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Chapter 2

Fluctuations in Nonlinear Systems Driven by
Colored Noise

Mark Dykman and ‘Katja Lindenberg

Abstract

We consider the spectral density of the fluctuations as well as rare large
fluctuations in nonlinear systems driven by colored Gaussian noise. Special emphasis
is placed on the review of recent results on the application of the method of optimal
paths to the analysis of large fluctuations. We formulate the variational problems for
the optimal paths along which the system moves with an overwhelming probability in
the course of a fluctuation that brings the system to a given point in the phase space,
and also in the course of the escape from a metastable state. The formulation relies
on knowledge of the shape of the power spectrum of the noise, which can usually be
determined experimentally. The solutions of the variational equations are considered
for various shapes of the power spectrum, including the case of a spectrum with a
sharp peak at finite frequency (quasi-monochromatic noise) where qualitative features
of large fluctuations related to the noise color are distinctly pronounced (e.g., the
occurrence of multiple crossings of a saddle point by the optimal path without a
transition to another stable state). We analyze the problem of the probability density
for the system to pass a given point at a given time before arrival at another point
in the course of a large fluctuation (the pre-history problem). The maximum of this
probability density lies on the optimal path. The results of recent analog simulations
of large fluctuations in systems driven by Gaussian noise, including ones where the
optimal paths have been visualized via the analysis of the pre-history, are discussed.

2.1. Introduction

The understanding of the pattern of fluctuations in dynamical systems
driven by noise poses one of the fundamental problems of physical kinetics.
The problem was formulated originally by Einstein (1] and Smoluchowski
[2] in the description of the Brownian motion of a macroparticle. It is
of immediate current interest in the context of a vast array of physical
phenomena, starting with transport phenomena in solids (for instance, the
kinetics of electrons interacting with phonons and/or impurities) (3], [4], and
including kinetics of laser modes [5], [6] and kinetics of Josephson junctions
[7]. The problem of noise-induced fluctuations is also immediately related to
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42 CONTEMPORARY PROBLEMS IN STATISTICAL PHYSICS

physical measurements: a physical instrument is a dynamical system driven by
fluctuations from various sources, including the very quantity being measured.

The features of the fluctuations in a system depend on the character and
intensity of the driving noise f(t) and the way in which it couples to the
system. In general, f(t) may depend on the state of the system, i.e., the
properties of the noise may be different in different states. Most noise of
physical relevance can be described fully by its correlation functions (f(t)),
(f(t)f(t2)),- .-, (f(t1) -~ f(tn)),..., where the brackets (---) represent an
average over an ensemble of statistically equivalent realizations of the noise.
In many cases the correlation functions are mutually interrelated. A common
situation arises when the noise driving a system originates from its coupling to
a macroscopic system of N dynamical degrees of freedom, with N > 1 (e.g.,
a thermal bath). Such noise is typically a superposition of a large number of
“elementary” fields or forces,

N
(2.1) F#&) = fi®).
i=1

In the simplest cases the f;(t) with different ¢ refer to different elementary
excitations in the bath and are mutually uncorrelated. If this is the case, then
under some conditions (e.g., if the fi(t) are each of order N~'/2), in the limit
N — o0, f(t) is Gaussian according to the central limit theorem of probability
theory [8], [9]. In this case all the correlation functions can be expressed in
terms of the two lowest-order ones. We shall deal only with stationary noise,
i.e., noise whose statistical distribution does not change with time. The only
characteristic of a stationary zero-mean ((f(t)) = 0) Gaussian noise is the time
correlation function ¢(t) or, equivalently, its Fourier transform o(w),

(22) 80 =GOSO, 3w = [ dee oo,

All odd-order correlators vanish, while all the even-order ones are expressed in
terms of ¢(t). For example, the fourth-order correlator is

(F(@1)f(2) f(t3) f(ta)) = d(t1 — t2)B(ts — ta) ,
(2.3) + ¢(t1 — t3)p(t2 — ta) + P(t1 — ta)P(t2 — t3).

(It is easy to understand (2.3) if f(t) is equal to the sum of a large number
N of weak uncorrelated forces f;(t) o« N~!/2 by noting that the omission of
N terms in the sums with more than two coinciding ¢ (or, for that matter.
of any N terms) introduces only small errors of O(N~!) in the fourth-order
correlator.)

The function ®(w) in (2.2) is called the power spectrum of the noise f(¢)—
it is precisely ®(w) that is often measured to characterize the noise. The
measurements usually assume that the noise is ergodic. i.e.. that an ensemble
average is equivalent to a time average. If this assumption is valid (as is
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usually the case in physical systems), then according to the Wiener-Khintchine
theorem [5], (6]
to 2

dt f(t)exp(iwt)| ,

—to

(2.4) ®(w) = lim —

to—00 2t0

and measurement of ®(w) simply involves recording f(t) over a sufficiently
long time 2t, and calculating a Fourier transform.

Since ®(w) is a physical observable it is advantageous to express the
characteristics of a noise-driven system in terms of it. The shape of the
power spectrum depends on the source of the noise. For example, if the
noise results from coupling to a thermal bath then ®(w) is determined by
the density of states of the elementary excitations of the bath, the coupling
constants between the bath and the system of interest, and the temperature.
The shape of ®(w) is used to differentiate, very roughly, between two types
of noise: white and colored. White noise is characterized by a totally flat
spectrum ®(w) = const., in analogy with white radiation where all spectral
components are of the same intensity. Noise whose spectrum deviates from a
constant value is called “colored” (an additional reason for using optical terms
in the context of noise is that “normal” incoherent radiation is itself noisy; the
electric and magnetic fields fluctuate about their zero-average values).

Strictly speaking, any physical noise is colored: ®(w) must necessarily
vanish as |w| — 0o, since otherwise the time correlation function ¢(t) would
diverge as t — 0, i.e., the mean-square value of the noise would be infinite.
However, if all the characteristic eigenfrequencies and reciprocal relaxation
times of a noise-driven system are small compared to the frequencies over
which ®(w) changes, the effects of the color of the noise are expected to be
minor and the noise can be assumed to be white. A macroscopic Brownian
particle in a liquid is a typical example where the latter approximation holds;
the characteristic reciprocal duration of the collisions with solvent molecules
that give rise to the noisy forces acting on the Brownian particle is of order
10'3 sec™! and exceeds by many orders of magnitude the typical frequencies
of mechanical motion of the particle. :

Fluctuations in systems driven by white noise have been investigated for
nearly 90 years (see [1], [2], [6], [9]-[15], and references therein), and the
principal aspects of the problem are generally fairly well understood (although
there are still problems to be solved, both numerical and qualitative, as
discussed subsequently). A “massive attack” on the effects of the color of
noise started only about a decade ago. Although several topical reviews on the
subject have already appeared [15]-[17], a number of important new results
have been obtained since. Some of these results and their underlying concepts
are outlined herein. We primarily consider the effects of weak noise, i.e., the
situation where the characteristic noise intensity D given by the maximum
value of the power spectrum of the noise,

(2.5) D = ®pax(w),
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is small (in all states of the system if the noise is state-dependent), so that
the root-mean-square fluctuational deviations of a noise-driven system from
its attractor (or attractors, if several of them coexist) are small compared
to the distances between the attractors and to other characteristic length
scales of the phase space of the system. Our aim is to demonstrate mainly
the qualitative features of the pattern of fluctuations; in this spirit we shall
avoid rigorous mathematical proofs and limit ourselves to physical ideas and
to “physical rigor.” We note that in many papers the terminology “colored
noise” is reserved for exponentially correlated noise,

Dt
(2.6) o(t) = 5.° 61/t
The analysis below is not limited to this particular type of colored noise.

A function that characterizes much of the behavior of a fluctuating system
is the statistical distribution, i.e., the stationary probability density (the
probability density achieved as ¢ — o0). The shape of this distribution
depends substantially on whether dissipation and fluctuations in the system
are both due to its coupling to a thermal bath (i.e., whether the noise is
of thermal origin), or whether the driving noise is of nonthermal origin. In
the first case there is a relation between the noise driving the system and
the dissipative forces that extract energy from the system (cf. §2.2). As a
consequence, the shape of the stationary distribution of the system (which
in this case is an equilibrium distribution in the thermodynamic sense) for
sufficiently weak coupling is Gibbsian regardless of the shape of the power
spectrum ®(w). If the power spectrum is not flat, i.e., if the noise is colored,
the relaxation toward the equilibrium state occurs via an equation of motion
that is not time-local (contains explicit memory terms), that is, the relaxation
is “retarded.” The fluctuation-dissipation relation can sometimes be described
phenomenologically, as in the case of Brownian motion [1] (cf. [18] and [19]
and references therein for a discussion of fluctuation-dissipation relations in
systems driven by colored noise). In some cases the noise and dissipation can
be calculated from a microscopic model of the dynamical system of interest,
a heat bath, and their coupling. The latter approach was first applied by
Bogoliubov [20] to the problem of a linear oscillator coupled to a phonon
bath; the corresponding quantum analysis of the dynamics of a linear oscillator
coupled to a heat bath was first given by Schwinger [21] (see also Senitzky [22]).

If the noise driving a system is of nonthermal origin, the statistical
distribution of the system in the stationary state (if indeed one exists) is non-
Gibbsian. However, for sufficiently weak noise and nonbifurcational parameter
values, the distribution still has a maximum (maxima) at the attractor(s)
and is Gaussian near the maximum (maxima), just as in the case of thermal
equilibrium. The dependence of the parameters of the Gaussian distribution(s)
on the shape of the power spectrum of the driving noise is discussed briefly in
§2.2. The spectral densities of the fluctuations of systems driven by thermal
noise and by nonthermal colored noise are also considered there.
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It is not only important to understand the behavior of a fluctuating system
near its most probable states; the tails of the distribution are also of great
interest for various experimental measures. The tails describe the distribution
for states of the system that are reached only rarely and come about mainly
from occasional large “outbursts” of noise that “push” the system far away
from the small-fluctuation region in phase space. In §2.3 we present an idea
for a systematic approach to the problem of occasional large fluctuations in
systems driven by Gaussian noise with a power spectrum of arbitrary shape.
The approach is based on the concept of the optimal path, i.e., on the physical
assumption (proved a posteriori) that the paths along which the system moves
to a given point in the course of fluctuational “outbursts” are concentrated
around a particular most probable path, called the optimal path.

In §2.4 the application of the method of the optimal path is illustrated via
an example of a system driven by “strongly colored” (quasi-monochromatic)
noise, i.e., noise with a power spectrum that exhibits a narrow peak at a finite
frequency. The pattern of fluctuations caused by such a noise differs drastically
from that of a white-noise-driven system.

In §2.5 we further explore the idea of optimal paths by investigating
the statistical distribution of the paths along which a system arrives at a
given point. The corresponding pre-history problem is formulated, and recent
experimental data on the first direct observation of optimal paths is discussed.

A qualitative feature of the kinetics of bistable (and multistable) systems
is the onset of noise-induced transitions (noise-induced switching) from one
(meta)stable state to another. Such transitions occur as a result of large
fluctuations, and they can be analyzed within the scope of the method of
the optimal path. The analysis and its application to systems driven by noise
with power spectra of various shapes, including exponentially correlated and
quasi-monochromatic noise, are considered in §2.6. Some further perspectives
for future research in the area of large fluctuations in systems driven by weak
noise are outlined in §2.7.

2.2. Spectral density of fluctuations and statistical distribution near
a stable state

A ubiquitous (but by no means all-inclusive) description of the dynamics of
a system driven by nonthermal noise is a set of coupled stochastic differential
equations (frequently called Langevin equations) of the form

(2.7) Zn=—gn(x)+ fu(t), n=12,...,L, T = (z1, T2,.-., TL)-
Here the g,(x) are functions of the state @ of the system at time t. The

fa(t) are the components of a zero-mean ((f,(t)) = 0) Gaussian noise, with
correlation functions and spectral densities

28)  dun(® = O In0),  Bam) = [ dte* Gun(t).
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Thus, the components f,(t) for different n may be interrelated, as embodied
in those correlators @nm(t) that do not vanish. The f,(t) in (2.7) are assumed
to be independent of the state @ of the system, i.e., the noise is “additive.”
In general the noise is not of thermal origin, and in that case the dissipative
contributions to g,(x) are not related to the noise fn(t). Systems driven by
noise of thermal origin are discussed in §2.2.3.

If the noise is sufficiently weak, the systemn experiences mostly small
fluctuations about its stable state(s) (attractor(s)). We shall only consider
systems with attractors of the simplest form, namely, fixed points in phase
space (foci or nodes). The generalization to limit cycle attractors (tori) is
straightforward, but the case of more complicated attractors associated with
dynamical chaos (see Thompson and Stewart {23] and references therein) and
the interplay of noise-induced fluctuations and dynamical chaos lie outside the
scope of the present chapter.

2.2.1. Spectral densities of fluctuations in nonthermal systems. Let
us begin by considering the spectral densities of the fluctuations of the variables
L1, L2y--+5 TLy

(29) Gom(@) = [ dt €1 Qum),
with ‘
(2.10) Qum(®) = {(@n(t) — 53 (2m(0) — z30)) .

These experimentally accessible spectral densities constitute a useful way to
characterize the dynamical behavior of the fluctuating system in the stationary
state. Here x* is the stable state of the noiseless system, that is, the stationary
solution of (2.7) in the absence of the noise:

(2.11) gn(z*) = 0.

Simple expressions for the Qnm(w) can be obtained by noting that, according
to linear response theory, the response of the system to weak forces, including
random ones (i.e., noise of low intensity), is given in terms of linear suscep-
tibilities xnm(t) {24]. Specifically, the noise-induced change bxp(t) in z,, is of
the form

t
(2.12) 52a(t) = /_ _dr Xt = 7) fin(7).

If one identifies 6x,(t) with the difference z,(t) — 3¢ that appears in (2.10),
one finds from (2.9), (2.10), and (2.12) that the spectral densities Qnm(w) of
the fluctuations can be expressed in terms of the power spectra ®,,,(w) of the
components of the noise as

(2.13) Qum(@) = Y Grnt’ (@) B (),

n'm/
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where

(2.14) G (W) = X (@) X (@)

and Xnm(w) is the one-sided Fourier transform of the linear susceptibility,

(2.15) Xnm(w) = /Ooo dt e Xnm/(t)-

Care should be taken when evaluating the spectral densities of the fluctuations
from the formulas (2.9) and (2.10) since (2.7) is time-irreversible and therefore
fluctuations and initial values of the z, are eventually “forgotten” when time
goes forward but not when time goes backward. In (2.9) and (2.10) it has been
assumed that the system was “prepared” at { = —oo.

The susceptibilities X,m(w) can be calculated by diagonalizing the matrix
g whose elements are gnm = (0gn/0Tm)g—gs. In terms of the unitary matrix
A that performs the diagonalizing transformation,

(2.16) > A gwm Amim = Qnbam,  detA =1,

n'm!

we can write

(2.17) Xnm{w) = ZAnn/A;,Im(an/ —iw)7 L.

Because of the assumed stability of the state !, the real parts of the
eigenvalues o, of the matrix g are positive.

Equations (2.13)~(2.17) describe in explicit form the dependence of the
spectral densities of the fluctuations of a noise-driven system on the shape of
the power spectrum of the noise: @nm(w) is simply the sum of the products
of the spectral components @,/ (w) of the noise and the Green functions
G™™ (). The Green function G™'™ () expresses the spectral density of
fluctuations of the variables z,,, T, if the driving noise is white with correlators
(F(®) fi(#)) = DE(t—t')8kp 6y . For a one-dimensional system (L = 1in (2.7)),
the relations (2.13) and (2.14) reduce to

(2.18) Qw) = Q1 (w) = G(w)P(w),
where

(2.19) O(w) = P11 (w).

and

(2200 G =GlW) =@+ aza =g (.

