequency range
and have the advantage of being tunable in situ. They have
been observed by nonlinearly mixing two drive frequen-
cies, or by using nonlinear resonance or strong linear
coupling between different vibrational modes. For a single-
frequency drive, at least two modes were involved, some-
what reminiscent of the multimode frequency combs of
laser radiation.
The analysis of the frequency combs has led to a general

conclusion [19,23,24] that it is necessary to have at least
two coupled modes, with at least one of them driven, to
generate a comb. This conclusion can be understood by
noting that coupled modes can resonantly exchange energy
with each other, an observation that, for nonlinear coupling,
goes back to Laplace and Poincarè on the classical side and
to the Fermi resonance on the quantum side [25,26]. The
ensuing oscillations are sustained by the external periodic
drive. They are slow compared to the mode frequencies and
the drive frequency, but they can be strongly nonsinusoidal;
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thus, their spectrum consists of multiple equidistant lines
separated by their frequency. When superposed on the
forced vibrations at the drive frequency, this spectrum
transforms into a frequency comb.
In this paper, we demonstrate that the onset of a

frequency comb in a vibrational system does not require
mode-mode coupling. We observe a comb using a nano-
mechanical resonator driven by a single-frequency resonant
drive in the regime where only one mode is involved in the
dynamics. The occurrence of the comb results primarily
from the combination of two factors. First, resonant driving
can open a relaxation channel that leads to a negative
friction force [27]. It makes the state of stationary forced
vibrations at the drive frequency unstable. As a result, the
mode starts precessing about this state. In the frame that
rotates at the drive frequency, the precession looks like
vibrations. The second factor is that these vibrations are
strongly nonsinusoidal, which leads to a frequency comb,
as in the case of coupled modes. As we show, the number of
pronounced spectral lines in the comb and the spacing
between them can be controlled just by varying the
amplitude and frequency of the drive.
The observation of the comb has been facilitated by our

nanomechanical vibrational mode being weakly damped.
Because the damping is weak, even a comparatively weak
driving-induced negative friction force can overcome it,
leading to an instability of the stationary forced vibrations.
For the same reason, the nonlinearity of the mode comes
into play already for a comparatively weak driving pro-
vided the driving is resonant. A feature of the nonlinearity
is that, in a sense, it is weak: The nonlinear part of the
vibration energy is much smaller than the harmonic part.
However, as viewed in the rotating frame, where the
harmonic part is largely compensated, the nonlinearity
can be strong because it is competing with the weak
damping. It is the strong nonlinearity in the rotating frame
that makes the vibrations in this frame strongly non-
sinusoidal, leading to multiple lines in the comb spectrum.
The occurrence of a negative friction force in vibrational

systems iswell knownfornonresonantdriving [28]; it playsan
important role in cavity optomechanics [29]. However, neg-
ative frictionmayalsoemerge[27]for resonantdriving[30],as
also suggested by experiment [31]. The resonantly induced
friction force (RIFF) is nonlinear in the mode coordinate.
Therefore, itonlycomes intoplayonce thevibrationamplitude
becomes sufficiently large. We observe its effect only on the
large-amplitude branch of the response curve.

II. SETUP AND CHARACTERIZATION

The investigated nanomechanical resonator is a freely
suspended string resonator, similar to the one depicted in
Fig. 1(a). It is fabricated from prestressed silicon nitride on
a fused silica substrate, facilitating ultrahigh-quality factors
greater than or around 105 at room temperature. The string
has a length of 55 μm, a width of 270 nm, and a thickness

of 100 nm. Integrated dielectric transduction combined
with microwave cavity-enhanced heterodyne detection,
described in Refs. [32–34], is implemented via the two
gold electrodes [also apparent in Fig. 1(a)] and allows one
to actuate and detect the motion of the resonator. All
measurements are performed at a constant dc voltage of
5 V, under vacuum at a pressure below 10−4 mbar and at
room temperature of 293 K. The vibration amplitude is
proportional to the output signal, which is measured in
volts, in the experimental setting. Therefore, in all exper-
imental data, the displacement amplitude of the nano-
resonator is given in volts (see also Appendix B).
The fundamental flexural out-of-plane (OOP) mode of

the resonator is characterized in the linear as well as in the
nonlinear regime by driving the mode with a single-tone
drive F cosð2πfdtÞ applied on or near resonance. From the
linear response measurement (black dots) and a Lorentzian
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FIG. 1. Nanomechanical string resonator in the single-mode
regime. (a) Scanning electron micrograph of the doubly clamped
silicon nitride string resonator (green) and two control electrodes
(yellow). (b) Linear response for a drive power of −56 dBm
along with a Lorentzian fit (solid red line). A constant noise
background has been subtracted from the data (1.5 × 10−6 V).
(c) Amplitude of forced vibrations for a moderately strong drive
power of −24 dBm as a function of drive frequency along with a
fit (solid red line, see Appendix B). (d) Vibration spectra for a
resonant drive applied at the OOP mode in the linear regime
(−46 dBm, light blue), and for a stronger drive (5 dBm, purple)
that exhibits an overtone at twice the drive frequency. Even under
strong driving, no other modes are excited. A noise background
has been subtracted from the data.

J. S. OCHS et al. PHYS. REV. X 12, 041019 (2022)

041019-2



fit (solid red line), shown in Fig. 1(b), one obtains the
mode eigenfrequency f0 ¼ ω0=2π ≈ 6.528 MHz, the line-
width 2Γ=2π ≈ 21 Hz, and, with that, the Q factor
of Q ≈ 310 000.
The nonlinear response of the resonator as a function of

the detuning fd − f0 is shown in Fig. 1(c). In the presented
parameter range, the forced vibrations are nearly sinusoi-
dal. The stationary value of the mode coordinate is
qðtÞ ≈ A cosð2πfdtþ ϕÞ, where A and ϕ are the vibration
amplitude and phase.
In nanomechanics, resonant nonlinear response is most

frequently described by the Duffing (sometimes also called
Kerr) model, in which the nonlinear part of the potential of
the mode UðqÞ has the form Mγq4=4 [35], where M is the
effective mass of the mode and γ is the Duffing parameter.
The response in Fig. 1(c) cannot be fit to the standard
Duffing curve. The deviation is due to the resonator lacking
inversion symmetry, for example, due to the term propor-
tional to q3 in UðqÞ [36]. For the studied mode, it leads to a
significant reduction of the positive “bare” value of γ, i.e.,
γ → γeff , in the regime of comparatively small vibration
amplitudes [37].
In the experiment, the mode amplitude and the amplitude

of the driving force are measured in volts. In these units, the
renormalized value of the Duffing parameter at compara-
tively small vibration amplitudes below 1 mV is

γðVÞeff =ð2πÞ2 ≈ 2.57 × 1015 V−2 s−2. The full theoretical
analysis, including the full response curve in Fig. 1(c),
is given in Sec. IV (see also Appendix A).
The dc voltage is chosen in such a way as to operate the

system in the single-mode regime. No other modes are
excited where the OOP mode is driven on or close to
resonance. Figure 1(d) displays the vibration spectrum for a
drive applied at the eigenfrequency of the OOP mode. In
the linear response regime, only forced vibrations at the
drive frequency are observed (light blue line). For a
stronger drive, we observe an overtone at twice the drive
frequency (purple line), as expected for a resonator with
broken inversion symmetry. We do not see signals at other
frequencies. The full mode spectrum of the device is
discussed in Appendix C.

