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We demonstrate that, in a quantum computer with perpetually coupled qubits, all exci-
tations can be confined to their sites (qubits) even without refocusing. The on-site local-
ization is obtained by constructing a sequence of qubit energies that efficiently suppresses
resonant hopping. The time during which a many-excitation state remains strongly lo-
calized in an infinite chain can exceed the reciprocal hopping frequency by 2 10° already
for a moderate bandwidth of qubit energies. The proposed energy sequence is also con-
venient for performing quantum operations on the qubits.

Keywords: perpetually coupled qubits, localization, many-particle transitions, lifetime

Communicated by: D Lidar

1 Introduction

In many proposed physical implementations of a quantum computer (QC) the qubit-qubit
interaction is never turned off [1]- [7]. A generic consequence of the interaction is hopping
of excitations between the qubits. Preventing hopping is a prerequisite for quantum compu-
tation. In all proposed schemes, control of a QC and measurement are done assuming that
excitations remain localized between operations. For perpetually coupled qubits localization
can be accomplished with refocusing techniques [1]. Recently there were also proposed ap-
proaches that do not require ongoing resonant pulsing [8, 9]. At the same time, localization
has been one of the central problems of condensed-matter physics [10]. One-particle localiza-
tion often results from disorder caused by randomness of particle energies on different sites
and/or inter-site hopping integrals. The problem of localization is particularly challenging for
many-body systems, where only a limited number of results has been obtained [11].

In this paper we provide an overview and further extend our recent work [12, 13] on on-site
many-particle localization. Such localization means strong confinement of excitations to the
qubits (sites) where they were created. It is a stronger requirement than just exponential
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decay of the wave function at large distances, and it is this requirement that must hold in a
QC. Throughout the paper we use the term “particles” and “sites” for excitations and qubits,
respectively. For 1D chains there is one-to-one mapping of the excitations onto fermions via
the Jordan-Wigner transformation.

On-site localization does not arise in a disordered many-particle system with bounded
random on-site energies [14]. Indeed, consider an N-particle state where each particle is fully
localized on its site, with no more than one particle per site. We call this an on-site state or
a quantum register. For short-range hopping each on-site N-particle state is directly coupled
to ~ N other such states. With probability o< IV one of them will be in resonance with the
initial state, provided the on-site energies are uniformly distributed over a finite-width band.
For large N this leads to state hybridization over time ~ J !, where J is the intersite hopping
integral (we set i = 1).

In a QC, the quantity J is determined by the qubit-qubit interaction and often character-
izes the rate of two-qubit operations. The on-site excitation energies are interlevel distances
of the qubits. In many cases they can be individually controlled, which makes it possible to
construct an arbitrary energy sequence. However, since the qubit tuning range is limited, so
should be the energy bandwidth. This imposes an important constraint that has to be met
when localization is sought. A smaller bandwidth leads also to a higher speed of quantum
gate operations, particularly if they involve changing qubit energies [3].

We discuss localization from two points of view. One is based on the analysis of stationary
states of a many-particle system. The other is based on studying the system dynamics. As
a result of hopping, an on-site many-particle state can hybridize with another on-site state
with nearly the same energy. We will study the time it takes for resonant hybridization to
happen, which we call the localization lifetime ¢,

In a QC all states have a finite coherence time due to coupling to the environment and
external noise. For successful QC operation, delocalization should not occur during this time.
For most of the proposed models of a QC, the coherence time is < 10°J~!. Therefore it is
sufficient to have the localization lifetime > 10°J~!. Such lifetime-based formulation of the
many-particle localization problem is relevant to condensed-matter systems as well, because
of finite decay and decoherence times of quasiparticles for nonzero temperatures.

We show in this paper that, within the lifetime-based formulation, many-particle localiza-
tion of all states can be obtained in an infinite chain by constructing a sequence of on-site
energies. For the proposed narrow-band sequence, all many-particle states remain confined
for a time that largely exceeds J 1. We find that all stationary many-particle states in mod-
erately long chains are also strongly on-site localized. This makes the proposed system a
potential candidate for a quantum memory device.