The simple and instructive expression (2.18) also holds for the spectral density
of the fluctuations of a particle with coordinate g and momentum p = ¢ driven
by colored noise and described by the equation of motion

(2.21) g+ 20g+U'(q) = f(t).
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This equation of motion can be written in the form (2.7) with z; = q, g; = p,
z2 = p, and go = —2I'p — U’(q). Note that only z3 is directly driven by the
colored noise; the equation for x; contains no explicit noise term. The spectral
density of the fluctuations of the coordinate,

2.22) QW) = [ dte ! ((a(t) - ¢*) (a0) - ¢*),
is given by (2.18) with
(223 G =[P WP+, o = [0 (),

Here g is the position of the particle at the minimum of the potential U(q),
i.e., the solution of U’(¢%) = 0.

The relations (2.13) between the spectral densities of the fluctuations of
the system and the noise, and, in particular, the special case (2.18), show
that the system “filters” the noise, and that the spectrum of a system driven
by colored noise reflects features of the spectrum of the noise as well as
characteristics of the system itself. This makes it possible to use such systems
in a judicious way to investigate the power spectrum of an unknown noise.
A particularly useful system for this purpose is the underdamped oscillator
described by (2.21) with a tunable frequency w, and with a damping " (the
“bandwidth” of the function G(w)) that is much smaller than w, and than the
characteristic bandwidth of the power spectrum ®(w) under investigation. In
this case the spectral density Q(w) of the fluctuations of the oscillator contains
a narrow peak near w, of halfwidth I' and height ®(w,)/4"%w2. We note,
however, that a delicate problem may arise if the noise is not very weak.
As pointed out by Ivanov et al. [25] in the context of the problem of the
absorption spectra of localized vibrations of impurities in crystals and analyzed
in detail by Dykman and Krivoglaz [26] (see also [27]), an anharmonicity in
the potential U(q) of a noise-driven underdamped oscillator may result in a
nonlinear response to noise as evidenced by a strong distortion of the peak of
the spectral density of the fluctuations. The distortion is caused by the fact
that the anharmonicity leads to an amplitude-dependence of the vibration
frequency. As a consequence, noise-induced fluctuations of the amplitude
cause fluctuational frequency straggling. If this straggling exceeds the small
frequency “uncertainty” I' associated with the damping, the shape of the
spectral peak is substantially modified from the Lorentzian shape obtained
from the linear approximation, and its height differs from ®(w,)/4Tw?2. The
noise-induced distortion of the peak of Q(w) as described by Dykman and
Krivoglaz [26] has been observed and investigated in detail quantitatively in
analog electronic experiments [28]. The intensity of the noise that leads to a
distortion of the spectrum is much smaller than that resulting in the distortion
of the probability distribution caused by the nonlinearity of the potential.

One general consequence of (2.18)—(2.20) is that the time correlation
function of a one-degree-of-freedom system driven by colored noise is a smooth
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function near t = 0 (cf. Sancho [29], who considers the particular case of
exponentially correlated noise). As can be seen from (2.10) and (2.18)—(2.20),
this function is given by the expression

(2.24) Q) =Qui = o [ dwetr

o? +w?’

If ®(w) were constant (white noise), the derivative Q'(t) would be singular as
t — 0 since the integral over w of w/(a? + w?) diverges. If, however, ®(w)
decays to zero with increasing w, as is the case for any physmal noise, this
derivative necessarily vanishes since the integral of w®(w)/(a? +w?) converges
and ®(w) is an even function of w (and also the stationary correlation function
Q(t) is an even function of t).

2.2.2. Statistical distribution near the maximum. The expressions
obtained above in the case of weak noise lead in a straightforward way to an
expression of the parameters of the statistical distribution p(x) of the system
near a maximum in terms of the spectral densities ®pm(w). It follows from
(2.10) that the components B, of the matrix 3 formed from the means of the
products of the displacement components are given by

Brm = Qum(0) = ((€n(0) — z3) (2 (0) — z72))
1 [ ~
(2.25) = /_ o Qun(w).
By the ergodic hypothesis that permits the interchange of time averages and

ensemble averages, one can interpret the matrix elements G, as second-order
moments of the statistical distribution p(x):

(2.26) Brum = / da (2 — o) (@m — 228) p().

Since the driving noise is zero-mean Gaussian, the higher moments of p(x) can
also be expressed in terms of the (pm,. Indeed, according to (2.12),

<(:L‘n1 - :Effl) T (xnk - xffk >

(2.27) / dty - - dtg Xnymy (—t1) + Xngme (— k)
{m.’l}

X (fm (t1) - i (8)),

and therefore all the odd moments of p(x) vanish while the relationships among
the even moments are similar to those of the noise. For example,

<(-’En1 - :L‘fztl e (xn4 - x%f;))

(2.28)
= ﬂnlnzﬁn:ﬂu + ﬂnlnsﬂnz'm + ﬁn1n4ﬁn2n3
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(cf. (2.3)). This implies that the statistical distribution p(x) is Gaussian near
the maximum, i.e., of the form [24]

1
P®) = Gy (derp) 2

(229) X exXp (__ Zﬁnm Zt) (l‘m - lfri)) .

The expression for the distribution takes an even simpler form for a one-
dimensional system. It follows from (2.29) that in this case

(2.30) p(z) = (2n8)~V2e~@=="P128 g =g, = Q(0),

with = z; (an alternative derivation of (2.30) based on the path-integral
formulation is presented in §2.3).

An important feature of the statistical distribution arises from the fact that
the spectral density of the noise ®(w) and hence J scale as D. As a result, it
is evident in (2.29) and (2.30) that the width of the Gaussian distribution is
proportional to the noise intensity D, i.e., the distribution becomes increasingly
narrower with decreasing noise. The distribution also becomes narrower as the
maximum of the power spectrum of the noise moves away from the range of
large susceptibility of the system, i.e., the range where the Green functions
|GT™ ()| are large.

2.2.3. Spectral density of fluctuations in thermal equilibrium.
Thermal equilibrium fluctuations in a dynamical system arise through its cou-
pling to a thermal bath which is itself a dynamical system of many degrees
of freedom [24]. In some cases, the description of the entire coupled system
can be reduced to a set of stochastic equations of motion for the dynamical
variables of interest in which the effects of the bath appear as potential shifts
(and/or mass renormalizations), dissipative contributions, and random forces
(noise). However, if the random forces resulting from this reduction have fi-
nite correlation times (colored noise), the form of these equations differs from
(2.7) even in the simplest cases. Correspondingly, the shape of the spectral
density of the fluctuations of the system differs from that given in §2.2.1. We
briefly illustrate these points through a simple specific “generic” model [5], [6],
[20]-[22], [30], in which the coupling between the system and the bath is as-
sumed to be linear in the coordinate of the system. The coupled system-bath
Hamiltonian function H for this model is of the form

(2.31) H = Hy + Hy + H;,
where
1
(2.32) Ho=:p*+U(q), Hi=-¢E.

2
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Here q and p are the coordinate and momentum of the system, Ho and H,
are, respectively, the Hamiltonian functions of the system and the bath in
the absence of coupling, U(q) is the potential energy of the isolated system,
and = is only a function of the dynamical variables of the bath, so that the
dependence of the coupling energy on the system of interest is linear in the
system coordinate q (an analysis similar to that outlined below can be carried
out for the case of coupling proportional to the momentum p).

Not only the evolution of the system but also that of the bath is affected by
the coupling between the two. If the coupling is sufficiently weak, the response
of the bath to the perturbation H; is given by linear response theory and hence
only requires consideration of the evolution of the bath in the absence of the
system. This linear response can be described with the help of a generalized
susceptibility K(t) as

¢
(2.33) =) = 1@+ [ drK(t=r)a),

—00
where it has been assumed that the coupling was switched on at ¢ = —oo.
Here f(t) is the instantaneous value of the bath-dependent quantity Z in the
absence of the bath-system coupling. This instantaneous value fluctuates in
time. If = is itself a sum of many “elementary” uncorrelated contributions
arising from different degrees of freedom of the bath (e.g., a bath of oscillators
or particles each interacting individually with the system), then the discussion
in the Introduction leads to the conclusion that f(t) is a Gaussian random
process which we take to have a zero-mean (a nonzero-mean can be removed
by a proper redefinition of variables). Since the bath has been evolving since
t = —oo, the random process is stationary. The second term in (2.33) arises
from the system-bath interaction and represents the way in which the bath
dissipates excess energy of the system that is introduced by the interaction. It
follows from the fluctuation-dissipation theorem [24] that the Fourier transform
of the susceptibility K(t) is related to the power spectrum ®(w) of the noise
f(t) and the temperature 7' of the bath (in energy units) as

~ 1 o0 0 -~ w
(234) ReK(w) = —=P /0 Ny, MEW) = 550(w),
where
(2.35) Rw) = / dt et K (t)
0

and P denotes the principal value integral. The expressions (2.32) and (2.33)
lead to a stochastic equation for the dynamical variable g,

t |
(2.36) i+U'(q) - [ _drK(t-n)alr) = £0).

The integral in (2.36) describes a dissipative delayed “self-action” of the system
mediated by the bath. According to (2.34) and (2.35), if the noise f(t) were
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white the susceptibility K(t) would be proportional to the derivative of the
8-function (cf. Ford et al. [30]), K(¢) o dé(t)/dt, and the integral in (2.36)
would be proportional to ¢(t), leading to the usual dissipation linear in the
instantaneous value of the momentum, as in Brownian motion (cf. (2.21)). We
note, however, that this limit leads to a self-energy divergence problem similar
to the well-known divergence encountered in quantum electrodynamics: the
real part of the susceptibility K ( ) diverges and as a result the renormalized
(because of the coupling to the bath) frequency of the small-amplitude
vibrations of the system is infinite. There is no physical significance underlying
this divergence: it can be removed in a way that is standard in quantum
electrodynamics; furthermore, it does not arise if the power spectrum of the
noisé decays to zero as w — 00, i.e., for colored noise.

An important case where the dynamics of the system can be described
within a quasi-white-noise approximation and where divergences do not arise
occurs when the coupling is weak compared not only to the characteristic
frequencies of the bath but also to those of the system: if |K(w)| is small
compared to the squared frequencies w?(E) of the eigenvibrations with energies
E < T and if the dependence of K(w) on w is smooth for w ~ w(E), the
dynamics of the energy and of the slowly varying portion of the phase of the
system on a time scale coarse-grained over t ~ w™!(E) are the same as those of
white-noise-driven Brownian vibrations. The noise intensity for such motion
is ®[w(E)] ~ const. and the friction coefficient is given by ImK [w(E)]/w(E) ~
const. (cf. Bogoliubov [20], where a corresponding microscopic derivation was
given for the first time; see also [30]). The perturbative corrections to these
results due to the color of the noise have been considered by Carmely and
Nitzan [32] (see also references therein). )

The explicit solution of (2.36) for colored noise f(t) with an arbitrary
spectrum ®(w) can be obtained when the force U’(q) is linear, or when the
noise is sufficiently weak that the force can be linearized about the equilibrium
position ¢%, U'(q) ~ w?(g—¢*). The spectral density of the fluctuations within
this approximation can be seen from (2.36) to be given by

O(w)
w2 - w? — K(w)?

It is instructive to compare (2.37) with the undelayed relaxation result (2.18)
with (2.23). In both cases the spectral density @(w) is proportional to the
power spectrum ®(w) of the driving noise, but the coefficients are different.
In particular, in (2.37) the form of the coefficient depends, through K(w), on
the shape of ®(w) itsclf. Therefore, if the coupling is sufficiently strong that
K (W) > w2, the structure of ®(w) near the maximum is not reflected directly
in Q(w). However, for weak coupling and low-frequency noise, where both
|K (w)|'/? and the characteristic width of ®(w) are small compared to w,, the
features of ®(w) are clearly reproduced in Q(w).

(2.37) Q) =
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We note that (2.36) and (2.37) hold regardless of the inter-relation between
the characteristic frequencies of the system and |K(w)|'/? provided that the
system-bath coupling is weak compared to the characteristic frequencies of the
bath. At the same time, (2.36) is ezact for a particular model of a harmonic
oscillator and a bath composed of a set of harmonic oscillators with a coupling
function = in (2.32) that is linear in the bath oscillator coordinates [30] (cf.
[33], where Q(w) was given for the corresponding quantum problem).

Thermal equilibrium fluctuations in systems described by (2.36) have been
investigated for various forms of the potential U(g) and of the spectrum ®(w)
(sometimes the “retarded” term in (2.36) is written in a form where g(7)
is replaced by p(r) and the kernel is transformed accordingly; cf. [34] and
references therein). Among the most recent results related to the color of the
noise we mention the observation by means of analog electronic simulation
[35] of the onset of an additional peak in the spectral density of the velocity
fluctuations (i.e., of the fluctuations in ¢) in a system with a periodic cosine
potential. The simulated system was described by (2.36) with a cosine potential
U(q) and with exponentially correlated noise (cf. (2.6)), but the effects of the
renormalization of the potential and the mass related to the real part of K(w)
were omitted. A double-peaked spectrum was observed (see Fig. 2.1), and the
peaks were attributed to intrawell vibrations and to the interplay of motion
over the barrier and the color of the noise.

To understand this behavior, consider the special case of a harmonic
oscillator described by (2.37). The spectral density of the velocity fluctuations
is given by w?Q(w). If the spectrum of the noise is of the form d(w) =
AT /(14 w?t?) and we neglect ReK (w) in (2.37), then w?Q(w) exhibits a sharp
peak at the oscillator frequency w, provided that w, > A/4(1+ w2t?). On the
other hand, for small w, such that w, < (A4/ t2)1/3 and At. > 2, the spectrum
w?Q(w) shows a peak at the frequency w =~ (A4/ t2)1/3. This peak only appears
when the noise is colored and does not arise for white noise. The motion in a
cosine potential is characterized by a broad spectrum of eigenfrequencies, all
the way down to zero, and therefore both of these peaks may coexist. The
position of the color-induced peak in Fig. 2.1 is satisfactorily reproduced by a
calculation using a flat potential U(q) = const. (equivalent to setting wo = 0
in w?Q(w)) with the appropriate noise parameter values [35].

The results of this section indicate that the statistical distribution of the
fluctuations of a noise-driven system near its maxima and the spectral density
of the fluctuations can be found explicitly for sufficiently weak colored noise.
Explicit solutions can be found for systems driven Ly nonthermal noise (with
unretarded relaxation). and also for equilibrium systems driven by thermal
noise (whose relaxation is retarded). The shape of the distribution near a
maximum is Gaussian in all cases. while the shape of the spectral density
of the fluctuations is given by relatively simple expressions and is in general
proportional to the power spectrum of the driving noise. with the coefficient
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w/w,

F1G. 2.1. Spectral density of fluctuations of the velocity of a system in “thermal
equilibrium” at “temperature” T fluctuating in a cosine potential U (x} = ~Acosz as
measured in an analog experiment (the circles show the results of a digital simulation)
(35]. The low-frequency peak is due to the color of the noise. The data are for
exponentially correlated noise, with t. = 10/ VA, D =2AVA, T = A; the frequency
is measured in units of the eigenfrequency of intrawell vibrations.

depending on the frequency and, in the case of thermal fluctuations, on the
shape of the power spectrum of the noise.