III. EXPERIMENTAL OBSERVATIONS

A. Driving on resonance

In Fig. 2(a), we show the power spectra of the OOPmode
driven on resonance, fd ¼ f0, for the drive power in the
range from−30 dBm toþ10 dBm. For drive powers below
−15 dBm, besides the main-tone (M) peak at the drive
frequency fd, we observe two thermal-noise-induced sat-
ellite peaks, which appear in the spectrum symmetrically to
the left (L1) and right (H1) of M. The onset of such satellites
was theoretically predicted (see Ref. [38] and references
therein). The satellites, as well as the spectral evidence of

squeezing encoded in their unequal brightness, are dis-
cussed in Ref. [39].
As the drive power approaches the threshold value

Pth ≈ −2.5 dBm (black vertical line), the noise-induced
satellites (H1, L1) evolve into much narrower peaks. For
increasing power, we resolve additional, equally spaced,
satellite peaks forming a frequency comb. We label them as
(H2, L2), (H3, L3), etc., with H referring to the higher-
frequency and L to the lower-frequency satellites. Note that
the lower-frequency satellites are less intense than the
higher-frequency ones.
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FIG. 2. Frequency comb induced by resonant drive. (a) Power
spectra of the mode measured for increasing drive power at
fd ¼ f0. The transition from the regime of two thermal-noise-
induced satellite peaks to the frequency comb consisting of a
series of equidistantly spaced, multiple satellite peaks is clearly
seen. It occurs at Pth ¼ −2.5 dBm (black vertical line). The red
dots show the theoretical model for H1. The inset shows the
magnified region inside the dashed box. Arrows indicate drive
power of the line cuts depicted in Fig. 3(a). (b) Extracted
linewidth of the two thermal noise-induced satellite peaks H1

(black) and L1 (gray) as a function of the drive power. The dashed
line represents the prediction based on the theory that disregards
driving-induced friction, whereas the solid line includes it [see
Eqs. (4) and (5)]. (c) Amplitude of forced vibrations at fd ¼ f0 as
a function of the drive power. The dashed line represents the
prediction based on the theory that disregards driving-induced
friction, whereas the solid line includes it [see Eqs. (4) and (5)].
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The linewidths of the first higher- and lower-frequency
peaks H1 and L1 are explored in more detail in Fig. 2(b).
The linewidth is found from a Lorentzian fit. It remains at a
constant value of approximately 21 Hz up to a drive power
of −15 dBm. This value corresponds to the linear damping
rate of the OOP mode. For larger drive powers, the
linewidth gradually decreases until at Pth it reaches the
resolution limit 1 Hz of our measurement device.
Respectively, in Fig. 2(b), we do not show the linewidth
for P > Pth. The linewidths of higher-order satellites,
which appear for P > Pth, could not be resolved either.
Figure 2(c) extracts the amplitude of the main tone,

i.e., the amplitude of the forced vibrations at fd ¼ f0, as a
function of the drive power. The signal increases with the
drive power untilPth. At the threshold power, the amplitude
of the forced vibrations exhibits a kink and abruptly starts
to decrease.
Strikingly, the succinct features of Figs. 2(b) and 2(c)—

the linewidth reaching the resolution limit and the kink
in the amplitude of the forced vibrations—coincide with
the emergence of the frequency comb at Pth (black
vertical line).
Figure 3(a) presents line cuts of Fig. 2(a) at the drive

powers indicated in Fig. 2(a) by small arrows. Beyond Pth,
the intensity of the satellite peaks forming the frequency
comb strongly increases with the increasing drive strength.
It is noteworthy to observe that some satellites even exceed
the intensity of the main tone.
In addition to the spectral measurements discussed so far,

we directly record the trajectories of the system in the
rotating frame using a homodyne measurement. A fast
lock-in amplifier is employed to sample both the in-phase
and quadrature signals of the driven resonator over time.
In order to capture the frequency comb, the measurement
is performed with a large bandwidth of 10 kHz. Figure 3(b)
plots the obtained trajectories in the space of the in-phase

(Q) and quadrature (P) components, i.e., in the phase space
of the rotating frame. For a drive power of −3 dBm,
corresponding to the top panel in Fig. 3(a), the system is
still in a stable state of forced vibrations, such that the
trajectory mostly stays within a thermal-noise-broadened
ellipse centered at the value of Q and P in the stable state.
For a larger drive power of −1 dBm, beyond the instability
threshold, the system is clearly on a limit cycle. It
represents the self-sustained oscillations of the resonator
in the rotating frame. The shape of the trajectory is
profoundly nonelliptical, which means that the vibrations
of QðtÞ and PðtÞ are nonsinusoidal. This is consistent with
the observation of multiple satellites in the power spectrum
in the middle panel of Fig. 3(a). For a still-larger drive
power of 8 dBm, a larger and even more nonelliptical
limit cycle is observed, which is in line with the bottom
panel of Fig. 3(a).
Interestingly, the trajectories are practically symmetric

with respect to the axis P ¼ 0. As we explain in Sec. IV,
this is a consequence of a very small decay rate of the
mode. The amplitude of the first lower and the first four
higher satellites—L1, and H1 to H4—is plotted in Fig. 3(c)
as a function of drive power.