To localize one particle, the difference between excitation energies on neighboring sites
should be much larger than J. The energies of remote sites should also differ. This is obvious
for long-range coupling, but is also true for nearest-neighbor coupling, which is considered in
this paper. For such coupling, hopping between remote states occurs via sequential virtual
transitions to intermediate states. Because the effective hopping amplitude decays with the
intersite distance, the further away the sites are, the smaller their energy difference can be.
We use this idea to obtain strong on-site single-particle confinement for a bounded energy
bandwidth.
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For many-particle localization one has to suppress not only single-particle, but also com-
bined resonances, where several interacting excitations make a transition simultaneously.
There is no known way to eliminate all such resonances. However, the effective many-particle
hopping integral quickly falls off with the increasing number of involved excitations and in-
termediate nonresonant sites, which gives the effective “order” of a transition. To obtain a
desired lifetime of a localized state it is sufficient to eliminate resonances up to a certain order.
We show how to do it to a fairly high order for an arbitrary number of excitations and for an
infinite system [13].

2 The model and the on-site energy sequence

An array of qubits can be modelled by a one-dimensional chain of S = 1/2 spins in a magnetic
field. The excitation energy of a qubit is the Zeeman energy of a spin. The qubit-qubit
interaction is the exchange spin coupling. For many proposed realizations of QC’s [1] - [6] it
has a form %Z' JEE SESE | where n,m are spin sites, 4 = z,y, z are spin projections, and
Jir = JY¥ for the effective magnetic field in the z-direction. The 1D spin system can be
mapped, via Jordan-Wigner transformation, onto a system of fermions. For nearest neighbor

coupling, the fermion Hamiltonian is

H= Z enal an + %JZ (alanﬂ + al+1an)
+JA Zn alail+lan+1an- (1)

Here, a} , a,, are the fermion creation and annihilation operators. Presence of a fermion on site
n corresponds to the nth spin (qubit) being in the excited state. The on-site energies ¢, in
Eq. (1) are the Zeeman energies counted off from the characteristic central energy, J = J37,
is the hopping integral, and JA = JZ% ., is the fermion interaction energy; we set J, A > 0.

To give an example, for a QC based on electrons on helium, the typical distance between
the energy levels (in frequency units) is ~ 100—200 GHz, the hopping integral .J is ~ 0.1 GHz,
and A varies from ~ 3 to ~ 28 depending on the operation conditions. The dynamical range
over which the frequencies ¢,, can be tuned without causing an increase of the relaxation rate
is limited by ~ 10 GHz [15].

Localization of stationary states in a many-particle system can be conveniently charac-
terized by the inverse participation ratio (IPR), which shows over how many sites the wave
function spreads. For an N-particle eigenstate |¢nyy) (A enumerates the eigenstates) it is
given by

-1
Iy = <Zn1<...<nzv|<@n1mnN|wN)‘>‘4) ’ (2)

where |®,,, .. n,) is an on-site N-particle wave function (quantum register) with particles on
sites ny1,... ,nyN.

For fully localized stationary states Inyx = 1. For delocalized states Inyy > 1. Strong
on-site localization that we are interested in corresponds to Iy being close to 1 for all states.

Along with Iy, we will be interested in its average value (I), where averaging is per-
formed over all states A of the N-particle system.

Localization requires that the on-site energies &, be tuned away from each other. For
nearest neighbor coupling a natural first step is to separate ,’s into two subbands, for even
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and odd n, with the inter-subband distance h that significantly exceeds J. Then we further
split each subband into two subbands to detune next nearest neighbors. Here the splitting
can be smaller, because next-nearest-neighbor hopping occurs via a nonresonant site, and
the effective hopping integral is ~ J2/h. The procedure of band splitting is continued, with
higher-order splitting being smaller and smaller.

A simple sequence of ¢, that implements the above idea has the form

1 n+1
n = §h [(_l)n - z:lczz(_l)vl/lcJ okt ;, n=>1 (3)

(|-] is the integer part). The energies (3) are illustrated in Fig. 1(a). Besides the scaling
factor h, they are characterized by one dimensionless parameter & < 1. One can see from
Eq. (3) and Fig. 1(a) that sites with close energies are indeed spatially separated and that
the energy spectrum has a subband structure. Analytical estimates of the energy difference
can be obtained for small . We have |ep,4m — €| ~ h for odd m and ~ ah for odd m/2. In
general, the larger is m the higher may be the order in « of the leading term in |y, 41, — €nl-
For a 2 0.4 all subbands overlap and the subband structure disappears.

It is important for localization that the sequence (3) has no simple symmetry. It is neither
self-similar nor quasi-periodic (quasi-periodicity is another example of “constructed” disorder
[16]). For analytical estimates it is essential that the coefficients at any given power a? are
repeated with period 2(g + 1) [13].