2.3. Large fluctuations: Method of the optimal path

The small fluctuations analyzed in §2.2 are the most probable fluctuations,
and as such they determine the noise-induced “smearing” of the system about
its stable positions. Another important problem for noise-driven systems is
that of determining the probabilities of occasional large fluctuations. Large
fluctuations result from “outbursts” of the driving noise which cause the system
to move far from the stable states in phase space. These large fluctuations
determine the shape of the tails of the statistical distribution of the system
where the distribution is small. In this section we study the probabilities
of large fluctuations for monostable systems driven by colored noise. To
demonstrate the ideas and to focus sharply on those results that are specifically
related to the color of the noise we concentrate on the simplest type of systems,
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namely, those described by the equation of motion (2.7) with a single dynamical
variable,

(2.38) @+ U'(z) = f(t).

We shall call z a “spatial” variable.

If the system is monostable, i.e., if the potential U(x) has only one
minimum at z = z® [U'(z*%) = 0], its intrinsic motion is characterized by
the relaxation time t, = 1/U"(z%). The spatial scale of the most probable
fluctuations of the system is given by the root-mean-square displacement Az =
(31/2 about the stable position z%t. According to (2.25), Az is proportional to
the square root of the noise intensity D (cf. the last paragraph in §2.2.2). On
the other hand, the decay of correlations of the noise is characterized by the
correlation time t. given by the reciprocal width of the narrowest peak (or dip)
of the power spectrum ®(w) of the noise defined in (2.2). (In general, colored
noise may be characterized by several times equal to the reciprocal positions
(excluding the peak at w = 0 if present) and widths of all the peaks of ®(w),
but it is obviously the smallest of the reciprocal widths that gives the time
over which a value of f(t) is forgotten.)

“Large” fluctuations are those that cause the system to move away from
x5t by a distance that substantially exceeds Az. Apart from the spatial scale,
there is also a time scale associated with large fluctuations. It is obvious that
the sojourn in the vicinity of a remote point z and the return to z%t takes a
time of order

(2.39) to = max(tr, tc).

Large noise “outbursts” that cause the system to stray far away from the stable
state % are rare. If the farthest state z reached as a consequence of such an
outburst is sufficiently far from z°¢, then the time T'(z) between these large
noise “outbursts” substantially exceeds t,. It is easy to imagine the character
of such large fluctuations. During a time t ~ T(z) (but ¢ > t,) the system
fluctuates mostly near the stable state. Then the system makes an “excursion”
to z of characteristic duration t,. The successive excursions to z are thus
statistically independent of one another, since the previous excursion has been
forgotten by the time the next excursion occurs. Of course, in addition to the
excursions to a given x, other excursions to remote points may be taking place.
The duration of each of them is of order t,, since this is the only time that
characterizes the correlation of fluctuations or the deterministic evolution of the
system (whichever takes more time). The intervals between excursions to any
extreme value that is sufficiently far from the stable state are also statistically
independent of one another. It is evident from the “physical” notion of the
probability p(z)dz as the relative length of time spent in a small vicinity dx
around the point z (ergodic hypothesis) that p(z)/p(z**) ~ to/T(x). It is also
clear from the above picture that T(z) might be called a mean first-passage



56 CONTEMPORARY PROBLEMS IN STATISTICAL PHYSICS

time (MFPT) to the point x from the regime of small fluctuations about the
stable state.

A typical trajectory x(t) of a noise-driven system that illustrates the
arguments presented above is sketched in Fig. 2.2. One can single out a
path (a portion of this trajectory) that arrives at a given x having started
at some point within Az ~ D'/? of 2%t (it is not useful to specify the starting
point of the motion to an accuracy sharper than the fluctuational smearing
of r*t). Each such path is noise-driven and therefore random. Furthermore,
different paths that arrive at r are mutually independent. Therefore. these
paths can themselves be described as random processes. and one can associate
a probability density with the realization of a particular path x(¢). This
probability density is a functional. p[x(t)]. since the random quantity is itself
a function and not a variable [36] (see also [37] and references therein).

Since the point z lies far from the attractor. the probability density for
the realization of any particular path that reaches r at time ¢ is small.
Furthermore, the probability densities for paths that on their way to x
pass different points at a given time prior to reaching r differ considerably
(exponentially for systems driven by Gaussian noise) if these points differ by
an amount that substantially exceeds Arx. Therefore. one might expect that
there is a group of paths that are close to one another (lying within a range
Az of one another) along which the system is most likely to move toward
a given r at time f. One can further imagine that these paths surround an
“optimal path” which represents the most probable path for arrival at r at

x(t)

Lo N WOZN ,a\\\//;’\kj/)/\\\\\’,/ t

F1c. 2.2. A sketch of the trajectory x(t) of a noise-driven system ecxhibiting a
large occasional fluctuation.
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time t. Recent experimental data on the visualization of an optimal path in
a noise-driven system, and the related problem of the motion on the way to a
given point (the pre-history problem) are considered in §2.5.

As shown below, the probability density that the system is found in a
state z (the statistical distribution p(x)) in a system driven by weak Gaussian
noise decreases exponentially sharply with increasing separation |z — z%t|. It is
therefore important to be able to calculate p(x) at least to logarithmic accuracy,
i.e., to find the leading terms in Inp(x). To do this it suffices to calculate only
the probability density for the realization of the optimal path. The ideas
underlying this calculation are outlined in the next subsection.

2.3.1. Variational problem for the optimal path. A convenient ap-
proach to the analysis of large fluctuations in noise-driven systems is based
[33], [38] on Feynman’s idea [36] of the direct inter-relation between the prob-
ability densities of the paths of the system and those of the noise (see also
[39]-[45]). This inter-relation arises from the fact that each path of the noise
results in an associated path of the dynamical variables; in particular, each
path f(¢) in (2.38) results in an associated path z(t). As a consequence, the
probability density for reaching a given point in the phase space of the sys-
tem at a given instant is determined by the integral of the probability density
functional for the noise over those noise trajectories that bring the system to
that point at that instant. For a point that is remote from the stable state,
the probability densities for all appropriate trajectories of the noise (and of
the system) are very small and, as noted earlier (see also below), for Gaussian
noise the probability densities differ exponentially for different trajectories.
Therefore, the integral over the paths can be calculated by the method of
steepest descent, and it is precisely the optimal path that corresponds to the
extremal solution. The path-integral approach was applied recently to large
fluctuations in colored-noise-driven systems in several papers in addition to
those cited above [46], [47].

To find the stationary distribution p(z) of a monostable system it is
convenient [38] to express it in terms of the transition probability density
w(z, 0; zq, t,) for the transition from a point z, occupied at some instant
te < 0 to the point‘x at the instant ¢ = 0. Since the initial state of the system
and of the noise are forgotten over the time interval ¢, given in (2.39), one has

(2.40) p(z) = w(zx,0; x4, t,), —tg > to.

The transition probability density w can in turn be written in terms of a path
integral over the trajectories of the driving noise. For the system (2.38),

Ja(t)=z, DF (B)lf(£)]6]2(0) — 7]
I Df)plf ()] '

Here p[f(t)] is the probability density functional for the noise trajectories f(t).
Equation (2.41) expresses the fact that w(z,0; z,, t,) is the integral over all

(2.41) w(z,0; Zq, ta) =
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realizations of the noise f(¢) which move the coordinate z(t) from the value z,
at t =t, to z at t = 0. The weighting factor p[f(¢)] gives the probability of a
realization, and the denominator in (2.41) is simply a normalization factor.

For Gaussian noise the probability density functional p[f(t)] is Gaussian
[36], i.e., it is exponential in a bilinear functional of f(t). For white noise with
®(w) = D the form of this functional can be argued as follows. We begin by
discretizing the noise f(t) into a sequence of values f(t;) where A =t;41 — t;
is very small (A — 0). The quantities f(¢;) are random numbers rather than
random functions. If we carry out this discretization process for white zero-
mean Gaussian noise of intensity D such that (f(¢) f(t')) = Dé(t — t'), we
obtain (f(t;) f(t;)) = (D/A)éi;. The distribution function of the f(t;) (which
is not a functional) to within a normalization factor is of the form

(2.42) Pl f(t:) -] = exp (—-2% zﬂ(ti)) .

In the limit A — 0 the multivariable distribution function (2.42) goes over into
the probability density functional

243) O] = fim Pl f) ] = e (55 [at20)).

The path-integral formalism was used for white noise by Wiener [48].

When the noise driving the system is colored, the form of the exponent
in the expression for p[f(¢)] is more complicated. It is important to note,
however, that it can be expressed entirely in terms of the power spectrum
®(w) of the noise. To do this we observe that due to the stationarity of the
noise, the Fourier components f,, of the noise are §-correlated in frequency,

(249)  (fufu) =208(w+W)B(W),  fu= /_Zdteiwtf(w.

The form of the probability density functional g[f,] for é-correlated noise f,,
is similar to (2.43):

(2.45) ifl =exp (—5- [ dfe 2@ 1)

(cf. [36], [39], and [42]). In writing (2.45) we have taken into account that ®(w)
is an even function of w, which in turn is a consequence of the fact that the
time correlation function ¢(t) of the noise is even in t. It follows from (2.44)
and (2.45) that the probability density functional p[f(t)] can be written as

246) olf(0) =exp (55 [ dFOF(-id/aDf®), F) = 505

In going from (2.45) to (2.46) we assumed that ®~1(w) can be expanded as a
series in w that converges for finite w. The operator F(—id/dt) is then self-
adjoint within the class of functions f(¢) that are sufficiently smooth and that
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vanish as t — £o00, and for which the integral [ dt f(t)F(—id/dt)f(t) exists.
The smoothness condition on f(t) imposes no physical restriction in practice
" since noise generated by real physical sources does not have singularities.
The results considered below refer mostly to the case where ®!(w) is a
finite series in w; in particular, for exponentially correlated noise as in (2.6),
®Yw) = (1 + w?t?)/D. This corresponds to f(t) being a component of a
Markov process with the total number of components equal to the degree of
the polynomial ®~}(w) divided by two [45]. Since the power spectrum ®(w) is
positive for all w, the argument of the exponential in (2.46) is negative for all
)

The crucial point for the mathematical formulation of the method of the
optimal path in systems driven by weak Gaussian noise is that if a system such
as that described by (2.38) has been moved from a stable state in the phase
space to another point by an external force, it must have been subjected to
finite forcing applied over some time. Although different realizations of the
force can result in the same final destination of the system at time £, the point
is that the trajectories leading there are essentially deterministic, not random,
and that they are independent of the noise intensity D. Therefore, if D is
sufficiently small, the probabilities of all of these realizations are seen from
(2.46) to be exponentially small. Moreover, it is also seen from (2.46) that
the probabilities of different realizations differ exponentially from each other.
Thus one would expect there to exist a realization f(¢) which is much more
probable than the others, and it is just this realization that is associated with
the optimal path fop:(t) of the noise. The optimal path zp(t) of the system
is obtained from the equation of motion (e.g., from (2.38)) with f(t) = fop:(t).

It follows from (2.40), (2.41), and (2.46) and from the above arguments
that the statistical distribution p(z) is exponentially small for points = that
are removed from the stable state z°! by a distance that substantially exceeds
the root-mean-square displacement Az ~ ((z—z°*)%)1/2 oc D'/2. Since we have
limited ourselves to seeking p(x) to logarithmic accuracy in the noise intensity
it is convenient to write it as

(2.47) p(z) = C(z)p(a*)e /P,

Here, the argument R(z) of the exponential is just the value of the integral
(1/2) [ dt f(t)F(—id/dt)f(t) in (2.46) for the optimal path f,p(t). The factor
C(x)p(z*®) (the coefficient p(z®) is written explicitly simply for convenience) is
a smooth function of z on the scale Az o« D'/2 that allows for the normalization
(the denominator in (2.41)) and for the fact that not only the optimal path but
a “tube” of paths surrounding it contribute to a steepest-descent evaluation of
the integral in the numerator in (2.41). The width of this tube is determined
by the form of the probability density functional p of (2.46) and also by the
form of the equation of motion of the system and the value of z. It is obvious
from (2.46), however, that p[f(t)] drops sharply for those f(t) that differ from
fopt(t) by more than ~ D/2, and therefore this width is proportional to DY/2
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as well. The analysis of the prefactor C(z) in (2.47) for some limiting cases is
briefly discussed below.

To calculate the argument R(z) of the exponential in (2.47), we note that it
is the motion of the system from the stable state % to a given point = that we
are monitoring. Therefore, the integral in the argument of the exponential in
(2.46) should be minimized subject to the inter-relationship (2.38) between the
optimal path fo(t) and the associated path z.p¢(t). Therefore, R(x), fopt(t),
and z,,(t) are given by the solution of the following variational problem [45]:

R(@) = min R{f(2), 2(t) 2],
RF(E), 20 o] = 5 [ dt fOF(-id/dt) ()

0
(2.48) + /_ A + U (@) - F)),

with the boundary conditions

z(t — —00) = z%, z(t =0) =z,
f(t — +o0) =0,
(2.49) At — —00) =0,  A(t>0)y=0,

and the relation (2.38). The first term in the functional ® in (2.48) is the
argument of the exponential in (2.46) (without the coefficient —1/D). The
second term allows for the inter-relationship between f(t) and z(¢); A(t) is an
undetermined Lagrange coefficient. With this term, the functional R should
be minimized independently with respect to both f(¢) and z(t).

The boundary conditions (2.49) correspond to the physical picture of the
motion described above. Prior to arrival at a remote point z at the instant
t = 0 as a result of a large fluctuation, the system spends a long time that
substantially exceeds t, (of the order of the mean first-passage time T'(z)) near
the stable state z°t. Here the noise is weak, so that |2 — z%| o |f(t)| ox DY/2.
The boundary conditions on z(t) and f(¢) for ¢ — —oo express this fact to
within an error proportional to D1/2 (reflecting the uncertainty in the position
of the system near z* and of the noise near zero). This error can be neglected
since all contributions to R(z) that vanish when D — 0 are ignored. The
conditions (2.49) for ¢ > 0 follow from the fact that the calculation of the
statistical distribution p(z) to logarithmic accuracy does not require us to
follow the further evolution of the system once it has reached the given point
x; therefore, the driving noise f(t) can be allowed to decay back toward zero
for t > 0 “on its own” independent of z(t), and therefore one can set A(t) =0
(this boundary condition has also been taken into account in (2.48) by setting
the upper limit in the second.integral in R equal to zero). We note that A(t)
can be discontinuous for ¢t = 0. At the same time, f(t) itself and also several
derivatives of f(t) are continuous (except for the case of white noise; see below).

‘Because of this continuity, there arises a “postaction”: the decay of f(t) for
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t > 0 does influence the behavior of f(t) for ¢ < 0 even though it does not
contribute explicitly to R(x).

An alternative procedure that accounts for the inter-relationship between
f(t) and z(t) in the functional integral (2.41) is to multiply the integrand in
the numerator of (2.41) by the functional (whose effect must be accommodated
in the prefactor C(r) in (2.47))

/D:r(t)é[u'r L U(z) - f(8)] = //D (“”) Da(#)

2m
(2.50) X exp (i/dtz(t)[;i: LU (2) — f(t)]) |

Note that iDz(t) is closely related to A(t) in (2.48). The Gaussian integral
over Df(t) can then easily be calculated using standard methods [36], and the
statistical distribution p(x) to logarithmic accuracy is obtained by minimizing
the remaining functional of z(¢) and of the auxiliary variable z(¢). This
approach was used by Luciani and Verga [46]. In contrast to the differential
variational equation for the functional R in (2.48) found by the first procedure
and considered in the next subsection, the variational equations obtained from
the approach of Luciani and Verga are integral equations. An advantage
of the present formulation is that it deals with the functions f(t) and x(t)
that correspond to physical observables, so that intuitive arguments can
be used when seeking the solution for the optimal paths. The approach
also allows one to formulate the boundary conditions needed to obtain the
statistical distribution and the transition probabilities (see also §2.6) so that
the substantial difference between the two problems becomes obvious. Another
advantageous feature of the approach is that the solutions can be immediately
tested experimentally.