B. Frequency comb as a function of the drive detuning

Along with the onset of the frequency comb with the
increasing drive amplitude, we have studied the emergence
of a comb with the varying drive frequency fd − f0. The
results for a fixed drive power of 0 dBm are shown in
Figs. 4 and 5. For this drive power, and at finite detuning
fd − f0 > 0, the spectra display an even more elaborate
frequency comb than in Fig. 3.
For each measurement, the resonator is initialized in the

large-amplitude state by sweeping up the drive frequency
from 30 kHz below f0 to the desired drive frequency fd
prior to recording the power spectrum. For a large negative
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FIG. 3. Spectral vs homodyne measurement. (a) Frequency combs at drive power −3 dBm (top), −1 dBm (center), and 8 dBm
(bottom). Data are taken from line cuts of Fig. 2(a) indicated by small arrows. (b) Trajectories in the rotating frame for the same drive
powers as in (a). Data have been rescaled as described in Appendix B. Solid lines depict the theoretical model. (c) Amplitude of the
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detuning, the system remains stable for the selected drive
power. The instability occurs at a detuning of −210 Hz,
and for increasing detuning, an increasingly multiple-line
frequency comb rapidly evolves. The number of visible
lines is significantly larger than for the case of a resonant
drive, as also apparent from the line cut in Fig. 4(b).
The comb only exists in the detuning range limited by

the bifurcational value at which the large-amplitude branch
of the response curve disappears as a whole, cf. Fig. 1(c).
On the small-amplitude branch, the mode does not display
a frequency comb. The rate of switching to the small-
amplitude branch increases exponentially as the system
approaches the bifurcation point [35], and so does the
probability of switching during the measurement. The
randomness of the switching is manifested in the apparent
gaps in the comb and in the jumps in the vibration
amplitude of Figs. 4(a) and 4(c), respectively. Both sig-
natures result from such switching. The power spectra have
been obtained with a 10-Hz increment. Therefore, for
example, the two gaps and the respective jumps at

600 Hz and 660 Hz correspond to single random switching
events. Counterintuitively, the amplitude of the vibrations
at the drive frequency sharply increases when the system
switches to the small-amplitude branch, as apparent from
Fig. 4(c). The forced vibrations at the drive frequency
remain stable on this branch; there is no frequency comb.
Figure 5(a) depicts three trajectories measured for a

detuned drive [color-coded detuning marked by arrows
in Fig. 4(a)], all at the same drive power. For increasing
detuning, the size and asymmetry of the observed limit
cycles clearly increase, giving rise to a horseshoe-like
trajectory. The presented trajectories are significantly more
asymmetric than those for a resonant drive, in agreement
with the higher number of frequency comb lines observed.
The amplitude of the first two lower and higher satellite
peaks is extracted as a function of the detuning in Fig. 5(b).

IV. INTERPRETATION

A remarkable feature of the studied nanomechanical
mode is that it is weakly damped not only in the laboratory
frame, Γ ≪ ω0 ¼ 2πf0, but also in the rotating frame. To
understand the experimental observations, it first is neces-
sary to understand the dynamics of the mode in the absence
of dissipation. Understanding the dissipation mechanisms
is the next step.

A. Hamiltonian dynamics of the driven mode

We start with the Hamiltonian dynamics in the laboratory
frame and then proceed to the Hamiltonian dynamics in
the rotating frame. In the studied regime, the anharmonic
part of the potential energy of the mode UðqÞ is small
compared to the harmonic part ðp2=2MÞ þ ðMω2

0q
2=2Þ,

where p is the momentum in the laboratory frame. The
major effect of the mode nonlinearity is the dependence of
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the vibration frequency on the mode energy E or, equiv-
alently, on the action variable I, with the frequency being
ωðIÞ ¼ dE=dI [36]. In the Duffing model, ωðIÞ ≈ ω0 þ α1I
for small I, with α1 ¼ 3γ=4Mω2

0 [ω0 ≡ ωð0Þ]. More gen-
erally, α1 is proportional to the effective Duffing parameter
γeff rather than γ. Thus, α1 is directly accessible from the
experiment in the regime of comparatively small vibration
amplitudes even if the Duffing model does not hold for
increasing amplitudes.
The peculiarity of the studied mode is the significant

reduction of γeff compared to γ, which means that α1 is
small. Therefore, to describe the response for larger ampli-
tudes, it is necessary to keep a higher-order term in the
expansion of the frequency in I, i.e., to set ωðIÞ≈
ω0 þ α1I þ α2I2. This corresponds to the Hamiltonian of
the mode in the laboratory frame of the form

H0 ¼ ω0I þ
1

2
α1I2 þ

1

3
α2I3: ð1Þ

This form is general. It incorporates not only the nonlinearity
of the isolated mode but also the renormalization of the mode
parameters due to a nonresonant coupling to other modes of
the nanoresonator, including phonons [35]. The parameter
α2 has contributions quadratic in γ and also contributions
from the terms ∝ q3, q5, q6 in the potential UðqÞ; see
Appendix A 1. However, all these terms are renormalized.
The parameters α1 and α2 are the only relevant parameters of
the conservative dynamics in the whole range of moderately
large vibration amplitudes.
The effect of the resonant driving force is described

by incorporating into the mode Hamiltonian the term
HF ¼ −qF cosωdt (ωd ¼ 2πfd). This effect becomes
strong already for a comparatively weak force amplitude
F, as F is “competing” with the small frequency detuning
jωd − ω0j ≪ ωd. The mode dynamics can be analyzed
using the conventional method of averaging [25], which,
in this case, is the averaging over the drive period 2π=ωd.
A significant simplification comes from the fact that, in the
considered amplitude range, the mode coordinate inHF can
be approximated as q ≈ ð2I=MωdÞ1=2 cos θ, where θ is the
vibration phase.
The averaged Hamiltonian describes the dynamics of the

driven mode in the rotating frame. The mode coordinate Q
and momentum P in this frame correspond to the in-phase
and quadrature components of the vibrations,