2.1 Single-particle localization

Spatial decay of the single-particle stationary states can be characterized by the amplitude of
a particle transition from site n to site n + m. To the lowest order in J it has the form

Kn(m) =] 7/ 2(en — enii)] (4)

It can be shown using some results from number theory that K, (m) decays with m nearly
exponentially [13]. For small o and large |m| we have

Kn(m)=a7"I™ (J/2n)™. (5)

The decrement v depends on n, m. However, it is limited to a narrow region around v = 1
with 0.89 < v < 1.19, cf. Fig. 1(b). For estimates one can use v = 1, i.e., set K,(m) =
K™ K = J/2ah.

Equation (5) describes the tail of the transition amplitude for J/2ha < 1. On-site single-
particle confinement occurs for & >> ayp, where the threshold value of « is at, = J/2h. The
condition a4y < a < 0.4 can be satisfied for a moderately large ratio of the energy bandwidth
h to the hopping integral J.

Strong on-site single-particle localization for h/J = 20, as evidenced by I, being very
close to 1, is seen from Fig. 1(c). The data are obtained by diagonalizing the Hamiltonian (1)
for open chains with different numbers of sites L.

In the limit & — 0 the stationary single-particle states are sinusoidal, which gives (I) ~
L/3, cf. Fig. 1(c). As «a increases, the bands are split into more and more subbands, and (I7)
decreases. It sharply drops to &~ 1 in a narrow region, which can be conditionally associated
with a smeared transition to on-site localization. The center of the transition region gives
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Fig. 1. Single-particle localization for the on-site energy sequence (3). (a) The energies ey, /h for
a = 0.3. (b) The decrement v of the a-dependence of the transition amplitude K,(m) (5) for
m = 200 as function of n. The dashed lines show the analytical limits on v. (¢) The mean single-
particle inverse participation ratio (I1) vs. o for h/J = 20 and for different chain lengths L. The
vertical dashed line shows the analytical estimate for the threshold of strong on-site localization.
The inset shows the maximal IPR, I1 max = max) I1), demonstrating strong confinement.

asn. It appears to be independent of the chain length L. The estimate ay, = J/2h is in good
agreement with the numerical data for different h/J.

When a > oy, all states are strongly confined. The wave function tails are small and
limited mostly to nearest neighbors. At its minimum over o for given h/J, for all states
Iy — 1 =~ J?/h?, see inset in Fig. 1(c). We note that the peak of Iy pmax for L = 300 near
a = 0.1 is due to accidental degeneracy at the boundary. It occurs because the state on the
boundary has less neighbors than inside the chain, and therefore the hopping-induced shift
of the boundary energy ~ J?/h differs from that inside the chain; one can show that, for
a ~ 0.1, the renormalized energies €296 and €3g¢ are resonating. For a 2 0.4, when the bands
of €, start overlapping, the IPR increases with a.

3 Many-particle localization

The difference in the localization problems for many-particle and single-particle systems stems
from the interaction term < JA in the Hamiltonian (1). For nonzero A (i) the energy levels are
shifted depending on the occupation of neighboring sites, potentially leading to many-particle
resonances, and (ii) there occur interaction-induced many-particle transitions.

To analyze many-particle effects, it is convenient to change from a],a, to new creation
and annihilation operators b}, b,, that diagonalize the single-particle part of the Hamiltonian
(1), an = >_; Unrb. The interaction part of the Hamiltonian becomes

H;=JA Z Vk1k2k3k4bltlb22 breg bky s (6)
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where the sum runs over ky 234, and
_ * *
Vk1k2k3k4 - E p Upk1 Up+1 ko UP+1 k3 Upk4' (7)

The Hamiltonian (6) describes the interaction of the exact single-particle excitations.

If all single-particle stationary states are strongly localized, the off-diagonal matrix ele-
ments U, are small. They are determined by the decay of the wave functions and fall off
exponentially, Uy, ~ K!*~"| for |k — n| > 1. At the same time, the diagonal matrix element
is Uppn =~ 1. Therefore the major terms in the matrix Vi, g, x,1, are those with s = 0, where

ﬂzflgn(\kl—P\+\k2—P—1\+|k3—l’—1\+|k4—p\)- (8)

The terms with 3 = 0 lead to an energy shift o« JA from each pair of occupied neighboring
sites in a given many-particle state.

The meaning of the parameter > (8) can be understood by noticing that the terms
X Vi, koksks in Eq. (6) describe two-particle inter-site transitions (k4,ks) < (k1,k2) of the
renormalized fermions. For a given transition, s is simply the number of virtual steps that
have to be made by the original fermions. The steps are counted off from the configuration
where two such fermions occupy neighboring sites, and each step is a transition by one of the
fermions to a nearest site. In other words, the original fermions go first from sites (k4, k3) to
sites (p,p + 1) and then to (k1,k2) (we assume for concreteness that k3 > k4 and ko > k1);
the value of p is chosen so as to minimize the number of steps.