Since ®(w) is proportional to D, the operator F(—id/dt) = D/®(—id/dt)
in (2.48) does not change with a rescaling of the noise intensity. and therefore
the function R(x) is independent of D. The dependence of p(xr) on D as
given in (2.47) is thus of the activation type. and R(x) can be called an
“activation energy” for reaching a point x. The concept of the activation
energy is meaningful and the approximation (2.47) holds provided that

(2.51) R(z) > D.

In this case, the distribution p(x) is exponentially small for a given .r and.
as noted earlier, the average interval between successive outbursts of the noise
that bring the system to a given z (the MFPT), T'(x) ~ t, exp[R(x)/ D). greatly
exceeds both the relaxation time t, of the system and the correlation time ¢,
of the noise.

2.3.2. Variational equations and their analysis in limiting cases.
The (deterministic) set of variational equations describing the optimal paths
fopt(t) and zop(t) follows from (2.48):

(2.52) F(—id/dt)f(t) = A(t) = 0.
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(2.53) A - U"(@)AE) =0, &+U'(x)= f(t),
with
(2.54) f(t) = fope(t), Z(t) = Topt(t)-

The set (2.52) and (2.53) with the boundary conditions (2.49) constitute a
boundary-value problem. This problem can be solved numerically for an
arbitrary system potential U(zr) and for an arbitrary shape of the power
spectrum ®(w) of the noise.

A simple procedure can be followed when F(w) oc ®~!(w) is a polynomial
in w? of finite degree M. The procedure uses the fact that the function U’(x) is
linear in z — 2 near the stable state z°*. As a consequence, (2.52) and (2.53)
are linear for t — —oo where z is close to !, and the solution for f(t), A(t),
~ and z(t) — % for t — —oco is a linear combination of the exponentials exp(ut)
with Rep > 0. The values of y are obtained from the secular equations

(2.55) F(—iun) =0, Reup, >0, n=1,...,M; po = U"(z).

The solution contains M + 1 coefficients. = They can be found from
the condition that z(0) = =z and from M relationships between
f@), df/dt,..., d®M-1f/dt?™~1 for t = 0. To arrive at these relationships we
first note that the function f(t) and its derivatives df /dt, ..., d*M~1f/dt?M~1
are continuous at ¢ = 0. This follows from the fact that (2.52) is a 2Mth-order
differential equation for f(t), and the function A(t) on the right-hand side of
this equation is seen from (2.53) to be continuous for ¢ < 0 and for ¢ > 0
(where A = 0). Thus, a discontinuity of A can only occur at ¢ = 0. Hence,
f(t) and its derivatives should be continuous for all t. On the other hand, the
solution of (2.52) for f(t > 0) where A = 0 is of the form

M
(2.56) f(t) = Z[An exp(pnt) + Bpexp(—puit)] for A=0 (t>0).

n=1

Because of the continuity of f(¢) and its derivatives, the A,, By, in (2.56) are
functions of the coefficients of the solution for ¢ — —o0, and it follows from
the condition f(t) — 0 for ¢t — oo that the M functions that would lead to
divergence of f(t) vanish, i.e., that A, =0,..., Ay =0.

The solutions of the variational equations (2.52) and (2.53) can be obtained
in explicit form for several limiting cases. The simplest case is that of
fluctuations in a quadratic potential,

axz.

(2.57) "w@=%
A Fourier transform of (252)and (2.53) over time yields
© . At = 0)
— twi =
(2.58) £ Lwﬁe 0= ot
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2
(2.60) R(z)

=T
] royerro

The statistical distribution p(z) obtained from (2.47) and (2.58)—(2.60) coin-
cides with the result (2.30), (2.24) which was obtained in an entirely different
way.

2.3.3. Activation energy for noise of small correlation time. Com-
parison to other approaches. Another limiting case for which R(x) can
be obtained explicitly is that of “weakly colored” noise, i.e., noise whose char-
acteristic correlation time £, is small compared to the relaxation time of the
system, t, = [U"(z®*)]7. This is the limit in which ¢! is much smaller than
all characteristic frequencies of the power spectrum ®(w) of the noise, as il-
lustrated in Fig. 2.3(a). One expects the system to be influenced primarily by
low-frequency noise fluctuations, w N t-1, while high-frequency fluctuations
are mostly filtered out because the system can not follow them (see, however,
§2.4). Therefore, it is the low-frequency part of ®(w) that determines the main
features of the fluctuations of the system.

The limit where the finiteness of the correlation time of the noise can be
neglected altogether corresponds to a white noise driver. In this limit, i.e., to
zeroth order in t./t,, the optimal path is described by the equations

(2.61) f(t)=2U'(z), A¢t)=2F0)U'(z), z=U'(z), for t<0,
(2.62) ft)y=0 for t >0,

f(t) = fOPt(t)a l’(t) = xopt(t)7 tc/tr — 0.

We note that the optimal path zop:(t) as given by (2.62) is a “time-inverted”
path of the system in free motion, i.e., in the absence of external noise, as
described by (2.38) with f(¢) = 0. We also note that for a white-noise-
driven system the optimal path of the noise fon(t) is discontinuous, which
is reasonable: since the noise is temporally uncorrelated, it can be assumed
to vanish (i.e., it can be forced to achieve a root-mean-square value equal to
zero within the optimal path method) immediately upon having “brought” the
system to a given point.

At first glance, one might expect the corrections to (2.62) and to the
corresponding expression for R(z) due to a finite correlation time of the noise
to be of order t2/t2 because F(—id/dt) in'(2.52) is a series in powers of t2d?/dt?.
However, because of the discontinuity of the optimal path fop:(t) at t = O there
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(a)

NN

w I

F1G. 2.3. A sketch of the power spectrum ®(w) of colored noise with all correlation
times being of the same order of magnitude. The spectral components of the noise that
influence a noise-driven system most substantially are those with frequencies smaller
than or of the order of the characteristic reciprocal relazation time t71 of the system.
The corresponding areas of ®(w) are shaded. It is evident that if the correlation time of
the noise is small compared to t, (a) it is the shape of ®(w) for small w that determines
the fluctuations in the system, while for the large correlation times of the noise (b)
nearly all Fourier components of the noise are involved in determining the fluctuations
of the system.

appears a quickly varying contribution to fop(t) for |¢| < t, that gives rise to
a correction of order t./t, to the activation energy R(z). One obtains from
(2.52) and (2.53) [45]

(2.63) R(z) = 2F(0)[U(z) - U(z*)] + F(0)[U' (z))*L,
where .
(2.64) t. = 2F(0) /0  dt %?—), te| < tr,

and ¢(t) is the time correlation function of the noise as given in (2.2). Note
that the ratio ¢(t)/D is independent of the noise intensity. The first term in
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R(z) in (2.63) is the well-known result for systems driven by white noise and
can be obtained directly from (2.62). It leads to a Boltzmann distribution
p(z) in (2.47) [24] with an “effective temperature” of D/2F(0) = (1/2)®(0).
This is in agreement with the observation (cf. Fig. 2.3(a)) that the effective
intensity of the “white” noise is proportional to ®(0) for |t.| < t,. The second
term in R(x) is the correction due to the color of the noise. We stress that
this correction, although small compared to the main term, can change the
statistical distribution p(x) exponentially strongly, since it can substantially
exceed the characteristic noise intensity D). Another point to note is that this
correction term may be positive or negative depending on the shape of the
power spectrum of the noise. In other words, the color of the noise may either
“gqueeze” or “extend” the statistical distribution. The former situation occurs
when . > 0 since R(z) then exceeds its white-noise value. The latter occurs
if £. < 0. An example of a power spectrum ®(w) that leads to a negative
finite-correlation-time-induced correction to R(zx) is considered in §2.4.

If the noise is exponentially correlated (cf. (2.6)), the correlation time £,
in (2.64) is precisely the time ¢, that parametrizes the correlation function of
the noise, and the correction to R(x) is then positive. Equation (2.47) with
(2.63) in this case coincides with the result of others (see [49] and [50] and
also [17], [61]—[53], and references therein). These results have been obtained
by several methods. In particular, the approaches based on the derivation of
“effective Fokker-Planck equations” for the statistical distribution by various
approximation procedures have been reviewed in detail by Lindenberg et al.
(17].

The approach of [49] and [50] exploits the fact that the exponentially
correlated noise f(t) itself, and the composite system [z(t), f(t)] consisting
of the dynamical system of interest and the noise, can be viewed as Markov
processes, with the equation for z(t) being of the form (2.38) and that for f(¢t)
being of the form

(2.65) f&) ==t FO) +€@), (€ €0)) = De26(8),
where £(t) is Gaussian white noise. The evolution of the joint probability

density p = p(z, f; t) of the variables z, f is described by the Fokker-Planck
equation

0 0 g 0?
2.66 —p==[U(x)— flo+t = 22— P.
(2.66) 5P = gglU (@) — flp+t 57 T
For small noise intensities the eikonal approximation can be used to solve this
equation. In particular, one can seek a stationary solution of the form [54]

1
fp—l- §Dt

Pef) _ . (_S@f)
(2.67) Bz, 0) =e p( D )

(see also [49] and [50] and references therein). To lowest order in D the equation
for S(z,f) that follows from (2.66) is a first-order nonlinear differential



66 CONTEMPORARY PROBLEMS IN STATISTICAL PHYSICS

equation of the form of a Hamilton-Jacobi equation,

(:r f,gS g?) =[f-Ulx )]—‘ftclgi 1t‘2 <%>2

(2.68) =0,

so that S(z, f) can be associated with the mechanical action of an auxiliary
dynamical system described by the variables  and f, the associated momenta
0S/0x and 8S/0f, and the Hamiltonian function H. In the general case of
finite ¢, this equation cannot be solved analytically because of the lack of
detailed balance [15] in the system. (We note that the eikonal approximation
was applied in [55] and [56] when considering Markovian physical systems
without detailed balance, in particular, the problem of the transitions between
stable states of such systems [56]; in [38] a path-integral formulation was
applied to this problem.) For small t., however, the solution (2.68) can be
obtained easily. To lowest order in t. it is of the form

(2.69) S(z, f) = 2[U(x) — U(z®)] + ft..

By substituting (2.69) into (2.67) and integrating over f one arrives at the
“Boltzmann” distribution p(z) o exp[—2U(z)/D]. The corrections to S(z, f)
that lead to the distribution (2.47) with R( ) given by (2.63) can be obtained
by perturbation theory in t. [49], [50]. The method also makes it possible to
find, again for exponentially correlated noise, the color-induced corrections not
only to the exponent of the distribution (as in (2.63)) but also the terms of
order t. in the prefactor.

There is an immediate parallel between the path-integral formulation
presented above as applied to the particular case of exponentially correlated
noise, and the eikonal equation (2.68). To show this we first note that, for
the extreme path, the integral [°0_ dt f(t)F(—id/dt)f(t) in the functional R in
(2.48) can be replaced by [°__ dt f(t)F(—id/dt) f(t) since A(t) = F(~id/dt) f(t)
vanishes for ¢ > 0. Furthermore, the functional R can be considered as a
function of time #', R[f(t),z(t);t'], if the upper limits in both integrals in
R are replaced by the running time #’. For exponentially correlated noise
F(—id/dt) = 1 — t3d?/dt? and the first term in (2.48) can be integrated by
parts, so that the resulting functional can be written as

@10) Ryt = [ dL( f.z0).

@71 LU, fo35)) = 210 + tef (O + MO + U'(2) - (1)

2
(Here in the integration by parts we have taken into account that for the
optimal path f(t') = —t;1f(t') at the upper limit ¢’ of the integral: cf. (2.52).
(2.53), and (2.56).) The functional R in (2.70) can be viewed as a mechanical
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action of a system with dynamical variables z, f and with Lagrangian L. The
generalized moments p;, py are of the standard form [57

oL oL

and the Hamiltonian function H(z, f;p.,py) is given by the Legendre trans-
form

H(‘rmf;pz’pf) =Pr$+pff —L

(2.73) = —po[U'() = f] —t; ' oy + %tc‘Qp?-

The expression (2.73) for the Hamiltonian function obviously coincides with
(2.68) provided that account is taken of the fact that p, = 0S/0z and
pf = 0S/0f [57]. The mechanical action S in (2.68) is just the minimum
of the functional R in (2.70), and the equation H = 0 corresponds to the fact
that this minimal value is independent of ¢’ for given z. Thus, the path integral
formulation and the eikonal approximation in the Fokker-Planck equation give
identical results for the case of exponentially correlated noise.

We note that there is yet another alternative way of reducing to a
mechanical problem the calculation of the tails of the statistical distribution for
systems driven by noise that is itself a Markov process and/or a component
of one. The method is based [38]-[43] on expressing the white noise that
drives the noise that in turn drives the system only in terms of the dynamical
variable of the system and thereby excluding the colored noise at this point,
substituting this expression into the probability density functional (2.43) for
the white noise [36], and minimizing the resulting functional of the dynamical
variable in the argument of the exponent. This program is very similar to
that presented in §2.3.1. The advantage of the formulation in §2.3.1 (see also
[45]) is that it is based directly on the power spectrum of the noise that drives
the system and is not limited to Markov processes. A further advantage is
that it is straightforward to write the boundary conditions (see (2.49)). Yet
another advantage, as mentioned earlier, is that the formulation presented here
appeals to physical intuition and that therefore many peculiar features inherent
to systems driven by colored noise can be understood in physical terms (in this
context, see §2.4 below). Finally, we note that the analysis of the tails of the
stationary distribution for certain types of Markov systems without detailed
balance was performed in a different way in the mathematical paper of Ventzel
and Freidlin [58] (see also [59]). '

2.3.4. Statistical distribution for noise with large correlation time.
The variational equations (2.52) and (2.53) can also be solved analytically
when all correlation times of the noise greatly exceed the relaxation time
of the system, i.e., t, > t,. Thus ¢, 1 exceeds all characteristic frequencies of
the power spectrum ®(w) of the noise, as shown in Fig. 2.3(b), so that
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all Fourier components of the noise are “incorporated” in and affect the
dynamics of the system. In this case one can physically picture the optimal
fluctuation path as follows [60] (see also [61]): the noise f(t) varies with a
slow characteristic increment/decrement time ¢., and the system follows this
variation adiabatically, i.e., the value of the coordinate z(t) is given by the
expression

(2.74) z(t) = z%(t),  U'lz%0)] = f(t),  tr < te.

In other words, when f(t) varies slowly the system occupies the time-dependent
minimum of the “adiabatic” potential U(z) — = f(¢).

To calculate the activation energy R(x) to reach a given point z in the
approximation (2.74) it is convenient to change from the differential equation
(2.52) for f(t) to an integral equation that relates f(t) to A(¢). Allowing for the
inter-relations (2.2) and (2.46) between F(w) and the time correlation function
¢(t) of the noise, and also for the boundary conditions (2.49), one obtains from
(2.52)

(2.75) f(t) = D! / dt’ $(t — EIN(E).
The activation energy R(z) can in turn be written as

1 (o o]
(2.76) R(z) = / dt F(IA(E).