Qþ iP ¼ ½qþ iðp=MωdÞ� expðiωdtÞ: ð2Þ

In these variables, the Hamiltonian of the driven mode
gðQ;PÞ reads (see Appendix A 1)

gðQ;PÞ ¼ ðMωdÞ−1ðH0 − ωdI −QF=2Þ;
I ¼ MωdðQ2 þ P2Þ=2: ð3Þ

The dynamical variables Q, P satisfy the standard
Hamiltonian equations _Q ¼ ∂Pg; _P ¼ −∂Qg. In quantum
terms, the value of g on a Hamiltonian trajectory is the
quasienergy of the driven mode [40–43]. Also, the
employed method of averaging goes beyond the conven-
tional rotating-wave approximation.
We emphasize that, even though the dynamics in the

laboratory frame is weakly nonlinear, the dynamics in the
rotating frame is strongly nonlinear. The vibrationsQðtÞ and
PðtÞ with a given g can be strongly nonsinusoidal. The
typical frequencies of these vibrations νðgÞ turn out to be
much higher than the decay rate of the mode; that is, the
mode is underdamped not only in the laboratory frame but
also in the rotating frame. It is this property that determines
the shape of the measured trajectories in Figs. 3(b) and 5(a),
which are essentially the Hamiltonian trajectories gðQ;PÞ ¼
const. This means that the measured trajectories directly
depict constant-quasienergy contours. Because gðQ;PÞ ¼
gðQ;−PÞ, the Hamiltonian trajectories are symmetric with
respect to the axis P ¼ 0. The symmetry of the measured
trajectories is a signature of the weak dissipation in the
experiment.
For a given gðQ;PÞ ¼ g, the nonsinusoidal trajectories

in the rotating frame have multiple, equally spaced, Fourier
components separated by νðgÞ. As seen from Eq. (2),
these components modulate the vibrations of the mode
at frequency ωd in the laboratory frame. Therefore, they are
seen in the spectrum of the mode as equidistant lines
separated by νðgÞ. This underlies the frequency comb
observed in the experiment.

B. Instability mechanism

The observation of the instability of forced vibrations
with the increasing vibration amplitude and the “soft” onset
of the frequency comb suggests that the effective friction
force turns to zero at the instability threshold [44]. This
implies the existence of a negative nonlinear friction force.
Such a force must be increasing with the increasing
vibration amplitude so that at the threshold it compensates
the conventional friction force −2MΓ _q. There are no
a priori reasons to expect that, if this force is retarded,
the retardation time will be so long as to be comparable
with the dynamical times in the rotating frame. Therefore,
given that we are interested in the dynamics in the rotating
frame, in the phenomenological description, retardation can
be disregarded.
A simple phenomenological form of the relevant friction

force is RIFF [27],

FRIFF ¼ −ηRIFFF cosðωdtÞ _qðtÞqðtÞ: ð4Þ

The force FRIFF has the proper time and spatial symmetry,
and the nonlinearity is of the lowest order (quadratic) in the
vibration amplitude. A microscopic model of this force was
related [27] to the fact that the work by the force averaged
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over the period 2π=ωd, ½F cosðωdtÞ _qðtÞ�av, leads to heating
of a nanoresonator. The associated thermal expansion can
reduce tension in the nanostructure and thus the mode
eigenfrequency. One can easily infer from Fig. 1(c) that the
decrease of the eigenfrequency with the increasing vibra-
tion amplitude on the upper branch of the response curve
can lead to an instability. However, our estimates show
that the heating is too weak for the nanoresonator studied in
the experiment.
We emphasise that the force FRIFF is small, jFRIFFj ≪ F.

It is beating against the friction force −2MΓ _q, whereas in
our system, Γ is very small, the smallest parameter with the
dimension of frequency. The force FRIFF describes the
resonant, dissipative response of the resonator to the lowest
order in F. Besides heating, there are other microscopic
mechanisms of this force—for example, the displacement-
induced retarded modulation of the charge on the resonator,
which we believe may be relevant for our system.
We were not able to identify the microscopic mechanism

of FRIFF in this system unambiguously. Therefore, we
consider ηRIFF as an adjustable parameter. Replacing
F cosðωdtÞ _qðtÞ → ½F cosðωdtÞ _qðtÞ�av in Eq. (4) weakly
affects the results, and since such a replacement is
physically appealing, we use it.
Besides the RIFF, the resonant drive can open another

relaxation channel, similar to the driving-induced relaxation
for a nonresonant drive in cavity optomechanics [28,29]. It
can be understood by thinking that the drive modulates the
coupling of the mode to a thermal bath, with the interaction
Hamiltonian of the form Hi ¼ F cosðωdtÞqhb, where hb
depends on the dynamical variables of the bath. The
modulation gives rise to the driving-induced decay proc-
esses, which change the mode decay rate,

Γ → Γþ F2Γd;

Γd ¼
1

8ℏMω0

Re
Z

∞

0

dte2iωdth½hbðtÞ; hbð0Þ�i: ð5Þ

Here, h…i denotes thermal averaging over the states of the
bath; see Appendix A 2.
The dependence of FRIFF on the vibration amplitude

plays a dual role. On the one hand, the increase of FRIFF
with the increasing amplitude leads to the very instability of
the stationary state of forced vibrations at Pth. On the other
hand, once the system starts vibrating in the rotating frame,
its mean amplitude in the laboratory frame, which is
proportional to ðQ2 þ P2Þ1=2, decreases. This is clearly
seen in Fig. 2(c). Then, FRIFF decreases with the increasing
amplitude of vibrations in the rotating frame. As a result, a
stable limit cycle forms in the rotating frame. In the weak-
damping limit, it corresponds to vibrations with the value of
the quasienergy g such that the dissipative terms including
FRIFF, averaged over the orbit gðQ;PÞ ¼ g, exactly com-
pensate each other. With the increasing drive power, this g
increases, leading to the evolution of the trajectories in

Fig. 3(b). We note that vibrations in the rotating frame can
also be generated using a feedback loop, as demonstrated
by Houri et al. [21].
The above nonlinear theory has four parameters: α1;2,

ηRIFF, and Γd. The parameters α1;2 are found directly from
the measurements of the response curve in Fig. 1(c); see
Appendix B. The parameters ηRIFF and Γd can be chosen
so as to describe the amplitude of the vibrations at the
drive frequency as a function of the drive power shown in
Fig. 2(c). The value of the drive power at the threshold of
the instability Pth is particularly sensitive to ηRIFF. With
these parameters, we describe the multitude of the obser-
vations, including not only the response but also the shape
of the trajectories and its dependence on the drive power
and frequency, Figs. 3(b) and 5(b), as well as the positions
and intensities of the comb lines (see Appendix A 3).
In order to highlight the connection between the number

of satellites in the frequency comb and the asymmetry of
the trajectory of the limit cycle, Figs. 3(c) and 5(b) plot the
amplitude of the Fourier components (red lines) on top of
the amplitude of the measured comb lines (black dots). We
find good agreement between the two.