To make the meaning of 3¢ even more intuitive we give examples of some ¢ = 4 transitions.
For the initial and final states (n,n+1) and (n — 2, n + 3) one of the sequences of steps of the
original fermions is (n,n+1) = (n,n+2) > (n—1,n+2) - (n—1,n+3) > (n—2,n+3),
whereas for the initial and final states (n,n + 2) and (n — 1,n + 3) one of the sequences
is(myn+2) > (n,n+1) > (n—1,n+1) - (n—1,n+2) - (n— 1,n+ 3) [the energy
denominators must be obtained directly from Egs. (3), (6), (7)].

It follows from the above argument that, for a > a;p,

Vierkoksks ~ K for x> 1. (9)

Transitions of renormalized fermions are not limited to nearest neighbors. However, from
Eq. (9), the amplitudes of transitions over many sites are small and rapidly decrease with the
number of involved virtual steps.

In higher orders of the perturbation theory, the interaction (6) leads also to many-particle
transitions. The overall transition amplitude is determined by the total number of involved
virtual single-particle steps.

In order to localize many-particle excitations, one has to suppress combinational many-
particle resonances keeping in mind that, for localization, the effective hopping integral must
be smaller than the energy detuning of the initial and final on-site states. Because of the
large number of possible resonances, we do not have an analytical proof of many-particle
localization in an infinite system for our energy sequence (3). However, our numerical results
demonstrate strong on-site localization of all stationary states in a chain of a limited size.

Numerical results on the many-particle IPR are shown in Fig. 2. We have studied chains
of length L = 10,12, and 14 with L/2 excitations, which have the largest number of states
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for given L (o< 2% for large L). The results for all L were similar, and we present the data for
L = 12, in which case the total number of states is 924.

For small a, the IPR is independent of a and is large because of the large number of
resonating on-site states |®,, nq). It is reduced by the interaction x JA that splits the
energy spectrum into subbands depending on the number of occupied neighboring sites. On
the whole, the IPR decreases with increasing « as long as a < 0.4. In the region 0.2 <a <04
and for h/J = 20 we have () ~ 1.01 except for narrow peaks. This indicates that away from
the peaks the stationary states are strongly localized. Strong on-site localization of all states
is indicated by the data on Igmax = maxy Igy.

100
<|6>

10

Fig. 2. Many-particle localization for a chain of length L = 12 with 6 excitations. The data refer
to the first 12 sites of the chain (3), the reduced bandwidth is h/J = 20. The dashed, solid, and
dot-dashed curves give the mean IPR for the coupling parameter A = 0,0.3, and 1, respectively.
The inset shows the maximal I for A = 1. Sharp isolated peaks for A # 0 result from the
hybridization of many-particle on-site states that are in resonance for the corresponding . The
peaks for A = 0 are due to the boundaries.

A distinctive feature of the many-particle IPR as function of o are multiple resonant peaks,
a part of which is resolved in Fig. 2. They occur when two on-site states resonate. Two-site
resonances lead to Igmax < 2. The strongest peaks of Igmax happen when the two-particle
energy difference

0 = |eky, + Eky — Eks — Ekyl (10)

is close to MJA with M =0, 1,2.

As we increase a starting from o = 0, pronounced peaks of (Is) appear first for de ~
sah ~ JA with s = 1,2. They are due to hybridization of pairs on sites (n,n + 1) and
(n,n+3) for s =1, and (n,n+1) and (n—1,n+2) for s = 2, for example (3r = 2-transitions).

For larger «, resonances occur when sa™h ~ MJA with n > 2. In most cases (see,
however, below for a notable exception) such resonances require more intermediate steps,
with s > 4. The widths of the IPR peaks are small and are in good agreement with simple
estimates based on Eq. (6) [12, 13]. In between the peaks Igmax = 1.02 for 0.2 < < 0.4 and
h/J = 20.

For the sequence (3), a special role is played by two-particle resonances where de < J for
all @ < 0.4. They emerge already for s = 2-transitions (n,n+ 1) <> (n — 1,n+ 2). Here, if n
and n + 2 are prime numbers, de ~ o™ 'h is extremely small for large n and small a. Strong
resonance occurs for all n = 6k — 1, in which case dc/h x af with £ > 4. For example, for a
transition (23,24) > (22,25) we have dc/h oc a, whereas for a transition (29, 30) < (28,31)
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we have 6c/h x a?®. As a result of these resonances the condition de > JAK” may not be
satisfied in an infinite chain.