The subsequent analysis depends on whether the function U”(x) is positive
in the interval (z%,z), i.e., whether |U’(z)| increases monotonically as the
coordinate moves away from the stable-state value z% to a given z, or whether
in this interval the potential U(z) has an inflection point z*f! where U”(x)
changes sign. The adiabatic approximation (2.74) only holds in the former
case, since U”(z) is a measure of the local reciprocal relaxation time around
the minimum of the adiabatic potential U(x) — 2 f(t), and the criterion for the
slowness of the noise in (2.74) can therefore in general be expressed as

(2.77) t.U" (%) > 1.

The evolution of the adiabatic potential with increasing f(t) for these two
situations, namely, one.in which U”(z) is positive throughout and one in which
U"(x) changes sign, is shown, respectively, in Figs. 2.4(a) and (b).

If (2.77) is in fact satisfied so that the adiabatic approximation holds, then
the function A(t) is seen from (2.53) to vary (increase in absolute value) much
more rapidly than f(¢) for ¢t <0,

(2.78) A(t) = A(0) exp (/Ot dt’ U”[x(t')]) :
Bearing in mind that x(t = 0) = z one obtains from (2.74), (2.75), and (2.76)
(2.79) U'(z) = f(0) = D™'¢(0)A(0)/U" (x)
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U(x) (a)

U(x) (b)

F1Gc. 2.4.  Ewvolution of the adiabatic potential U(x) — xf with increasing force
f for “bare” potentials U(x) that (a) do not have and (b) do have an inflection point
L U (2 = 0. In the case (b) the initial minimum of the adiabatic potential
becomes more shallow with increasing f/U'(z*™f') and eventually disappears when
f/U (@ > 1.

and

Re@) = FOXO

(2.80) 2Wz)

so that finally [45]

"¢ 2
2 Ry - 2L

For exponentially correlated noise D/¢(0) = 2t¢;, and (2.81) then yields
precisely the result obtained in [43], [46], and [60].

When the correlation time of the noise is large, it is possible not only to
determine the argument of the exponential in the expression for the statistical
distribution (as done above) but also the prefactor of the distribution. Because
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of the adiabatic character of the response of the system, the probability p(z)dx
for the dynamical variable of the system to lie in the interval dz around a given
x is equal to the probability p(f)df for the noise to lie in the interval df about
f =U'(z). Therefore,

_ 1 " U’ ()]

For values of z relatively close to z%, where U'(z) =~ U"(z%%)(z — z%),
equation (2.82) agrees with equation (2.30) obtained for this range of x with
a noise power spectrum of arbitrary shape, if one allows in (2.24) for the fact
that U”(z%) substantially exceeds all characteristic frequencies of the noise.
If the potential U(z) has an inflection point "™ so that U”(zf!) = 0,
then for points z lying close to z'*/!, and for points z that lie on the opposite
side of ™! than does z°, the adiabatic approximation (2.74) does not hold
since the local relaxation time of the system becomes very large where U”(z) is
small. It is obvious from Fig. 2.4(b), however, that the probability of reaching
the point zi"f! and also the region beyond z**/! is simply determined by the
probability of the force f(t) reaching the “critical” value U’(z*™!). Having
been brought to the inflection point by a large outburst of noise, the system
does not need strong additional forcing to move further; in effect, it moves
further “on its own.” The dominant term in R(x) can therefore be written as

(2.83) R(z) = 2lUnl’

] 1/~
ol Unl= max [U@)
(see [43], [46], [60], and [61] for exponentially correlated noise and [45] for the
general case). .

It is obvious from (2.83) that the distribution beyond z™/! is flat, i.e., that
R(z) in this region is independent of . This flatness is apparent in the results
of the numerical calculations of R(x) for exponentially correlated noise carried
out by Bray et al. [43] for the case of a quartic bistable potential of the form

(2.84) Ulz) = ——;-x2 + %x‘l.

The function R(z) is plotted in Fig. 2.5 (we have used only the data for the
region z < 0). The numerical data clearly demonstrate the evolution of the
shape of R(z) with varying noise correlation time, from R(z) x U(z) in the
white-noise limit t, — 0 to a function with a nearly flat section between
z™f! = —1/4/3 and = = 0 for large t.. The data were obtained by solving
equations of the type (2.52) and (2.53). More precisely, instead of a system
of equations consisting of a second-order equation for f(¢) and first-order
equations for A(t) and z(t), a fourth-order equation for z(t) was constructed
(the force f(t) was excluded at the initial stage of the path integral formulation,
as mentioned above) [43]. A self-similar solution of the form of y(z) = z(t) was
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FI1G. 2.5. Change of the activation energy R(x) to reach point x with. changing
correlation time t. of the exponentially correlated driving noise [43]. The system is
described by (2.38) with the quartic bistable potential (2.84). The data for the stable
state z = —1 are plotted. The curves are labeled by the value of t.. The t. =0 (white
noise) curve corresponds to the Boltzmann distribution. R(x) = 2{U(x) - U(x = -1)].

sought, so that the problem was reduced to a second-order equation for y(zx).
We note that this approach, although very effective in the problem considered
in [43], is not applicable in the general case of colored noise (in particular in
the case of quasi-monochromatic noise considered in the next section). since
#(t) takes on different values for given r for different t along the optimal path.
The slowing-down of the motion of the system gives rise to corrections
to the activation energy that are nonanalytic in t. (43]. [45]. The order of
magnitude of the corrections can be estimated by noting that in the vicinity
of the point of inflection the equation of motion of the system is of the form

(2.85) 53 = 8(t) — %U"’(ri"f[)(ér)Q.
where
(2.86) br =z — ", Sf(t) = f(t) = U' (™.

If the motion in this region lasts for a time 6t < t.. then during this time f(#)
varies by an amount 8 f(t) ~ U’(z"/!)ét/t.. and this variation is of order éu/ét
and also of order (6x)2. Hence 6z x tc Y3 and 6t x t¥*. 1t follows from the
latter estimate and from (2.80) that the nonanalytic correction to R(r) is of
order t2/% as well. The problem was analyzed in detail by Bray et al. [43]. The
explicit expression for the correction to the activation energy of the transition
obtained in [43] is given in §2.6 below.
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To summarize: it follows from the results of the present section that the
dependence of the tails of the statistical distribution of a system driven by
Gaussian noise on the noise intensity is of the activation type. The problem
of calculating the activation energy for reaching a given point can be reduced,
via the method of the optimal path, to a variational problem which in turn in
many cases translates to a boundary-value problem involving a set of ordinary
differential equations. The form of the equations is determined by the shape
of the power spectrum of the noise. They can be solved analytically in several
limiting cases, including those of large and small characteristic correlation
times of the noise. In general it is straightforward to investigate the equations
numerically. ‘

2.4. Fluctuations induced by quasi-monochromatic noise

The general formulation presented above clearly demonstrates that small
fluctuations about stable states of noise-driven systems as well as the statistical
distribution of large fluctuations depend crucially on the shape of the power
spectrum of the noise. In many cases the noise turns out to be “truly colored”:
its power spectrum is peaked at a certain frequency w,, and the halfwidth T’
of the peak is much smaller than w,

(2.87) I < wo.

An example of such noise is “normal” (incoherent) nearly monochromatic light.
Such light possesses a specific “color,” and it would therefore be reasonable
to use the terminology “colored” for any noise with a similar peaked power
spectrum. However, to avoid confusion, we have used and will continue to use
the standard terminology; to distinguish this sort of noise from other forms of
colored noise we will therefore call it quasi-monochromatic noise (QMN) [62].

QMN is generated by a variety of noisy systems capable of singling out
a frequency and can be viewed as the result of filtering broad-band noise
through a highly selective system. Examples of such systems include various
electromagnetic or acoustic high-Q cavities: their eigenvibrations excited at
random by an external noise produce QMN [5], [6]. Another well-known
example is that of local and quasi-local (resonant) vibrations of impurities in
crystals [63] (see [64] for recent work); such vibrations are mainly characterized
by a single frequency and are coupled to a broad band of other modes of the
crystal. Their thermal fluctuations are a typical example of QMN. The spectral
densities of fluctuations of local and resonant vibrations have been thoroughly
investigated both theoretically and experimentally (see [33], [63], and [65] for
reviews). Yet other examples of QMN are provided by random vibrations of
fragments of macromolecules (in particular, enzymes [66]), and of engineering
structures.

The simplest type of QMN (which will be the specific noise that we refer
to as QMN below) is that produced by a harmonic oscillator of frequency w,
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and friction coefficient I" driven by white noise (cf. (2.21)):

(2.88) Frorf+wif =€(t),  (£(t)€(0) = 4T Ds(2).

The power spectrum of QMN (i.e., the spectral density of the fluctuations of
the oscillator) is of the form

ArD
(w? — w2)? 4+ 4I"2w?
(cf. (2.18) and (2.23)). The characteristic noise intensity D = ®pg,(w) as

introduced in (2.5) is proportional to the characteristic intensity D of the
noise £(¢) and is equal to

(2.89) B(w) =

D= 4Ff for wl < 27,
wO
D 2 2
(2.90) = —I—“(Tg—_—_—F—Q) for We Z 2.

Noise with the power spectrum (2.89) with parameters I' and w, that are
unrelated beyond the constraint (2.87) has sometimes been called “harmonic
noise” [66]. Such noise is a simple example of colored noise with two correlation
times given by I'"! and w;!. Although strong effects related to the presence
of two times are expected to arise (and indeed do arise) when w, > I', some
features already become apparent for w? > 2I'? when the peak of the power
spectrum ®(w) in (2.89) is positioned at a finite frequency, in contrast to that
of the exponentially correlated noise. Changes in the structure of ®(w) related
to the shift of its peak to finite frequency are expected to affect the fluctuations
of the system noticeably when the position of the peak is of the order of the
reciprocal relaxation time t;! of the system (cf. Fig. 2.3). However, some
effects arise even for large t,. In particular, it can be seen from (2.64) that the
parameter £, in the expression for the correction to the activation energy R(r)
when the correlation time of the noise is finite is of the form [45]

2 2
(2.91) f, = —%—ﬁ%, wotr > 1. Tt > 1.
It follows from (2.63) and (2.91) that, depending on the ratio w?/I'. the
correction to R(x) is either positive (if w? < 4I'?) or negative (if w? > 4I'?) and
therefore the distribution p(x) becomes either squeezed or extended relative to
the distribution associated with white noise.

The most interesting and nontrivial effects associated with a noise that
is characterized by two correlation times rather than a single one might be
expected to occur when these times are substantially different. as is the case
for quasi-monochromatic noise with I' < w,. and the value of the reciprocal
relaxation time lies between them. i.e..

(2.92) T <t < wo.
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This is the case that is analyzed further in the present section [45], [62]. The
analysis is presented in the context of the simplest model of a noise-driven
system, as described in (2.38).

2.4.1. Double-adiabatic approximation for a QMN-driven system.
To gain insight into the characteristic features of the fluctuations of the
dynamical variable z(t) in the parameter range (2.92) we note that, when
(2.87) is fulfilled, the QMN f(t) consists mostly of nearly periodic random
vibrations of frequency w,. In fact, according to (2.88), f(t) is of the form

(2.93) FO) =3 ft)e et +6f(t),  ((65)%) < (£
v==+

The complex amplitudes f4(t) of the random vibrations vary smoothly in time;
their correlation time is equal to I'!, '

(If+%)
(If=%

and the nonresonant addition 6 f(¢) is small on the average (it has been omitted
when estimating (| f+|?)).

The rapidly oscillating random force f(t) gives rise to fast oscillations of the
noise-driven system, i.e., to rapidly oscillating terms x4 (t) exp(+iwot) in the
coordinate z(t) in (2.38) in addition to a smooth contribution z.(t). Because
of the inequality wot, < 1, the complex amplitudes x4 (t) of these vibrations
as well as the contribution z.(t) vary smoothly over the period 2m/w,. This
makes the concept of nearly periodic vibrations meaningful, and this is the
“first” adiabaticity.

The “second” adiabaticity is related to the fact that the position x.(t) of the
center of the forced vibrations depends on their amplitude. In the parameter
range t, < I'"! not only do the amplitudes x4 (t) of the vibrations of the
system follow the amplitudes f4(t) of the vibrations of the force adiabatically,
but so does z.(t) (however, the adiabaticity of z.(t) breaks down in the vicinity
of certain singular points of the distribution; see below).

The above arguments have been constructed having in mind ‘a solution
z(t) of the dynamical equation (2.38) in the form of a superposition of fast-
oscillating and smooth terms,

(2.95) z(t) = Z x, (t)er et + z.(t).
v=x%

~T? < w,,

(2.94)

Equation (2.38) is the only equation for the variables z+(t) and z.(t), and
therefore two of these three must be specified separately in some fashion. To
do this we note that if the amplitudes x4 (t) and z.(t) were time-independent,
then the force U'(z) would be a series in exp(tiwot). The coeflicients of
this series would be expressed in terms of r4,z. and they would obviously
be of order t;! ~ U”(z®*). The same expansion is physically meaningful if
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r+. e vary smoothly with ¢ compared to exp(+iwot). When substituting the
corresponding expansion into (2.38) it is convenient to set the z-dependent
coefficients of the rapidly oscillating terms exp(=iw,t) on the left-hand side of
the equation equal to the corresponding coefficients in f(¢) on the right-hand
side. Then to lowest order in (wot,)~! and I'/w,, i.e., upon neglect of U’(x)
and &£+ compared with wex4, one finds

(2.96) x,(t) = (ivwo) " £(8), v=+.

To write the equation for z.(¢) it is convenient to introduce an auxiliary three-
variable-dependent potential V (z¢, z4,2_),

v 1 2 : 4
(2.97) V(ze, z4,2-) = oy dpU(ze + x4 e + z_e™¥),
Jo
which is thus the value of U(z) averaged over the period 27 /w, for constant
Ze, 4. Then

9
oz,

i.e., if one neglects 6 f(t) the function z.(t) is smooth. It is easy to see that
the rapidly oscillating corrections to ., e.g., those oscillating as exp(32iwot)
and arising from the nonlinearity of U(z) (which has not been assumed small),
are of order (wot,)~!. Since the amplitudes fi () and thus z4(¢) practically
do not vary over the time ~ ¢, < I'"1, the solution of (2.98) upon neglecting
0f(t) is given by the adiabatic approximation:

(2.98) io= -V, +6f(t), V.=-—V(ze,z4,x),

. ’
(290) z~a  V(@ona)=0, o =o(zy,zo).

Equations (2.96) and (2.99) show that, with varying amplitudes f+ of the
rapidly oscillating noise components, the amplitude of the forced oscillations of
the system varies as well; the latter variation causes the change of the effective
potential V(z¢,z4,z-) that determines the motion of the center z. of the
vibrations and, because the relaxation time of the system is short compared
to the decrement/increment time of fy, the center z. occupies the minimum
of the potential V for given z,,x_.