V. SUMMARY AND OUTLOOK

We experimentally demonstrate that a resonantly driven
single nanomechanical mode can display self-sustained
vibrations in the rotating frame. No coupling to other
modes is required. The self-sustained vibrations are
strongly nonlinear, even though for the studied drive power
the anharmonic part of the mode potential (in the laboratory
frame) remains much smaller than the harmonic part.
Because of the weak damping, the trajectories of the
observed limit cycles in the rotating frame represent
constant-quasienergy contours and thus provide a glimpse
into the shape of the quasienergy surface. The Fourier
components of the vibrations are manifested in the spec-
trum of the mode in the laboratory frame as extremely sharp
equidistant peaks that form a frequency comb.
We find that the number of visible lines in the comb and

the line spacing sensitively depend on the power and
frequency of the close-to-resonance drive. This suggests a
straightforward way of controlling the corresponding param-
eters, which is important for numerous applications of the
phononic frequency combs. Other advantageous features of
the system include the low power required to generate the
comb and the very frequency range where multiple, equally
spaced, spectral lines emerge simultaneously.
A good agreement of the theory with all experimental

observations provides evidence of a qualitatively new
mechanism of dissipation of driven vibrational systems,
the resonantly induced friction force. Developing a micro-
scopic theory of this force is a challenging problem that will
be addressed in future work.

Data and analysis code are available at [52].
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APPENDIX A: THEORY

1. Hamiltonian dynamics of a resonantly driven mode

It is convenient to describe the Hamiltonian dynamics of
a resonantly driven mode in two steps. The first step is the
transition to the action-angle variables, I and θ, of the mode
in the absence of driving. We relate these variables to the
coordinate q and momentum p of the mode in the standard
way [36] as

I ¼ ð2πÞ−1
I

pdq; θ ¼ ∂

∂I

Z
q
pdq;

with q and p being periodic in θ,

qðI; θ þ 2πÞ ¼ qðI; θÞ; pðI; θ þ 2πÞ ¼ pðI; θÞ:

An isolated mode performs periodic vibrations with I ¼
const. The phase linearly accumulates in time, _θ ¼ ωðIÞ.
The vibration frequency is ωðIÞ ¼ dE=dI, where E is the
mode energy.
We note that the full Hamiltonian of the system includes

the kinetic and potential energy of the isolated mode that
we consider, but also a contribution from other degrees
of freedom, such as other nanomechanical modes of the
resonator, acoustic phonons, etc. The mode is coupled to
these degrees of freedom. This leads to a renormalization of
the parameters of the mode, in particular, of the dependence
of its vibration frequency on I. The function ωðIÞ incor-
porates this renormalization along with the harmonic and
anharmonic terms of the potential energy UðqÞ of the
isolated mode.
In the presence of a resonant drive, the Hamiltonian of

the system takes the form

H ¼ H0 þHF; H0 ¼
Z

I

0

dI0ωðI0Þ;

HF ¼ −FqðI; θÞ cosωdt; ðA1Þ

and the equations of motion read

_I ¼ −∂θHF; _θ ¼ ωðIÞ þ ∂IHF:

We consider the case where the driving is relatively
weak, as explained in the main text. This means that the
anharmonic part of the energy of the driven mode remains
small compared to the harmonic part. In terms of I, the
latter condition typically means that

I ≪ Ianh; jωðIanhÞ − ω0j ∼ ω0 ≡ ωð0Þ: ðA2Þ

Here, Ianh is the value of the action variable where the
change of the vibration frequency becomes comparable
to ω0.
The inequality (A2) is essentially the condition on the

strength of the drive. We consider what we call a weak to a
moderately strong drive or, equivalently, small to moder-
ately large vibration amplitude. This implies that, for the
characteristic values of I, the frequency change Fj∂Iqj is
small compared to ω0 as is the rate of the change of the
action Fj∂θqj. However, the drive does not have to be small
compared to the appropriately scaled frequency detuning
jωd − ωðIÞj ≪ ω0. The interrelation between Fj∂Iqj and
jωd − ωðIÞj is arbitrary for typical values of I. For such a
drive, the system remains far away from the region where
the dynamics becomes chaotic.
The condition on the drive strength becomes more

explicit if we expand qðI; θÞ in I and ωd − ω0. The
leading-order term in the expansion is

qðI; θÞ ¼ ð2I=MωdÞ1=2 cos θ: ðA3Þ

Here, ð2I=MωdÞ1=2 is the vibration amplitude for a given I.
We note that nonlinear vibrations have overtones, which are
disregarded in Eq. (A3). However, in the range of I we are
interested in, the amplitudes of the overtones are small
compared to the amplitude of the main tone.
To the order of magnitude, the vibration amplitude as a

function of the drive amplitude can be estimated as
ð2Ires=MωdÞ1=2, where Ires is given by the standard con-
dition of nonlinear resonance [25,45]

MωdIres½ωd − ωðIresÞ�2 ∼ F2:

The drive is weak to moderately strong, and the amplitude
is small to moderately large provided

Ires ≪ Ianh: ðA4Þ
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Equation (A3) is the first term in the expansion of qðI; θÞ
in I=Ianh ≪ 1 and jωd − ωðIÞj=ωd ≪ 1. The smallness
of the latter parameters justifies keeping the leading-
order term in this expansion in the range given in
Eq. (A4). We note that, in the same approximation,
p ≈ −ð2IMωdÞ1=2 sin θ.

a. Transition to slow variables

To analyze the resonant dynamics, we go to the rotating
frame. This is done using the transformation

q ¼ Q cosωdtþ P sinωdt;

p ¼ Mωdð−Q sinωdtþ P cosωdtÞ: ðA5Þ

In the approximation (A3), we have

Q2 þ P2 ¼ 2I=Mωd: ðA6Þ

We note that, in the approximation (A3),

Q ¼ ð2I=MωdÞ1=2 cosðθ − ωdtÞ;
P ¼ −ð2I=MωdÞ1=2 sinðθ − ωdtÞ;

which shows thatQ and P are slow variables since _θ ≈ ωðIÞ
and ωðIÞ is close to ωd.
The transformation (A5) would be canonical if we used

Q=ðMωdÞ1=2; P=ðMωdÞ1=2 instead of Q, P, but for com-
parison with the experiment below, it is more convenient to
have Q and P of the same dimension as the coordinate q.
As indicated in the main text, the variables Q and P
correspond to the in-phase and quadrature components of
the mode displacement. They slowly vary in time, remain-
ing unchanged on the timescale 1=ωd.
A time-dependent change of variables requires an

appropriate change of the Hamiltonian [36]. In the present
case, in the approximation (A6), the Hamiltonian becomes

H0 ≡H0ðQ;PÞ ¼ ðH − ωdIÞ=Mωd:

In fact, we have changed from the variables I, θ, to the
variables Q, P, with I related to Q, P by Eq. (A6).
The next step is averaging over the fast-oscillating terms

in H0. First of all, we note that I ∝ Q2 þ P2 is a slow
variable; fast-oscillating terms in H0 − ωdI are small. The
major fast-oscillating terms in H0 come from HF. We
evaluate them by substituting into HF the expression (A5)
for qðI; θÞ. Clearly, HF has the term −QF=2 with no time-
oscillating factors and two terms that contain the factors
cos 2ωdt and sin 2ωdt, respectively. Averaging over the
time 2π=ωd allows us to eliminate these fast-oscillating
terms. As a result, the time-averaged HamiltonianH0ðQ;PÞ
takes the form gðQ;PÞ given in Eq. (3) of the main text,
which we reproduce here for completeness:

gðQ;PÞ ¼ ðMωdÞ−1ðH0 − ωdI −QF=2Þ;
I ¼ MωdðQ2 þ P2Þ=2: ðA7Þ

In quantum terms, the eigenvalues of g give the Floquet
eigenvalues of the driven mode [40–43].

b. Hamiltonian for a small effective Duffing parameter

In the above approximation, the response curve of a
resonantly driven nonlinear oscillator is determined by the
dependence of the frequency ωðIÞ on the action variable. In
order to describe the observed response, it is sufficient to
expand ωðIÞ to the second order in I,

ωðIÞ ¼ ω0 þ α1I þ α2I2:

We then have, from Eqs. (A1) and (A7),

gðQ;PÞ ¼ −
1

2
δωðQ2 þ P2Þ þMωd

8
α1ðQ2 þ P2Þ2

þ ðMωdÞ2
24

α2ðQ2 þ P2Þ3 − F
2Mωd

Q: ðA8Þ

Here,

δω ¼ ωd − ω0 ðA9Þ

is the detuning of the drive frequency from the eigenfre-
quency of the mode.
The Hamiltonian dynamics of the mode in the rotating

frame is described by the equations of motion,

_Q ¼ ∂PgðQ;PÞ; _P ¼ −∂QgðQ;PÞ: ðA10Þ

In the parameter range of interest, this dynamics consists
of vibrations with a given g, with frequency νðgÞ that
depends on g.
As explained in the main text, the parameters α1;2 in

Eq. (A8) depend on the nonlinearity of the potential of the
mode UðqÞ and also on the nonlinear coupling of the mode
to other modes of the resonator, to the electron system [46],
and to other degrees of freedom. Therefore, calculating
them requires knowing multiple parameters and, in fact, the
full characterization of the whole system, which is com-
plicated if at all possible. This is essentially an unphysical
task, as the parameters α1;2 are the only parameters that
describe the resonant mode dynamics.
For completeness, we provide the expressions for α1;2

for an isolated mode with a nonlinear potential. In this
potential, we have to keep the terms up to the sixth order in
q to find α1;2,

UðqÞ ¼ M
2
ω2
0q

2 þM
3
γ3q3 þ

M
4
γ4q4 þ

M
5
γ5q5 þ

M
6
γ6q6:

ðA11Þ
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The term proportional to q4 is the nonlinear term kept in the
Duffing model. In the main text, we used γ instead of γ4 as
the coefficient of this term. Obviously, the nonlinear part of
the potential contains four parameters, whereas only two
parameters, α1 and α2, are actually accessible to the
experiment.
It is more convenient to calculate the frequency as a

function of energy E,

ω̃ðEÞ≡ ω½IðEÞ� ≈ ω0 þ α1
E
ω0

þ E2

ω2
0

�
α2 −

α21
2ω0

�
; ðA12Þ

and then find α1;2 from the expansion of ω̃ðEÞ in a series in
E. This expansion can be obtained from the expression

ω̃ðEÞ ¼ π
.Z

qmaxðEÞ

qminðEÞ

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E −UðqÞ�=Mp ; ðA13Þ

where qmaxðEÞ and qminðEÞ [qmax > qmin] are the turning
points of the classical trajectory with a given E, i.e.,
UðqmaxÞ ¼ UðqminÞ ¼ E. Introducing

qc ¼ ðqmax þ qminÞ=2; L ¼ ðqmax − qminÞ=2;
q ¼ qc þ K; K ¼ L sin α;

we can write

E − UðqðKÞÞ ¼ ðL2 − K2Þ
�
μ0 þ

X4
n¼1

μnKn

�
: ðA14Þ

Here, the left-hand side is a polynomial of degree 6 in K
with two real roots at K ¼ �L such that we can put the
factor ðL2 − K2Þ up front, while the remaining part is a
polynomial of degree 4 with the energy-dependent coef-
ficients μi. This allows us to write

Z
qmaxðEÞ

qminðEÞ

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E−UðqÞ�=Mp

¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E−UðqcÞ�=M

p
Z

π

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

4
n¼1

L2μn
E−UðqcÞL

n cosnðαÞ
q :

ðA15Þ

Expanding qmax and qmin in powers of E, the square root
can also be expanded in powers of E, and the integrals can
be solved.

α1 ¼
3

4Mω2
0

�
γ4 −

10γ23
9ω2

0

�
;

α2 ¼
5γ6

4M2ω3
0

−
7γ3γ5
2M2ω5

0

−
51γ24

64M2ω5
0

þ 75γ23γ4
16M2ω7

0

−
235γ43

144M2ω9
0

:

ðA16Þ

The parameter α1 is proportional to the well-known
expression for the Duffing parameter γ4 renormalized
due to the cubic nonlinearity of UðqÞ [36]. It is this
renormalization (along with other terms that contribute
to the renormalization) that can make α1 small, leading to
the resonant response curve being significantly different
from the conventional Duffing curve.