For different sections of the chain (3) we found that the resonances (n,n+1) <> (n—1,n+2)
for n = 6k — 1 increase (I) up to 1.15 between the peaks, for h/J = 20,0.2 < a < 0.4, and
A = 1. These resonances can be eliminated by modifying the sequence (see the next section).
This modification brings (Ig) and Igmax back to &~ 1.01 and ~ 1.02, respectively [12, 13]. We
emphasize that such small values of (Ig) — 1 and Igmax — 1 were obtained for all 12-site long
sections of the chain that we have tested.

4 Lifetime of strongly localized states

The problem of strong localization can be viewed also from a different perspective. In the
context of quantum computing, it suggests a more appropriate formulation then the one
based on the analysis of stationary states. It is also relevant for condensed-matter systems at
nonzero temperatures.

First we note that excitations in quantum computers and in condensed-matter systems
have a finite coherence time t.,,. For QC’s, this time has to be compared with the duration
of a single- or two-qubit operation and measurement. The duration of a two-qubit swap
operation is of order of the time it takes to resonantly transfer an excitation between the
qubits, which is ~ J~!. A single-qubit operation is often faster; however, the measurement
can sometimes be slower or even much slower. In most proposed realizations of a QC the
coherence time exceeds the gate operation time by a factor < 10°.

We define the localization lifetime ¢}, as the time it takes for excitations to leave occupied
sites. Localization of excitations is only relevant on times ~ t.,n. Then to have meaningful
on-site localization it suffices that tioc = tcon. It follows from the estimate for .., that the

~

latter condition is met if
tioe = 1057 1. (11)

The condition (11) must be satisfied for all on-site many-particle states. It is this condition
that the energy sequence &,, must meet in an infinite system.

The time ), is determined by hopping between resonant on-site states. It occurs through
virtual transitions via nonresonant sites. For a two-particle resonant transition, the minimal
number of the needed virtual steps is given by the parameter 5 (8). Then from Egs. (6), (9)
the hopping integral for a resonant transition (k4, k3) <> (k1, k2) is JAVy, koksks ~ JAK™ for
2> 1. Here, K is defined by Eq. (5), K ~ J/2ah, and K < 1 in the region a/a, > 1.

In the case of the energy sequence (3) and for A <1, up to a fairly high number of virtual
steps (< 5), of interest for the estimate of #),. are resonances between two-particle on-site
states. This applies to systems with an arbitrary number of particles; only those transitions
matter in which up to two particles change sites. Indeed, transitions where three particles
change sites emerge in the second order in the two-particle Hamiltonian (6), (7), and their
amplitude contains an extra nonresonant denominator.

For resonant two-particle transitions

tioc ~ (JAK%min) 711



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev = 343

where ¢, is the minimal value of 3¢ for all pairs of resonating initial and final on-site states.
To have tj,.J that exceeds a given value, we must have an appropriate ¢y,;,. This means that
we should eliminate resonances between all states connected by 3¢ < 3¢, virtual transitions.

A two-particle transition with odd s = 1, 3,5, ... involves a change of the total number of
occupied sites with n of given parity. Therefore, for the sequence (3) with a@ < 1, the energy
change in such a transition is de ~ h. If JA < h, then J¢ significantly exceeds the change
of the interaction energy JA, 2JA. As a result, resonant two-particle transitions may occur
only for even .

We will modify the sequence (3) to eliminate resonances with 3¢ = 2 and > = 4. This will
allow us to have the localization time ¢, ~ J 'K % and > J 'K ~, respectively, for A < 1.

4.1 Eliminating second order many-particle resonances

The potentially resonant transitions with s = 2 are

(n,n+1) < (n,n+1£2), (n£2,n+1)
(nym+1) < (n—1,n+2). (12)

In the transitions listed in the first line of this equation, one of the particles in the pair moves
by two sites in one or the other direction, whereas for the transition shown on the second line
both particles move by one site.

We note that Eq. (6) describes “direct” transitions over several sites, with amplitude
o< K*, which is a result of the diagonalization of the single-particle Hamiltonian; for example,
a transition (n,n+1) +> (n,n— 1) does not involve double-occupancy on site n. Alternatively,
one can think of this transition as a sequence of steps (n,n+1) < (n—1,n+1) + (n,n—1).

The number of occupied nearest sites in the transitions (12) can change by one or remain
unchanged. Therefore the maximal change of the interaction energy is JA. Second-order
resonances will be eliminated if the detuning of the on-site energy differences e for the
transitions (12) is

de > JA.