A naive picture of the optimal fluctuation that brings the system to a given
point z constructed with the help of (2.95), (2.96), and (2.99) is as follows. The
amplitude | f4 (t)| of the noise increases from a root-mean-square value of order
D'/2 /w, with an increment of order T', and the amplitude |z (t)| increases
accordingly. At the same time, the center z. of the vibrations shifts (initially
z. = 2 within an accuracy of D'/2/w?). Finally the vibrating coordinate
x(t) reaches, for the first time, a given value x. This obviously happens at
the turning point of the vibrations, i.e., when the deviation of z(t) from the
instantaneous position z.(t) of the center of the vibrations is maximal. If the
time is set so that this event occurs at the time origin ¢ = 0, then

(2.100) zc(0) + 24(0) + z_(0) = =, z4+(0) = z_(0).
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Although the subsequent behavior of the system once it has reached the
given z is not of interest in the present context, we note that, with an
overwhelming probability, the amplitude |f,(t)| decays with a decrement I'
for t > 0, and the coordinate z(t) follows this decay adiabatically and returns
to the stable position.

This picture makes it straightforward to obtain the expression for the
activation energy R(z) for reaching a given point z. Indeed, (2.99) and (2.100)
give the values of z.(0) and z+(0) in terms of z, and the value of |z, (0)| gives
the minimal (optimal) value of the amplitude |f,(0)| of the noise necessary
to bring the system to a given z. The statistical distribution of the squared
amplitudes |f,|? is exponential: it is of the form of the energy distribution of
an underdamped oscillator in thermal equilibrium at temperature D,

(2.101) p(If+[2) = (D/2w?)exp (— 22 £+ /D)

(the energy of the oscillator is (1/2)f2 + (1/2)w2f? = 202 f+]?). We note that
the functions fi and f_ here are related to f and f via (2.93) without &f
together with the relation f = iwo, 3", vf, exp(ivwot). The term §f contains
the small contributions that would otherwise be included in fy and f_ (and
would give rise to small rapidly oscillating terms in fi). Omission of 6 f simply
places these contributions back in fi. Allowing for the inter-relation (2.90)
between the maximum value D of the power spectrum of the noise and the
effective temperature D, and for (2.96), one obtains

(2.102) R(z) = (2w} /T)|z+(0)f?,

where x,(0) is related to x via (2.99) and (2.100). A consistent derivation
of (2.102) based on the set of variational equations (2.52), (2.53) is given by
Dykman [45].

One remarkable feature of the statistical distribution of a QMN-driven
system is immediately seen from (2.99), (2.100), and (2.102) for systems with
a symmetric potential U(z) (no matter how nonlinear). If U(z) = U(—r) and
x = 0 is the stable equilibrium position, it is seen from (2.99) that z. = 0 for
all z4 and thus z,(0) = z_(0) = z/2, so that

(2.103) R(z) = (wi/21)2?, U(z) =U(-z).

Thus, according to (2.103) the distribution is independent of the shape of the
potential provided the latter is symmetrical. This invariance is a consequence
of the fact that it is the amplitude of the rapidly oscillating noise that is
fluctuating initially. The system follows these fluctuations adiabatically, and
for high w, the amplitude of the forced oscillations is nearly independent of
the shape of U(z).

The independence of the activation energy R(x) of the curvature U”(0) of
the potential U(x) for z = 0 and also of its nonlinearity was tested in analog
electronic experiments [62]. The data obtained for symmetric potentials are
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shown in Fig. 2.6. The results were compared with (2.103) and also with the
exact expression (2.30) for the Gaussian statistical distribution of a system
with the parabolic potential U(x) = ax?/2: the “steepness” parameter 3 in
(2.30) when the power spectrum of the noise is of the form (2.89) takes the
form

ID(w? - T?%) a(a? + w?) — 4I%a + 2TW?
aw? (a2 + w?2)? — 12a?

(2.104) 3=

(to lowest order in I'/a and in a/w, the value of 37! as given in (2.104)
coincides with 2(dR(z)/dx?)/D as given in (2.103)). The agreement of the
data measured for the harmonic potential with the expression (2.104) was
excellent within the experimental uncertainty of +2%. Furthermore. the data
are nearly independent of the curvature U”(0) = a for a broad range of values
of a and of the anharmonicity of the potential U(r).

2000 . , ]
< 1000} 4
(0
ok i
1 1 |
-1 0 |
X

F1G. 2.6. The activation energy R(x) for reaching a point x by a system (2.38)
driven by quasi-monochromatic noise in the case of a symmetric parabolic potential
U(x) = (1/2)z?%, as obtained from an analog experiment [62]). The parameters of the
QMN are: w, = 9.81, T = 0.021. and the characteristic intensity D = 160 (note
that the effective noise intensity [ D/w? =~ 0.035 < 1). The experimental data for
Uz) = (1/2)x? + (1/4)x*. and for U(x) = (1/6)x? were found to be coincident with
those for U(x) = (1/2)x? within the experimental error. The smooth curve represents
the exact theory (2.30) with (2.104).

2.4.2. Quasi-singularity of the activation energy: Breakdown of the
adiabatic approximation. For asymmetric potentials U(r) the activation
energy R(z) as given in (2.99), (2.100). and (2.102) is asynnuetric. The specific
feature that follows from these expressions is that R(x) may be singular for
some z = T if the values of the coordinate that lie bevond F (with respect
to %) are adiabatically inaccessible. The onset of such “forbidden™ regions
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can be understood on the basis of our previous description of the motion:
with increasing amplitude |f| of the noise, the amplitude |z | of the forced
vibrations increases as well, and as a result the limiting point z of (2.100)
reached in the course of the vibrations also shifts. The dependence of the
latter shift on the variation of z , allowing for the fact that the position of the
center of the forced vibrations z. itself depends on x4, is of the form

(2105) A5 =V~ V)V

. ad
Ay e T =T, Te =T (T4, 7).

Here V" stands for a second derivative of V(z,z4+,z-) and the subscripts
¢, +,— stand for differentiation with respect to z.,z4,x—, respectively. We
have taken into account that the dependence of z, on z4 in the adiabatic
approximation is given by (2.99) and that Vfr =V when z, = z_. It is seen
from (2.105) that for x4 = Z4+ such that

(2.106) V@l 2y,20) =V, (€2, 74,3),

a further increase of the amplitude of the vibrations does not drive the system
into the region beyond the point

(2.107) T=2%(%y,Z )+ 5y +7-.

This obviously happens because the dependence of the adiabatic position of
the center of vibrations, z%%(x,,z_), on the amplitude |z4| for z+ = I+
becomes too fast and with increasing amplitude the system as a whole actually
moves away from Zz. It follows from (2.102) and (2.105)-(2.107) that the
activation energy R(r) has a square-root singularity for z = Z in the adiabatic
approximation [45], R(z) = R(z) — [C(z — Z)]'/2, where the value of C can
easily be expressed in terms of the derivatives of the potential V' for x4 = z*.

Penetration into the “forbidden” region occurs via fluctuations for which
the adiabatic approximation (2.99) does not hold. For high-frequency noise
the nonadiabaticity comes primarily from contributions to the variables x.
and z+ which, although still slow compared to the rapidly oscillating factors
exp(Liwot), vary over time scales that are not slow compared to the relaxation
time of the system, i.e., &, ~ £+ ~ t- 1. The onset of these terms is related to
the onset of a large (compared to its value of O((I'/w,)| f+|) in the adiabatically
accessible range) nonresonant term §f(t) in the driving noise (2.93) which
varies over the same characteristic time, |6f/8f] ~ t;1.

To estimate the steepness of the activation energy R(x) in the adiabatically
inaccessible range we note that, according to (2.46) and (2.89), the magnitude
of the logarithm of the probability of a “smooth” (compared to exp(Ziwot))
fluctuation 6f(t) of duration ~ t, is of order w2(6f)%t,/T2D. Since in the
range of z in question the only time scale for slow variables is ¢., the deviations
T —Z, . — 22 (Z1,%_), T4 — T+ caused by the force 6f(t) are all of order 6 ft,,
and the activation energy R(z) must be of the form R(z) ~ w?(x — %)%/t.I?,
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i.e., the value of R(x) changes by an order of magnitude compared with the
value (2.102) in an extremely narrow interval |z — Z| ~ (T't,)1/2.

A consistent theory that describes the smearing out of the square-root
singularity of R(z) arising from the adiabatic approximation has been given
by Dykman et al. [62]. It is based on the solution of the boundary-value
problem (2.49), (2.52), and (2.53) for a QMN-driven system. The result that
makes it possible to follow the change of R(x) from the comparatively smooth
function far from the threshold point Z to a steep function beyond Z is of the
form

R(z) = Q“F’g (xi(()) + %6{:30)) ,

£ = 204(0) +224(24(0), 2_(0)) + 5

z,(0) =2_(0) = 8/(0) <1 —~ ¥/+>

& e
_8f%(0)
64TV 2

(2.108) (TVE —8Viee = Vi = Vi)

Here all the derivatives of the potential V(z., x4+,z-) are calculated for
r+ = 2+(0),z, = 224, (0),Z_(0)]; the function §f(0) is the value of the
smooth component of the noise at the instant ¢ = 0 when the system reaches
the given zx.

Far from the threshold x = Z in the adiabatically accessible range of x
where the force 6 f(0) is small [O(T')], the expression (2.108) for R(z) coincides
with (2.102), and the function R(zx) is smooth, |dln R(z)/dz| ~ 1. In the
vicinity of Z the terms containing the force 6 f(0) become substantial and R(x)
becomes steep. Far in the adiabatically inaccessible range |dln R(z)/dz| ~
(I‘tr)‘l/ 2 > 1, in complete agreement with the qualitative estimate given
above.

We stress that it is the argument of the exponential of the statistical
distribution that becomes very steep. Therefore, the distribution p(z) itself
is expected to vanish extremely sharply in the adiabatically inaccessible range.
In contrast to the change of the character of the distribution at the inflection
point of the potential when the correlation time of the noise is large (cf. §2.3.4),
the threshold point Z given by (2.106) and (2.107) is not immediately associated
with a singular point of the potential of the system (although it is determined
entirely by the potential and does not depend on the parameters of the noise).
In this sense the appearance of a singularity in the distribution is “hidden,”
i.e., there is no a priori reason to expect any unusual behavior at z = Z.

The onset of an extremely sharp behavior of the logarithm of the statistical
distribution in QMN-driven systems was observed in an analog electronic
experiment [62]. The potential of the system was of the quartic bistable
form (2.84). The singular points # as given by (2.106) and (2.107) are
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I = +(5/3)!/2. If, for example, the system is placed initially in the vicinity
of the stable state x = —1 and the quasi-stationary distribution over the
range of fluctuations about this state is investigated, then only the point
I = —(5/3)!/2 plays a role. The results for R(z) obtained in [62] for this
case are shown in Fig. 2.7. It is seen from Fig. 2.7 that R(x) is indeed
extremely steep beyond the point ¢ = —(5/3)1/2, although it is of course
not vertical, as would be predicted within the adiabatic approximation. The
nonadiabatic theory (2.108) is in good agreement with the experiment (the data
were obtained for w, = 9.81,I' = 0.021 and the theory does not contain any
adjustable parameters). Another most peculiar feature of the quasi-stationary
distribution plotted in Fig. 2.7 is that it spreads beyond the point z = 0, i.e.,
over the range of attraction of another stable state. We shall address this
feature in §2.6 in the context of the transition probabilities between stable
states, in particular those for QMN-driven systems.

It follows from the results of the present section that for a narrow-band
high-frequency driving noise the shape of the statistical distribution of the
system is not determined by the fluctuations at frequencies lower than the
reciprocal relaxation time of the system (cf. Fig. 2.3). Instead, the distribution
is determined by the high-frequency fluctuations. The shape of the tails of the
distribution is qualitatively different from that for white-noise-driven systems,
and the logarithm of the distribution (and not only the distribution itself) can
be extremely steep.
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FIG. 2.7. The activation energy R(zx) for reaching a point x starting from
an equilibrium position %t = —1 in the QMN-driven system with potential U(x) =
~(1/2)z? + (1/4)x* as obtained from an analog experiment [62]. The eigenfrequency
and bandwidth of the QMN are the same as in Fig. 2.6, and the noise intensity is
D = 189. The experimental data ( jagged line) are compared with the double-adiabatic
theory (full curve, singular at ¢ = —M) and the expression (2.108)(the nonsingular
Jull curve).
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2.5. Pre-history problem

The above analysis of large fluctuations in a system driven by Gaussian noise
was based on the concept of the optimal path. It was assumed on physical
grounds, and then demonstrated by making use of the path-integral method,
that among the various paths along which the system can arrive at a given point
r there is an optimal path that corresponds to the most probable fluctuation
among very infrequent ones. This path starts in the vicinity of the stable
equilibrium point z®, and the duration of the motion far from the range of
small fluctuations about z° is given by the time t, of (2.39), namely, by the
larger of the relaxation time ¢, of the system and the noise correlation time
t.. Although the concept is physically and mathematically clear, the optimal
paths of both the system and the noise have so far only been described as the
solutions of the variational problem (2.48).

In the present section (see also [67]) we introduce physically observable
characteristics related to the optimal path of a system that further elucidate
the approach. Such characteristics can be expressed in terms of the “pre-
history” probability density pp(x,t;xf,tp) that the system fluctuating about
a given stable state x°! was at a point z at time ¢t < ty, given that at time
t¢ it is at zy. The calculation of this probability density constitutes a pre-
history problem. In the general case of a multistable system pp(x,t;xy,t5) is
not a standard two-time conditional probability; rather, it is the ratio of the
three-time transition probability density w(x,ty;x,t; x5, t;) (the probability
density of the transitions x; — = — zy) to the standard two-time transition
probability density w(xy,ts; x;,t;), with the initial value of the coordinate x;
lying in the vicinity of z°* and the initial instant ¢; having been assumed to
be such that ¢ — ¢; and t; — ¢t; substantially exceed the relaxation time of the
system and all correlation times of the noise but, at the same time, are small
compared to the reciprocal probability W—! of the escape from the given stable
state (see §2.6). As a consequence, both t; and x; have ostensibly dropped out
from py(zx,t,;25,t5),

’U)(.Tf,tf, z,t; x;, tz)
'U)(.’Ef, tfa Zi, tz)
(2.109) Wl t —t, ty —t > te, tr.

pr(z,tixp, ty) =

From the definition of the pre-history probability density it obviously follows
that

(2.110) | /dxph(x,t;mf,tf) =1.

Under quasi-stationary conditions only the instant t; when the system has
been observed at xy is singled out, and therefore

(2.111) pr(z, t;xg,ts) = pp(z,t — ty;24,0).
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The concept of the pre-history probability density appeals to the fact
that the visits of the system to a given point x; are infrequent and that the
corresponding noise outbursts leading to these visits are therefore mutually
independent and uncorrelated. The probability density of crossing a given
point at a given instant before arrival at a final destination z; is then precisely
the quantity that characterizes the distribution of the paths arriving at this
final point. Since (by definition) the optimal path zep(t; z5) for reaching xy at
the instant ¢ = 0 is the most probable of these paths, the function py(x,t; ¢, t5)
for a given t — t¢ should have a sharp maximum if z lies on this path, i.e., if
T = Topt(t —tp;f).

By investigating the pre-history probability density experimentally one
can therefore not only visualize the optimal paths themselves, but one can
also directly test the general concepts of the optimal path and the optimal
fluctuation presented in §2.3. Such an investigation should establish the range
of parameters within which the concepts are applicable to a given system and
for a given type of noise.