2. Dissipative dynamics

The dynamics of the mode in the rotating frame in the
presence of dissipation is described by the equations [27]

_Q ¼ ∂Pgþ RQ; _P ¼ −∂Qgþ RP;

RQ ¼ −ðΓþ F2ΓdÞQþ ηRIFF
4M

FP2;

RP ¼ −ðΓþ F2ΓdÞP −
ηRIFF
4M

FQP: ðA17Þ

Here, we have taken into account the change of the friction
coefficient Γ due to the driving-induced decay and
described by Eq. (5) of the main text; the derivation is
similar to that in Ref. [28]. The term proportional to ηRIFF
describes the RIFF. We note that, for the microscopic
mechanism of the RIFF considered in Ref. [27], the
parameter ηRIFF is negative, and in what follows, we
assume that ηRIFF < 0.
The decay rates in Eq. (A17) should be compared with

the frequency of oscillations νðgÞ of the mode in the
absence of decay. We assume that νðgÞ is much larger
than the decay rate. This is the case in the experiment,
where the decay rate is extremely small. We note that
νðgÞ ≪ ω0; that is, the decay rate is small not only in the
laboratory frame but also in the rotating frame.
For a small decay rate, the motion consists of oscillations

with a given scaled quasienergy gðQ;PÞ ¼ g, with g slowly
evolving due to the decay. From Eq. (A17), this evolution is
described by the equation

_̄g ¼ ∂QgRQ þ ∂PgRP

¼ νðgÞ
2π

Z
SðgÞ

dQdPð∂QRQ þ ∂PRPÞ: ðA18Þ

Here, the overline implies averaging over the trajectory
gðQ;PÞ ¼ g, and SðgÞ is the area inside this trajectory. We
note that the sign in the last line refers to the trajectory that
corresponds to the large-amplitude branch of the response
curve; for the low-amplitude branch, the sign is opposite.

a. Stable states and limit cycles

It follows from Eqs. (A17) and (A18) that, in the absence
of the RIFF, we have _g < 0 on the large-amplitude branch.
The stable state of the system ðQst; Pst) is then the state with
the minimal gðQ;PÞ, i.e., gðQst; PstÞ ¼ gmin. It is given by
the equation
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½∂QgðQ; 0Þ�Q¼Qst
¼ 0; Pst ¼ 0: ðA19Þ

It corresponds to the amplitude of forced vibrations
A ¼ Qst. In fact, the stable state is slightly shifted from
the minimum of gðQ;PÞ because of the dissipation. The
shift is small where the dissipation rate is small compared
to νðgminÞ.
The solution of Eq. (A19) is used to find the parameters

α1 and α2 from the dependence of A on both the frequency
and the amplitude of the drive measured in the experiment,
in a broad range of these parameters. We note that, in the
regime of very small amplitudes where the linear decay rate
has to be taken into account, the vibration amplitude A0 is
different from Qst. To the leading order in ω0 − ωd, the
response is described by

F2

4M2ω2
0

¼ A2
0

�
Γ2 þ

�
−δωþMα1

A2
0ω0

2
þM2α2

A4
0ω

2
0

4

�
2
�
:

ðA20Þ

For the values of A0 where the term Γ2 in Eq. (A20) can be
disregarded, we have A0 ¼ A ¼ Qst. For small damping,
this happens already for a comparatively weak drive
amplitude F.
For A ¼ Qst, the decay rate λ near the stable state is

λ ¼ Γþ F2Γd þ ðηRIFF=8MÞFQst: ðA21Þ

This decay rate gives the half-width of the sideband peaks
in the power spectrum of the driven mode, as seen in
Ref. [39]. In the region where F2Γd can be disregarded, the
rate λ decreases with the increasing drive amplitude F for
ηRIFF < 0 since Qst, as well as the factor F itself in the
last term, increases with F. Overall, the decrease of λ with
the increasing F is superlinear. This is in agreement with
the decrease of the spectral linewidth in Fig. 2(b) of the
main text.
The value of the drive parameters where λ ¼ 0 corre-

sponds to the Hopf bifurcation [47]. As the drive amplitude
or frequency further increases, the state where g ¼ gmin
becomes unstable. The stable state is a limit cycle, which,
for a small decay rate, is given by the equation gðQ;PÞ ¼ g,
with g given by the condition _̄g ¼ 0, or

Γþ F2Γd ¼ −
ηRIFFF
8M

Q̄ðgÞ;

Q̄ðgÞ ¼ 1

SðgÞ
Z
SðgÞ

QdQdP;

SðgÞ≡
Z
SðgÞ

dQdP: ðA22Þ

In other words, the limit cycle is very close to the
Hamiltonian trajectory in Eq. (A10). This trajectory
depends on the drive parameters.

The mean coordinate in the rotating frame Q̄ðgÞ
decreases with the increasing g. Its value is maximal for
g ¼ gmin. The system is unstable if the right-hand side
of Eq. (A22) exceeds the left-hand side for g ¼ gmin. But
as g increases, Q̄ðgÞ falls off [27], and ultimately the
condition (A22) is met.
The trajectories gðQ;PÞ ¼ const with the value of g

given by Eq. (A22) are plotted in Figs. 3(b) and 5(a) of the
main text. An important feature of these trajectories is that
they are profoundly nonelliptical. Therefore, they have
multiple Fourier components. It is this feature that leads to
the onset of the frequency comb in the laboratory frame.

3. Frequency comb in the power spectrum

We now discuss the power spectrum of the mode where,
in the rotating frame, it vibrates with a given value of
gðQ;PÞ ¼ g, i.e., with a given quasienergy. The spectral
density of fluctuations of the displacement qðtÞ of the
resonantly driven mode near the driving frequency ωd has
the form

SðωÞ ¼ 1

2tl

����
Z

tl

−tl
dt qðtÞeiωt

����
2

≈
1

8tl

����
Z

tl

−tl
dt½QðtÞ þ iPðtÞ�eiðω−ωdÞt

����
2

; ðA23Þ

where it is implied that tl → ∞. We have assumed that
jω − ωdj ≪ ωd and expressed qðtÞ in terms of the slowly
varying-in-time quadratures QðtÞ and PðtÞ using Eq. (A5).
Using the Hamiltonian equations of motion (A10) for

QðtÞ and PðtÞ, we can write

½QðtÞ þ iPðtÞ�g ¼
X
m

zmðgÞeimνðgÞt: ðA24Þ

Here, ½·�g indicates that the value is evaluated for a given
gðQ;PÞ, and νðgÞ is the oscillation frequency in the rotating
frame. The Fourier components zm are also determined by
the value of g. For a resonantly driven Duffing oscillator,
α2 ¼ 0, they were calculated and used earlier [48–50],
taking into account that, in this case, the trajectories in
Eq. (A10) are expressed in terms of the Jacobi elliptic
functions. The parameters zm are also given in Ref. [27];
however, the expressions of the latter paper for m < 0 need
to be corrected to account for the proper parallelogram of
periods of the relevant functions.
From Eqs. (A23) and (A24), the power spectrum SðωÞ ¼

SgðωÞ of the driven oscillator for a given gðQ;PÞ is

SgðωÞ ¼
π

2

X
m

jzmðgÞj2δ½ω − ωd þmνðgÞ�: ðA25Þ

The spectrum (A25) is a frequency comb. It consists of a set
of equidistant peaks separated by νðgÞ. The intensity (area)
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of the peaks is given by the Fourier components zmðgÞ; note
that, generally, z−mðgÞ ≠ z�mðgÞ.
For α2 ≠ 0, the Fourier components zmðgÞ are found

from the numerical solution of Eq. (A10). The results for
jzmðgÞj are presented in Figs. 3(c) and 5(b) of the main text.
We note that, below the threshold of instability, the mode

performs fluctuation-induced vibrations about Qst and Pst.
They lead to peaks in the power spectrum at frequencies
ωd � νðgminÞ. Slightly above the threshold, the stable value
of g as given by Eq. (A22) is close to gmin. The vibrations in
the rotating frame are nearly sinusoidal in this range, and
their frequency is close to νðgminÞ. Therefore, the major
spectral manifestation of going through the threshold is
the narrowing of the spectral lines, as indeed seen in the
experiment.