This means that we need a zero-energy gap of an appropriate width in de.

We note that this is a sufficient, not the necessary condition. In principle, it would suffice
to have narrow gaps at ¢ = 0 and JA. These gaps should just be broader than the tunneling
matrix element and than the energy shifts due to occupation of next nearest neighbors. For
a specific finite-length section of a chain this may be more practical. However, here we are
interested in an infinite chain, and we want to demonstrate that even for such a chain all
resonances with sz < 4 can be eliminated.

To create the zero-energy gap, sequence (3) has to be modified. The modification has to
eliminate, in the first place, the “anomalous” broad-band resonances for transitions (n,n +
1) <> (n—1,n + 2) with n = 6k — 1 discussed before. A simple and sufficient modification is
a constant shift of ¢,, for each 6th site,
™ = ¢, + (h/2)d for n = 6k, (13)

n

while e™d = ¢, for n # 6k.
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For the modified sequence (13), the gap in the on-site energies for the 2nd-order transitions
(12) is 6 ~ a®h,a’h/2 to leading order in @. A more accurate estimate is minde ~ (a? —
a®)h,a'h/2. We assume that a? < o’ < a, in which case no new resonances are created for
the transitions (12) as a result of the modification (13).

It follows from the above estimate that, for an infinite chain and an arbitrary number
of particles, all resonant transitions with s < 4 will be eliminated provided JA/h < o? —
a3,a'/2, . Then the localization time t,. ~ 105J ! already for h/J = 30, a = 0.3, o/ ~
0.1 0.2, and A <1.

4.2 Eliminating fourth order resonances

The localization time is further dramatically increased if 3¢ = 4 resonances are eliminated.
The potentially resonant 4th order transitions are

(n,n+1)+ (n—2,n+3),
(nyn+1) < (n+2,n+3),
(n,n+3)+< (n—1,n+2),
(n,n+3) < (n—2,n+1), (14)

and

(n,n+1) < (n—1,n+4),
(n,n+1) < (n—3,n+2),
(n,n+1) < (n,n+1+4), (n£4,n+1). (15)

In the last line of Eq. (15) we list transitions where one of the particles in the pair moves by
4 sites, whereas in all other transitions both particles move away from their sites.

For the modified sequence (13), the minimal energy change in the transitions (14), (15)
is minde ~ a3h, to leading order in a, provided o’ > o®. The value of o’ has to be
in such a range that the modification (13) does not lead to extra resonances between the
on-site energies for the states (14) and (15). The “dangerous” combinations in de/h are
la —a'/2|,]2a — &' /2], ]a? — a'/2|,]2a% — &' /2], to leading order in « [13]. We will choose
a,a’ so that all of them exceed minde/h ~ a3.

Fig. 3 shows how the modification (13) leads to a zero-energy gap in de. We plot de™¢
for all transitions (12), (14), (15), with n being the smallest number of the site involved in a
transition, n > 2. Therefore we show all potentially resonant transitions with s < 5.

The left panel in Fig. 3 shows that, for the initial sequence (3), there is practically no
gap in the values of §e at low energies. The right panel demonstrates that the correction
(13) leads to a zero-energy gap. The gap depends on the values of @ and «'. For the specific
parameter values in Fig. 3 we have de/h > 0.01. It can be shown that this result applies for
an infinite chain [13].

It follows from the discussion above that, for 2JA < 0.01h, all particles will remain
localized on their sites for the time tj,. ~ (JA) 1K ~%/a [we have taken into account here
that the hopping integral for transitions with s = 6 is limited by ~ JA(J/2h)%a® rather
than JA(J/2h)%a =6, as would be expected from the asymptotic expression (9)]. For h/J = 50
and a = 0.25 this gives an extremely long localization time, tj,.J > 10'°. This estimate holds
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Fig. 3. The low-energy part of the two-particle energy differences dey/h (10) for all transitions
with 3¢ < 5; n is the smallest number of the site involved in a transition, n > 2. The data refer to
a = 0.25. The left panel corresponds to the sequence (3). The right panel refers to the modified
sequence (13) with o’ = 0.22; it shows the zero-energy gap.

provided the coupling is weak, A < 0.25 for the used parameter values. It is important that,
as a proof of principle, the results on a gap apply for arbitrary coupling. However, as we show
below, for stronger coupling an alternative approach becomes more practical.