2.5.1. General expression for the pre-history probability density.
The pre-history probability density pp depends on the stable state that had
been occupied initially and from which the system arrives at x and z;.
Persisting with our goal of simplicity, in what follows we give the theoretical
formulation for the case of a monostable system; the generalization to the
case of multistable systems is straightforward (the experimental data discussed
below refer to a bistable system). We note that for a monostable system one can
set t; = —oo in (2.109), and py(x,t; xf,tf) can then be expressed in terms of a
two-time probability density: it is given by the ratio pa(z,t,;xy,tf)/p(zf, t5).
The other simplification made below is that the pre-history problem will be
formulated in the context of the simplest type of equation of motion of a
noise-driven nonlinear system, namely, (2.38). As always, we will assume the
driving noise to be Gaussian. It is convenient to express the two- and three-
time transition probability densities of (2.109) in the form of a path integral
similar to that used in (2.41) and based on the fact [36] that each path of the
noise f(t) generates a certain trajectory z(t) of the dynamical system. The
weighting factor in the integral over the paths of the noise is the probability
density functional D[f(¢)] that determines the probability density of a given
realization f(t). The appropriate expression follows from (2.109) and is

Jo(—o0)=a; DI () 0lf (¢)|8[z(2) — z]bla(ts) — /]
Jo(-o0)=s, DF @) plf ¢)0l2(ts) — 2s]

Here, just as in (2.41), the 6-functions and the lower limits of the integrals show
that the paths f(¢') that contribute to the transition probability densities are
those that generate system paths that start at a point z; a long time before
arrival at x¢, pass through x; at the instant t7, and, in the case of the three-
time transition probability density w(z ¢, ty; z,t; x;, —00), also pass through the

(2112) pu(z,t;zy,ty) =
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point x at the instant ¢. The explicit form of the probability density functional
p[f(t)] in the case of colored Gaussian noise with the power spectrum O(w) is
given in (2.46).

The realizations of the force f(t) in (2.112) that bring the system to given
point(s) at given instant(s) are “deterministic,” i.e., although of fluctuational
origin, they do not depend on the noise intensity D. However, their
probabilities do, and therefore for sufficiently small D both numerator and
denominator in (2.112) are exponentially small (the denominator was already
considered in §2.3). It is thus reasonable to calculate them to logarithmic
accuracy and to write the pre-history probability density as

ph(x7taxf7tf) = ph(xvt - tf,.’L'f,O)
(2.113) = C(z,zp;t — tg)exp (—p(x, x5t —t7)/D),

where C(z,zy;t — tf) is a smooth function and where

p(z,zs;t) = px, 253 t) — p(xs,25;0),
(2.114) plx,zs;t) > D, p(xg,zs;0) > D.

The two terms in p(z,zs;t) come from the two transition probability densities
in (2.109). They are determined by the values of the argument of the
exponential in the probability density functional (2.46) for the optimal paths
of the noise that result in the appropriate trajectories of the system. The
inequalities in (2.114) express how weak the noise intensity D must be for
the concept of the optimal path to be applicable. The further analysis is
completely analogous to that in §2.3 and shows that the variational problem
for the optimal path that arrives at the point zs at the (running) time t' = 0
via the point = at the instant ¢’ = t is of the form

o, 2738) = minR{f(¢), 2(t)i. 2538,
RU (), o)zt =5 [ dt F(O)F(~id/at)f()

0
(2.115) + / dt' \)fé + U' (@) - F(B)],
—oo :
with the boundary conditions

z(-o0) =z, =z(t)==z, z(0)=zy,
f(£o00) =0,
(2.116) AM(—o0) =0, At >0)=0.

In a sense, the functional ® in (2.115) coincides exactly with that in (2.48)
and, as in (2.48), the minimum in (2.115) should be taken with respect to f(t')
and z(t') independently since their inter-relation as given by the equation of
motion (2.38) has been taken into account by introducing the undetermined
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coefficient A(t'). The difference between the present variational problem and
that considered in §2.3 for the optimal path arriving at z; directly lies in the
boundary conditions: in the present case the system is to pass a given point
x at time ¢t before arriving at x;. Obviously, the value of p(x ¢, xf;0) as given
by (2.115) and (2.116) coincides exactly with the activation energy (2.48) for
reaching the point zy,

(2.117) p(zg,z5;0) = R(zy),

which is not surprising since R(zs) in (2.48) determines the logarithm of the
- transition probability density w(zy,0; 2%, —0c0).

Since p(z g, z;0) is determined by the optimal path o (t'; z¢) that arrives
at zy without the additional constraint of passing a given point at a given
previous time, one has the inequality p(zx,zf;t) > p(xs,25;0). It is obvious
from (2.115) and (2.116) that the equality holds only when z coincides with
ZTopt(t;xf) (for a given t). Thus the maximum of the probability density
ph(z,t;25,0) is indeed achieved on the optimal path, ‘

(2.118) plropt(t;zs), 255t = 0.

According to (2.114) and (2.115), p; decreases exponentially away from
the optimal path, and for weak noise its shape is Gaussian near the maximum,
ie.,

[z — Zopt(t; wf)]2
20(t;xy)

(2.119) ' p(x, x5 t) =

when |z — Zop(t;xf)| is sufficiently small (in particular, as compared to
|zt — z¢]). The dispersion of px(z,t;zf,0) has been denoted by Do(t;zf).
In view of the normalization (2.110), equations (2.113), (2.114), and (2.119)
give not only the argument of the exponential but also the prefactor in the
pre-history probability density,

(2120) ph(l’, t; s, 0) — [27TDU(t; xf)]-—1/26—-[x-—mopc(t;xf)]2/2D0'(t;:cf).

(We have taken into account that the prefactor C in (2.113) and (2.114) is
smooth on the scale Az ~ (Dc)!/? and have therefore set it equal to its value
at T = Top(t;y).)

The analysis of the pre-history transition probability has thus been reduced
to the calculation of two functions: the optimal path Top(t;zf), and the
dispersion parameter o(t;x7). The calculation of these functions for various
types of power spectra of the noise can be done numerically. (The variational
equations are obviously of the form (2.52) and (2.53), but the boundary
conditions for the problem of the optimal path itself and the pre-history
problem as a whole are different.) In some cases these functions can be
calculated analytically.
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2.5.2. Pre-history probability density for systems driven by white
noise. Simple analytical results can be obtained if the driving noise is white,
whence the operator F in (2.115) is equal to 1. The optimal path in this case
is given by (2.62), while the expression for o(t;z) can be shown to be of the
form [67]

(2.121) o(tizs) = Glaopt(t;zs); 2],
with
(2.122) Fsag) = U@ [ dy ')

Experimental data [67] on the pre-history probability density are shown
in Figs. 2.8 and 2.9. They were obtained via analog electronic simulation of
Brownian motion as described by (2.38) with the potential (2.84). The system
was initially placed in a state within the range of attraction of the stable
equilibrium position % = —1. The paths that arrived at a given point zy
were stored, and it was their distribution that gave, by definition, the pre-
history probability density. It is seen clearly in Fig. 2.8 that the function
ph(,t; x5, ts) obtained in this way exhibits a very sharp ridge. This ridge
provides the visualization of the optimal path. The shape of the optimal path
Zopt(t; T5), and the characteristic width &(z; ;) as defined by assuming the
function p; to be Gaussian near the maximum, are shown in Fig. 2.9. It is
obvious that the function &(x;xf) is strongly nonmonotonic: the pre-history
probability density is very sharp for z near the final point z¢ and its peak is

FiG. 2.8. The pre-history probability density pn(z,t;x5,0) for the white-noise-
driven system with the bistable quartic potential (2.84) [67]. The final position is
zs = —0.3, and the characteristic noise intensity is D = 0.07.
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FI1G. 2.9. The dispersion parameter 6(x; ) of the pre-history probability density
(¢f. Fig. 2.8) as a function of T measured in the analog experiment and compared
with the theory (2.122) (curves) [67] for (a) zy = ~0.30, D = 0.07 (circles); (b)
xy = —0.55, D = 0.0265 (triangles); (c) x5 = —0.75, D = 0.0085 (pluses). Inset: the
optimal path (curve) as given by (2.62) is compared with a path along the ridge (data
points) of the ezperimental distribution py(z,t;zs,0) for zy = —0.30, D = 0.07.

comparatively narrow for x close to the equilibrium position z*¢ = —1, while
for intermediate z it is much flatter and the width &(x; ) is correspondingly
larger.

The surprising behavior of the width (z; zf) of the ridge of the pre-history
probability density observed in [67] can be explained on the basis of (2.121)
and (2.122). In particular, it immediately follows from these equations that
for x close to zf, 6(z;xf) = (x5 — x)/U'(x¢) is small, i.e., the bunch of paths
that have arrived at z is sharply squeezed in the immediate vicinity of xy.
This is also evident from qualitative arguments: for x; remote from stationary
points the velocity |U’(z)| of the motion along the optimal path is of order
unity, and the motion from x to z; for = close to x; takes a short time.
Therefore, the diffusional smearing (which gives rise to smearing of the bunch
of paths) should be small. It is also evident that for x close to the stable state
z%t the width of the peak of p, should coincide with that of the stationary
statistical distribution of the system and that in fact pp(z,t;zf,t5) — p(x)
for t — —oo, where p(z) is the stationary distribution considered in §§2.2
and 2.3 (the distribution over x does not depend on whether in the far future
(tf —t — o0) there might be an outburst of noise that drives the system to ).
Both of these features are seen very clearly in Fig. 2.8. The dome-like shape
of &(x;xf) is related to the particular shape of the potential (2.84); we note,
however, that such a shape will always arise for bistable potentials provided
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z is sufficiently close to the saddle point z; [(U'(zs) = 0 and U”(z;) < 0)]
because it follows from (2.121) and (2.122) [67] that o(z;zy) is proportional
to (xf — x5) "2 for small |z — x| and both |z — x| and |z — 2| > |zf — x4,
i.e., for x between z* and xzy the dispersion &(x,zs) does become large.

It is evident from Fig. 2.9 that the expression (2.121) for &(x;zs) explains
the experimental data, at least qualitatively. The discrepancy between theory
and experiment is most likely related to the fact that the noise intensities
investigated experimentally were not sufficiently small for the theory to be
applicable; in particular, the width of the peak of pj, is seen from Fig. 2.8 to be
comparable to the distance between the singular points of the potential U(z)
of the system, while in the theory the width of the peak has been assumed to
be much smaller. Another important point to be addressed in the future is the
interpretation of the data when z; approaches a saddle point where o(z;x )
diverges and the present theory becomes inapplicable.

It follows from the results of the present section that the formulation of the
pre-history problem has made it possible to visualize optimal paths in noise-
driven systems and to investigate their statistical distribution. Through this
approach it has been possible to provide direct experimental verification of the
fundamental concept of the optimal path.

2.6. Probabilities of fluctuational transitions between coexisting
stable states of noise-driven systems

It is a feature of many physical systems that they have two or more coexisting
stable states. Among the many examples of such systems we mention
interstitial atoms or molecules in solids that can occupy any elementary
cell with equal probability [3], [4], active (lasers) and passive optically
bistable and multistable devices (see [68]-[70] and references therein), a
relativistic electron in a Penning trap that displays bistability when excited
by cyclotron resonant radiation [71], and biased Josephson junctions with
coexisting oscillatory and steady states [7], [12]. A feature common to
systems with coexisting stable states is the possible occurrence of fluctuational
transitions (switchings) between these states. Because of its broad importance
and interest, the problem of the transition probabilities between stable states
has been considered in a large number of papers (see the reviews [12]-[17].
[33], and [59] and references therein); it was probably Kramers' paper [72]
that most influenced the modern developments in this field. (We note that in
spite of the apparent simplicity of the formulation. the complete solution of
the Kramers problem of the escape of a white-noise-driven particle with one
degree of freedom from a potential well has only been obtained recently (cf.
(73] and references therein).) The effects of color of the driving noise are still
a matter of vivid discussion. although some results and some concepts have
already been well established.

The physical concept of the probability 11~ of a transition between stable
states or. equivalently. of the probability of escape from a stable state. is based
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on the very fact that this probability is much smaller than both the relaxation
rate ¢! of the system and the inverse correlation time t-! of the noise,

(2.123) Wi, <« 1, to = max(t,,tc).

If the condition (2.123) is fulfilled, there are two clearly distinct time scales,
Within a time ~ t,, the system placed initially somewhere in the range of
attraction of a given stable state (attractor) in the phase space approaches
this attractor with an overwhelming probability for sufficiently weak noise, and
forgets the initial position. Simultaneously, the noise correlations decay, i.e.,
the initial state of both the system and the noise are forgotten. For a while the
system fluctuates about the attractor. The escape from the attractor occurs
as a result of a large occasional outburst of the noise which drives the system
away from the region in phase space associated with the initially occupied
attractor (drives the system to another attractor around which the system
now fluctuates). The average frequency of such outbursts is given by W, and
therefore the probability that such an outburst occurs over the time t, is very
small according to (2.123), thus leading to a self-consistent picture. Only if
this description is valid can one appeal in a meaningful way to the notion of
the probability of the transition (escape) from a given stable state; otherwise
the transition probability would depend on the initial position of the system
and/or the initial state of the noise, and one would arrive at a continuum
of “transition probabilities” when considering a distribution of initial states.
Such a continuum does not have much in common with an intuitively clear
rate of the transition under consideration.

Since a statistical distribution in the vicinity of a stable state is generated
over a time of order t, regardless of the initial state of the system, it is obvious
from the above picture that the results for the distribution of noise-driven
systems considered in §§2.2-2.5 hold not only for monostable, but also for
bistable and multistable systems. However, in these latter cases they yield not
a stationary but a quasi-stationary statistical distribution for the population
around an attractor; its integral over the corresponding region of the phase
space (the total population around the attractor) slowly evolves in time because
of transitions away from the attractor.

The criterion (2.123) places a restriction on the intensity of the noise:
only for sufficiently weak noise is the concept of a transition probability
sensible. For example, if a system is fluctuating in a double-well potential
(cf. Fig. 2.10) and the noise is so strong that motion over the barrier is
strongly excited, the concept of transitions between potential wells is obviously
meaningless because the system is in fact not located in any single well. It was
demonstrated earlier that, for Gaussian noise, the probabilities of the large
outbursts, including those nécessary for a transition to occur when the noise
is weak, are exponentially small. As before, it is therefore most interesting
to calculate these probabilities to logarithmic accuracy in the noise intensity.
The results are presented below.
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U(x)

F1G. 2.10. Sketch of a bistable potential Ulx); z12 are the stable equilibrium
positions, T, is the saddle point.

2.6.1. Method of optimal path in the problem of fluctuational
transitions. As in the case of the rare fluctuations that determine the
tails of the statistical distribution, the probabilities of different Suctuations
(realizations of the paths of noise and of the corresponding paths of the system)
that result in transitions between stable states differ exponentially strongly
from each other when the noise is weak. Therefore, to logarithmic accuracy,
the value of the probability W;; of a transition from the ith to the jth stable
state is given by the probability of realization of the most probable (optimal)
appropriate path of the noise and, correspondingly, of the optimal path of the
system. We shall consider W;; for the simplest case when a system is described
by one dynamical variable z(t) and the equation of motion is of the form (2.38).
As always, f(t) is zero-mean Gaussian noise with the power spectrum (2.2) and
the probability density functional (2.46). We assume the potential U(z) of the
system to be a double well (see Fig. 2.10); the stable states of the system are
positioned at the minima of the potential, z; and z2, and the local maximum
of U(x), xs, is the saddle point.