APPENDIX B: CALIBRATION

In the experiment, the drive amplitude F is not directly
accessible. Instead, the rf input voltage V in that determines
the amplitude of the ac voltage is controlled. The mode
vibrations are measured by resonantly driving a microwave
cavity that contains the nanobeam. The nanobeam vibration
induces sidebands in the microwave signal. The signal is
demodulated and mixed with the rf signal to find the in-
phase Q and quadrature P components of the vibrations
in volts. The vibration amplitude in volts is Vout ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p
. We assume that both voltage signals, V in

and Vout, relate to the physical quantities in a linear way
since they are small compared to the applied dc voltage.
We write

A ¼ aVout; F=M ¼ bV in;

with a and b being calibration constants. The constant a is
of the order of 2.5 × 10−5 m=V; see Ref. [39].
For weak drives, the force-dependent friction terms,

Eqs. (4) and (5) in the main text, can be neglected, and
the response of the system is described by Eq. (A20).
Expressing F and A in terms of V in and Vout in this
equation, we find that the needed model parameters are the
conversion factor

c ¼ b2=4ω2
0Γ2a2;

the linewidth 2Γ=2π, the frequency ω0, and the nonlinearity
parameters Mα1a2 and M2α2a4.
The parameters can be determined from fits in a system-

atic way, making use of the fact that, for small drive powers
and therefore small amplitudes, the contribution from the
term with α2—and, for very small drive powers, also the
contribution from α1—can be neglected. Assuming a con-
stant noise floor of 1.5 × 10−6 mV, we fit the different
regimes. We start at a drive power of −56 dBm with the
Lorentzian response; proceed to a drive power of −37 dBm

with the Duffing fit, where we take the contribution from α1
into account; and finally fit the response at −24 dBm with
the full Eq. (A20) to determine α2.
Except for the plots in Figs. 3(b) and 5(a) of the main

text, all data and theoretical calculations belong to the
same set of calibration parameters. For the data of the
trajectory measurements, namely, the data shown in
Figs. 3(b) and 5(a), the conversion factor a is different.
Using a second set of response measurements in the
different regimes, we reconstruct the ratio between the
two a factors by comparing the fit values for α1 between
the two sets of response measurements. We use their ratio r
to scale the data of Figs. 3(b) and 5(a).
The phenomenological parameters of the dissipation

mechanisms are fixed in a separate step. Seeking the best
description of the amplitude of the vibrations at the drive
frequency as a function of the drive power shown in
Fig. 2(c), we set Γd to some value and fix ηRIFF by
demanding that the Hopf bifurcation occurs at the threshold
powerPth, meaning that the parameter λ given by Eq. (A21)
goes to zero at Pth.
The values we find are

c ¼ 5.28 × 10−3; ω0 ¼ 4.10 × 107=s;

r ¼ 1.21; Ma2α1 ¼ 45.2=V2;

M2a4α2 ¼ 0.400 s=V4; a2ηRIFF ¼ −2.81 × 10−3 s=V2;

2Γ=2π ¼ 21.1=s; M2a2Γd ¼ 4.5 × 10−16 s3=V2:

APPENDIX C: ADDITIONAL EXPERIMENTAL
OBSERVATIONS

1. Mechanical eigenmodes

Several measurements have been performed to verify
that only one mechanical mode, the fundamental OOP
mode of the 55-μm-long nanostring under investigation
(f0 ¼ 6.529 MHz) is involved in the frequency comb
formation.
Generally, a dc voltage applied to the dielectric control

electrodes tunes the eigenfrequencies and can induce an
appreciable coupling between the out-of-plane and in-plane
modes of the nanostring [33,51]. However, as already
discussed in the main text, all measurements in this work
have been done at a constant dc voltage of 5 V where all
modes are tuned sufficiently far from resonance so that
the coupling is effectively weak and the out-of-plane and
in-plane modes can be considered as independent eigenm-
odes of the system.
Besides higher harmonic eigenmodes, also the modes of

additional nanostrings on the sample need to be considered
to obtain a complete picture. The sample hosts a series of
12 nanostring resonators with lengths ranging from 33 μm
to 55 μm, which are shunted between the same pair of
control electrodes. Out of the twelve resonators, six are
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working, including the longest one, which is the nanostring
we are focusing on in this work. As it is the longest
nanostring on the sample, its OOP mode is the lowest-
frequency eigenmode found. Note that the fundamental in-
plane eigenmode occurs at a slightly higher eigenfrequency
as a result of the nanostring’s width slightly exceeding its
thickness. The full mode spectrum of the sample is shown
in Fig. 6. The drive frequency was swept up to a frequency
of 36 MHz while recording the response of the forced
vibrations at the drive frequency. The measurement clearly
demonstrates that while there are many mechanical

modes on the sample, there is no 1∶n internal resonance
between the OOP mode under investigation and any of
the other modes.
Figure 7 shows a frequency response measurement

where we sweep the drive frequency around the eigenfre-
quency of the OOP mode under investigation in the regime
of self-sustained vibrations in the rotating frame, along with
the response of the system at 2, 3, and 4 times the drive
frequency. The only signatures found at higher frequencies
are the second overtone at exactly twice the drive fre-
quency. We could not resolve the third and fourth over-
tones, presumably because of their small amplitudes for the
drive power used. The peak at approximately 19.56 MHz is
seen with and without drive and is most likely a feature
of the instrument. This observation confirms and extends
the conclusion drawn from Fig. 1(d) of the main text that
no additional modes are nonlinearly excited, even when
driving slightly off resonance.
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