4.3 Strong coupling: an alternative approach

For strong coupling, where A > 1, the condition 2JA < 0.01h may become too restrictive.
Such situation is of interest for several models of QC’s, in particular for a QC based on
electrons on helium, as it follows from the estimate of A given above. The results described
in the previous sections apply for large A, but the ratio h/J required for localization becomes
very large. Large bandwidth of £,, may limit the speed of quantum operations where qubit
energies are tuned in resonance with an external microwave field or with each other [3],
because in an operation €, has to be varied over a broad range o h. It may also be simply
incompatible with the bounds on the range of €,, imposed by physical constraints in a system.

An alternative approach for obtaining long localization time is to have an energy sequence
with sufficiently broad gaps in the spectra of the combination energies, and to use separate
gaps for the transitions with the change of interaction energy 6 E = 0 and 6F = JA,2JA.

The occurrence of gaps in the combination energies d¢ is seen from Fig. 4. From Egs. (3),
(10), de form bands centered at 0, h, and 2h. To lowest order in «, the bandwidths are 2ah,
4ah, and 2ah. The interband gap between the lowest and first band is broad, ~ (1 — 4a)h.

For strong coupling, one can adjust the parameters so that the coupling energies JA, 2JA
lie inside the gap between the bands of J¢ centered at ¢ = 0,h. The transitions where the
number of nearest neighbors is not changed should lie inside a zero-energy gap (which is not
seen in Fig. 4). The corresponding conditions can be reduced in the limit of small a to

(2A)Y3 < 2ah)J < A

(here we have taken into account that the zero-energy gap ~ a3h should exceed the transition
matrix element o< JA(J/2h)?). The above condition allows using a much smaller bandwidth
h for large A than the condition 2JA < 0.01h. However, for very large A one may have to
take into account transitions in which more than two particles are involved; this may modify
the constraint on h/J.
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Fig. 4. The two-particle energy differences de,, /h for two-particle transitions with 3¢ < 4; n is the
smallest number of the site involved in a transition. The data refer to the energy sequence (3)
with a = 0.1. The energy differences form bands centered at de/h = 0,1, and 2. The bandwidths
are & 2ah, 4ah, and 2ah, respectively.

5 Robustness with respect to errors in on-site energies

In a real system, it will be impossible to implement sequence of on-site energies (3) precisely.
This is because these energies contain high powers of the small parameter o, while the precision
to which they can be set and/or measured is limited. Therefore it is necessary to study
localization in the presence of errors in €, and to find how large these errors can be before
they cause delocalization.

We will address this problem by looking at the zero-energy gap in the energy differences
e in the presence of errors in ¢™¢ (13). This gap is most sensitive to errors. For weak
to moderate coupling, A <1, as long as the gap remains larger than 2JA for all resonant
transitions with ¢ < 5, the localization lifetime %}, will remain large.

The effect of errors on the zero-energy gap can be modelled by adding a random term to
on-site energies, i.e., replacing e™9 with

n

1
€T = gmd 4. EDhrn. (16)

Here, r,, are random numbers uniformly distributed in the interval (—1, 1), and D characterizes
the error amplitude. It should be compared with a® with different exponents s > 1. When
D ~ o it means that the energies ¢,, are well controlled up to terms ~ o* !, to leading order
in a.

From the above arguments it follows that, for & > o' > a? the gap should remain un-
changed if D < o*. This is because, for the modified energies €™¢, the terms ~ a* drop
out from the energy differences that we discuss. For D ~ o* the gap should be somewhat
reduced. For D ~ o2 it should become significantly smaller than for D = 0, and it should
ultimately disappear with increasing D.



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 347

Numerical results on the gap de as a function of log D are shown in Fig. 5 [13]. The gap
is calculated for two-particle transitions with s < 5, as in Fig. 3. In the lower panel the gap
is scaled by its value in the absence of errors,

R = minde{" / min 552‘1. (17)

The data refer to the same «a,a’ as in Fig. 3. They are in full agreement with the above
estimate.
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Fig. 5. Upper panels: all energy differences dey," /h = |e5" + 5,7 — €5y — €57 | /h for the transitions

(12), (14), (15) that correspond to the number of intermediate steps 3« < 5. The data refer to
a = 0.25, o' = 0.22, and to a specific realization of the random numbers r,, in Eq. (16). The boxes
from left to right correspond to the values of the noise intensity D = a® in Eq. (16) with s = 5,4,
and 3. Lower panel: the scaled minimal gap R (17) as a function of the exponent s = In D/ In a;
the value of R is averaged over 10 realizations of noise.

The results of Fig. 5 demonstrate that the localization persists even for relatively large
errors in the on-site energies. At least for the chosen a and o/, errors in €, up to ~ 0.4%
(when D = a?) lead to a change in the width of the energy gap by ~ 50%.