The difference between the problem of the tails of the statistical distribu-
tion and the problem of the transition probabilities lies in the following. In the
former problem the further destiny of the system after its arrival at a given
point in the phase space as a result of the large fluctuation was not of inter-
est. The force f(t) did not vanish at the moment £ of arrival (£ = 0 in the
variational functional (2.48)), and in the course of its decay for ¢ > # this force
drove the system back toward the stable state occupied initially. In the case of
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the optimal path resulting in a transition, on the other hand, the system that
was initially in one stable state (the state ¢) is to be in another stable state
(the state j) when the optimal fluctuation of the noise has died out and f(t)
and its derivatives have become zero (to within their root-mean-square values
proportional to DY 2). Therefore, to logarithmic accuracy we write

(2.124) W = ('t le /D

where, for the system described by (2.38), R; is the solution of the variational
problem

R = minR(/(t), 2(0),
R0 = 5 [ dt FOF(=id/an 1o

(2.125) + /_ o; dAD)[E + U'(z) - £(1))-

Equations (2.124) and (2.125) are similar to (2.47) and (2.48), and just as
in (2.48) the minimum here should be taken with respect to f(t) and xz(t)
independently; A(t) is an undetermined Lagrange coefficient. However, in
contrast to (2.48), the upper limit in the second integral is not the instant
of arrival at a given point but +oco: as explained above, it is necessary to know
in the present problem where the system is when f(t) has decayed to zero, i.e.,
for t — +00. Obviously, by that time the system can be not only in the stable
state j but at any point in the range of attraction of the state j, including the
boundary point x, (the probability of a transition from x, to x; caused by the
small fluctuations is ~ 1/2).

The point z, is precisely the point where the optimal path of the system
should end in the problem of the transition probability. Indeed, this is
a stationary point, U'(zs) = 0, and thus there occurs a slowing down of
the motion of the system for f(t) = 0, i.e., the conditions of approaching
z, and of vanishing of f(t) and its derivatives are fulfilled self-consistently
for t — 400,z — zs. Self-consistency requires that A(t) also vanish for
t — 00, — ; this follows from the variational equation A(t) = U”(x)A(t) (cf.
(2.52) and (2.53)) and from the fact that U”(z,) < 0. Therefore. the boundary
conditions for the variational problem (2.125) for the transition from the ith
stable state are of the form

(2.126) x(—o0) =z;, z(00)==zs, f(Eoo)=0. Xzxoc)=0.

The boundary conditions are obviously of great importance in the problem
of the transition probability. It is an advantage of the present path-
integral formulation based on physically clear concepts that it facilitates the
formulation of boundary conditions. We note that in the important case of
noise f(t) that is a component of an N-component Markov process (this occurs
when F(w) o« ®1(w) is a polynomial of degree N in w? and includes the case
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of exponentially correlated noise), the conditions (2.126) can be obtained in
a different way [45]. In this case one can consider fluctuational transitions
between stable states of an (V + 1)-component Markov system (the (N + 1)st
component is the dynamical variable z(¢) itself) driven by white noise. To
cause a transition, this noise must bring the system to a hypersurface that
separates the ranges of attraction of two different stable states; the system
will then go on to the other stable state from that originally occupied with a
probability ~ 1/2. If we are interested in calculating the transition probability
to logarithmic accuracy we must optimize not only over the paths of the noise
but also over the final point of the system on the separating hypersurface (38].
It is precisely the point f = f =...= fN-1) = 0,7 = g, (the saddle point of
the multidimensional process) that gives the maximum probability, in complete
agreement with (2.126).

The variational equations for the optimal paths f,(t) of the noise and
Zopt(t) of the system that follow from (2.125) are of the form (2.52) and (2.53).
It is a general feature of systems driven by colored noise, however, that the
solutions for the problem of the tails of the statistical distribution and for that
of the transition probability are quite different: it does not follow from the fact
that the system has reached a saddle point that it will then go to a different
stable state with probability ~ 1/2. In fact, in the general case (an example is
given in the next subsection) it will come back to the initially occupied state
with overwhelming probability, i.e.,

(2.127) R, > R(.’Es;l‘i).

Here R(z,; ;) is the activation energy (2.48) for reaching the point z, if the
stable state i was occupied initially. The inequality (2.127) shows that the
mean first-passage time to the point zs does not give the reciprocal transition
probability—the latter is in general exponentially larger than the former.

2.6.2. Transition probabilities for particular types of noise. The
activation energy R; for the transition from the ith stable state can be
evaluated in explicit form in some limiting cases. The simplest case is that
of a short correlation time t. of the noise, such that the bandwidth of the
noise substantially exceeds the reciprocal relaxation time of the system (see
Fig. 2.3(a)). To zeroth order in ¢, i.e., in the white-noise limit, the solution
of the variational equations for f(t), z(t), A(t) is of the form (2.62). The color-
induced correction can be obtained from (2.125) by noting that the operator
F is a series in t2d?/dt?; to find the lowest-order correction in t. it suffices
to allow for the linear term in this series in (2.125), while keeping for f(¢)
the corresponding zero-t. approximation (2.62). (This is a standard trick in
the perturbation theory for variational problems [57] which does not work,
however, for corrections to the statistical distribution that are nonanalytic in
t2; see §2.3.) The result is of the form [45]

(2128)  Ri=2FOU(e:) ~ U]+ F'(0) [ da U/ @)U @),
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where

_ d*F(w)

(2.129) Py =, F(0)

|« 2.
F(0) ‘ <5

The sign of the color-induced correction coincides with that of F(0). This
means that if the power spectrum ®(w) of the noise has a maximum at w =0,
then the correction is positive, i.e., the color causes the transition probability to
decrease, while in the opposite case (as, for example, when noise is produced by
a harmonic oscillator described by (2.88) with w? > 2T'2 that filters white noise)
the transition probability exceeds its white-noise-limit value. We note that the
change of the transition probability due to the noise color is exponentially
strong when the correction to R;, although small compared to the main term,
is nevertheless large compared to D. In the particular case of exponentially
correlated noise (2.6), F"(0)/F(0) = 2t2, and (2.128) goes over into the result
of Klosek-Dygas et al. [49] obtained by seeking the solution of the appropriate
Fokker-Planck equation (2.66) (or its adjoint equation for the mean first-
passage time) in the eikonal approximation; not only the argument of the
exponential but also a prefactor in the expression for the transition probability
were obtained in [49]. A systematic analysis of the color-induced corrections
to transition probabilities for exponentially correlated noise was given by Bray
et al. [39], [43] using a path-integral formulation somewhat different from the
present one (see §2.3); by making use of an instanton technique it was also
possible to obtain a prefactor within this formulation for t. < t, [74].

In the case of noise with a long correlation time such that the width of the
power spectrum ®(w) of the noise is small compared to ;! (see Fig. 2.3(b)),
as explained in §2.3 the system follows the noise adiabatically and occupies
a minimum of the adiabatic potential U(z) — zf(t) for f(t)/U’(z™) < 1
(' is the inflection point of U(x)); see Fig. 2.4. When f(t) = U’ (z*"f1) this
minimum transforms into the inflection point. For even larger f(t)/U’(zi"f!)
the special character of this point disappears, and the system “rolls down”
to another stable state. Therefore, the transition probability to logarithmic
accuracy is equal to the probability for f(t) to take on the value U’ (z*nfh)
(these arguments were given by Tsironis and Grigolini [60] specifically for
exponentially correlated noise, but they certainly hold for other types of noise
as well), i.e.,

- D
" 2¢(0)

(see Dykman [45]; the corresponding expression for exponentially correlated
noise was first obtained by Luciani and Verga [46]). As explained in §2.3, the
correction to (2.130) is nonanalytic in ¢, /t.; it was obtained for exponentially
correlated noise by Bray et al. [43] and is of the form

(2.130) R; U™, te>t,

(2.131)  6R; = ARt;2AU (&MU (™73, A=2.05.
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We note that the onset of substantial corrections to (2.130) related to the
slowing down of the motion of the system near the minimum of the adiabatic
potential when f(t) approaches U’(¢"/") was noticed in [61].

The numerical results obtained by Bray et al. [43] for the activation energy
of a transition of a system with a symmetric double-well potential of the form
(2.84) driven by exponentially correlated noise are shown in Fig. 2.11. As
might be expected upon inspection of (2.128)-(2.131), although the activation
energy as a function of the correlation time of the noise, R;(t.), increases
monotonically with increasing t., the first derivative R;(t.) is nonmonotonic.
To make the features of R;(t.) more evident, the renormalized quantity [43]
proportional to [R;(t.) — R;(0)]/t. has been plotted in Fig. 2.11. It has a
maximum at log(t./t,) ~ 1.1. These results and the nonmonotonicity of
[Ri(te) — Ri(0)]/t. in particular have been confirmed quantitatively in detailed
Monte Carlo simulations in [75].
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Fi1Gc. 2.11.  The activation energy R = R, = Ry for the transitions between
stable states of a symmetrical system with the potential U(z) = —(1/2)z% + (1/4)x*
as a function of the correlation time t. of the ezponentially correlated driving noise
[43]. The asymptotes given by the expressions (2.128) (the small t. limit), and (2.130),
(2.131) (the large t. limit) are shown dashed. The value of R° is that of R fort. =0,
while R™ 1is given by (2.130), R™ = 4t./27, for the particular type of noise and the
potential U(x) considered in [43].

2.6.3. Quasi-monochromatic noise. The features of the escape from a
stable state related to the color of the driving noise are even more distinct
when the noise has “true color,” i.e., when its power spectrum ®(w) contains a
narrow peak at a finite frequency. We illustrate these features by considering
as an example the QMN considered in §2.6. The shape of the power spectrum
of this noise is given by (2.89), and we assume that the position w, of the
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maximum of the spectral peak, the halfwidth I" of the peak, and the relaxation
time ¢, of the system satisfy the inequality (2.92), I' <« ;! <« w,. As
explained in §2.4, in this case the motion of the system is a superposition
of fast random oscillations and a smooth shift of their center. The amplitude
of the oscillations is proportional to the amplitude of the oscillations of the
noise, while the phase is shifted with respect to that of the noise oscillations
by m/2. The amplitude varies over the characteristic time I'"!, which is the
correlation time of the noise. The center of the vibrations follows this variation
adiabatically.

This picture has been clearly confirmed in analog electronic experiments
[62]. Two samples of the trajectories of a QMN-driven system described by
(2.38) with the potential of the form (2.84) as obtained in [62] are shown in
Fig. 2.12. The qualitative feature of the QMN-induced fluctuations that is
obvious from Fig. 2.12 is that the trajectory x(t) of the systems crosses the
saddle point x; = 0 (the potential barrier top) several times forwards and
backwards and then goes back to the initially occupied state without com-
pleting a transition to the other stable state. Paths resulting in transitions
are very much less frequent; they were observed to happen for larger ampli-
tudes of fluctuational vibrations and, correspondingly, larger shifts of their
centers.

x(t)

Fic. 2.12. Two samples of the trajectory x(t) of a symmetrical bistable
system driven by quasi-monochromatic noise ezhibiting an example of occasional large
fluctuations from each of the attractors that result in passage across the saddle point
(the potential is of the form (2.84), so that z, = 0), as observed in an analog experiment
[62]. The eigenfrequency and halfwidth of the QMN are the same as in Fig. 2.6, and
the noise intensity is D = 192.
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This observation is in complete agreement with the inequality (2.127): the
activation energy R(0) for the mean first-passage time to the point x5 = 0 is
Jess than the activation energy R; of fluctuational transitions (see below), and
therefore the transition probability is exponentially smaller than the reciprocal
mean first-passage time to the saddle point. The value of R(0) is given
;immediately by (2.99), (2.100), and (2.102) [45],

_ lwg
=:T-

The double-adiabatic approximation explained in §2.4 does not hold for the
entire optimal path resulting in a transition. One of the scenarios for escape is
that, for some value 4 = x(f), the “relaxation time” of the center of vibrations
z. diverges,

(2.132) R(0)

(2.133) Vo(zed, 2 2y =0, & =2

Having reached the corresponding value of 12 the center of vibrations goes
over to the other branch of the solution of the equation V,(2¢,z4,2-) = 0
and approaches the saddle point as the amplitude |z4| of the forced vibrations
(and thus the noise amplitude) falls to zero (the details are given in [45]). It
follows from this picture that it is not the vibrating coordinate itself but the
center of vibrations that should reach the saddle point for the transition to
occur, and also that the transition probability is given by the probability of
the realization of the noise amplitude resulting in the amplitude of the forced
vibrations given by (2.133), so that, as explained when (2.102) was derived,
the activation energy of the transition is of the form

(2.134) R; = (2w2/D)|z{) 2

In the particular case that the potential is of the form (2.84), one obtains
(see [45] and [76])

1w?

3T’ |

which indeed exceeds the activation energy (2.132) of the mean first-passage
time. The value R; given in (2.135) fits the activation energy of the transition
obtained experimentally [62] very well. (The data for R(z) have been discussed
in §2.4; we note that the range where the distribution about state i is quasi-
stationary extends to the values of z for which R(z,z;) = R;, i.e., far beyond
the range of attraction to the state i; in the particular case of the potential
(2.84) and x; = —1 the boundary of quasi-stationarity is z = V2/3; cf. also
experimental data in Fig. 2.7.)

In conclusion, the color of noise not only drastically changes the value
of the activation energy of the transition probability, but it also changes the
entire pattern of the transition. The transition probability differs exponentially
strongly from the mean first-passage time to the saddle point (the top of the

(2.135) R =
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potential barrier)—the system can recross the saddle point many times without
completing a transition. The method of the optimal path makes it possible tq
reduce the problem of the calculation of the activation energy of a transition
to a variational problem with intuitively clear boundary conditions.

2.7. Conclusion

It follows from the above discussion that the present status of the investigation
of colored-noise-driven dynamics is very promising. Several new theoretical
and experimental results have been obtained within the last few years,
including the prediction and observation of the features of large fluctuations
in systems driven by quasi-monochromatic noise, and the visualization of
optimal paths. Although some features of the dynamics are now well
established qualitatively and the appropriate mathematical techniques have
~been developed, such as those used here to find optimal paths for large
fluctuations and fluctuational transitions, there are still both qualitative and
quantitative problems to be addressed. For example, if a bistable system
is driven by noise, what is the shape of the far tails of the stationary
distribution? This distribution is shaped by large noise outbursts that bring
the system to a given point in the phase space from one rather than the
other attractor with an overwhelming probability. A simple-minded picture,
then, is that the full phase space is separated into the “strips” attributed
to fluctuational arrivals from either attractor; this picture is similar to that
of deterministic motion in the absence of noise where the phase space is
separated into the ranges from which a system goes to one or the other
attractor and, as in this latter picture, one can investigate the question of
the structure of the separating manifold (fluctuational separatrix). However,
the topology of the phase space with respect to fluctuational arrivals may
be more complicated, and this simple-minded picture may not be generally
applicable.

The outstanding problem of greatest importance is that of large fluctua-
tions in systems driven by non-Gaussian noise. Since for Gaussian noise the
probability of large noise outbursts decreases extremely rapidly with increas-
ing magnitude of the outburst, even small deviations of the probability density
functional from a Gaussian form can result in drastic changes in the transition
probabilities and other quantities associated with large fluctuations in noise-
driven systems. In many cases of physical interest the method of the optimal
path will still be applicable, but more detailed inspection is necessary in each
case.

There also exist a number of less “global” problems that are nevertheless
interesting and important. These include, for example, a systematic algorithm
for the numerical solution of the variational problem for optimal paths. the
calculation of the prefactors in the expressions for the tails of the statistical
distribution and for the transition probability, the shape of the spectral density
of fluctuations in nonlinear (especially underdamped) noise-driven systems.
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and the pre-history problem for bistable systems with the final point close to
the saddle point. We plan to address some of these problems in the near future,
and hope that this review will stimulate continued interest in phenomena
related to the color of noise.
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