The observed dependence on the noise strength suggests that, in the presence of noise,
sequence (3), (13) can be cut so that the terms o< a® with s > scutof are disregarded. The
value of scutor depends on the noise, scutof = In D/ Ina. As a result of the cutoff, the energies
€n become polynomials in & of power < Seutof- From Eq. (3), these polynomials are periodic
in n, with the period determined by twice the least common multiple of (2,3,... , Scutoff + 1)-
For example, for scutof = 5 the period in n is 120. For such a long period and short-range
hopping, excitations will stay on their sites for a long time compared to J 1.

6 Conclusions

In this paper we have reviewed and extended the results [12,13] on on-site localization of exci-
tations in a quantum computer with perpetually coupled qubits. We proposed a sequence of
on-site energies that is extremely effective, in terms of localization. Two aspects of the local-
ization problem have been addressed. One is localization of stationary states. For one-particle
(one-excitation) states, it has been studied analytically. We found that the wave functions de-
cay quasi-exponentially and obtained the bounds on the decay length. The numerical results
on strong localization are in agreement with the theory.
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For many-particle (many-excitation) stationary states, the localization has been analyzed
numerically for a chain of a finite length. It was found that, already for a relatively small
bandwidth of on-site energies, the inverse participation ratio becomes very close to its value
for the case of fully localized states.

A different approach is based on studying the lifetime of on-site states. For a quantum
computer, it is sufficient to have a localization lifetime ¢, that exceeds the coherence time
of the excitations. We have shown that such ¢, can be achieved in a chain of an arbitrary
length and with an arbitrary number of excitations. For the explicit construction of on-site
energies (3), (13), resonant transitions that lead to delocalization require at least 4 or even 6
virtual transitions. Even in the 4-step case this gives the ratio of the delocalization rate to
the inter-site hopping integral ~ 105 for K ~ 0.06 and for the coupling parameter A < 1.

An advantageous feature of the suggested on-site energy sequence (3) and its modification
(13) is that one radiation frequency can be used to resonantly excite different qubits. This can
be achieved by selectively tuning them to this frequency without bringing neighboring qubits
in resonance with each other, or by sweeping the frequency of the targeted qubit through
the radiation frequency and having a Landau-Zener-type interstate transition. A two-qubit
gate can be conveniently done by selectively tuning neighboring qubits in resonance with each
other and having a Landau-Zener type excitation swap [3].

We note that, in fact, implementing localization does not require operations on qubits,
and therefore does not require a fully operational quantum computer. An important example
of such system is quantum memory. Of course, many-excitation localization is a necessary
ingredient of a quantum memory device.

Localization is also a prerequisite for a projective measurement of the states of individual
qubits. To enable such measurement, tj,. should exceed the measurement time. In our
approach, localization does not require refocusing [1], which is not always easy to implement
and which is sometimes incompatible with slow measurement.

A potential advantage of our approach compared to an elegant idea [8] is that the in-
teraction does not have to be ever turned off, and no multi-qubit encoding is necessary for
operating a QC. Another distinction from the approach [8] is that the presented scheme can
be extended to systems with long-range coupling. For several proposed QC’s the interqubit
coupling is dipolar for a few near neighbors and becomes quadrupolar or falls down even faster
for remote neighbors [2, 3]. Long-range interaction makes transitions over several sites more
probable. We leave detailed analysis for a separate paper.

In this paper we have not addressed the question of optimization of the energy sequence,
so that maximal localization lifetime could be obtained for a minimal bandwidth of on-site
energies. For a finite-length chain the optimization problem can be approached using Eq. (3)
as an initial approximation and adjusting energies of several specific sites.

In conclusion, we have provided proof of principle of long-lived strong on-site localization
of all states of a quantum computer, independent of its size and the number of excitations.
We have also demonstrated numerically on-site localization of all stationary states in com-
paratively long chains of perpetually coupled qubits. The localization does not require using
refocusing techniques. The proposed sequence of on-site energies (3) and its modification (13)
have low symmetry, which allows eliminating resonances between the states to a high order
in the hopping integral. When second-order resonances are eliminated, the lifetime exceeds
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the reciprocal hopping integral by 5 orders of magnitude provided the bandwidth of on-site
energies is larger than the inter-site hopping integral by a factor ~ 40. We show that it
can be further significantly increased by eliminating fourth-order resonances and propose an
approach that gives long lifetime for strong coupling without large increase of the bandwidth.
The proposed energy sequence is stable with respect to errors.
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