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QUANTUM COMPUTING WITH PERPETUALLY COUPLED QUBITS:ON-SITE LOCALIZATION OF EXCITATIONS

M.I. DYKMAN and L.F. SANTOSDepartment of Physis and Astronomy, Mihigan State UniversityEast Lansing, MI 48824, USAM. SHAPIRODepartment of Mathematis, Mihigan State UniversityEast Lansing, MI 48824, USAF.M. IZRAILEVInstituto de F�isia, Universidad Aut�onoma de PueblaPuebla 72570, M�exioReeived Otober 1, 2004Revised November 14, 2004We demonstrate that, in a quantum omputer with perpetually oupled qubits, all exi-tations an be on�ned to their sites (qubits) even without refousing. The on-site loal-ization is obtained by onstruting a sequene of qubit energies that eÆiently suppressesresonant hopping. The time during whih a many-exitation state remains strongly lo-alized in an in�nite hain an exeed the reiproal hopping frequeny by >� 105 alreadyfor a moderate bandwidth of qubit energies. The proposed energy sequene is also on-venient for performing quantum operations on the qubits.Keywords: perpetually oupled qubits, loalization, many-partile transitions, lifetimeCommuniated by : D Lidar1 IntrodutionIn many proposed physial implementations of a quantum omputer (QC) the qubit-qubitinteration is never turned o� [1℄- [7℄. A generi onsequene of the interation is hoppingof exitations between the qubits. Preventing hopping is a prerequisite for quantum ompu-tation. In all proposed shemes, ontrol of a QC and measurement are done assuming thatexitations remain loalized between operations. For perpetually oupled qubits loalizationan be aomplished with refousing tehniques [1℄. Reently there were also proposed ap-proahes that do not require ongoing resonant pulsing [8, 9℄. At the same time, loalizationhas been one of the entral problems of ondensed-matter physis [10℄. One-partile loaliza-tion often results from disorder aused by randomness of partile energies on di�erent sitesand/or inter-site hopping integrals. The problem of loalization is partiularly hallenging formany-body systems, where only a limited number of results has been obtained [11℄.In this paper we provide an overview and further extend our reent work [12, 13℄ on on-sitemany-partile loalization. Suh loalization means strong on�nement of exitations to thequbits (sites) where they were reated. It is a stronger requirement than just exponential335



336 On-site loalization of exitationsdeay of the wave funtion at large distanes, and it is this requirement that must hold in aQC. Throughout the paper we use the term \partiles" and \sites" for exitations and qubits,respetively. For 1D hains there is one-to-one mapping of the exitations onto fermions viathe Jordan-Wigner transformation.On-site loalization does not arise in a disordered many-partile system with boundedrandom on-site energies [14℄. Indeed, onsider an N -partile state where eah partile is fullyloalized on its site, with no more than one partile per site. We all this an on-site state ora quantum register. For short-range hopping eah on-site N -partile state is diretly oupledto � N other suh states. With probability / N one of them will be in resonane with theinitial state, provided the on-site energies are uniformly distributed over a �nite-width band.For large N this leads to state hybridization over time � J�1, where J is the intersite hoppingintegral (we set ~ = 1).In a QC, the quantity J is determined by the qubit-qubit interation and often harater-izes the rate of two-qubit operations. The on-site exitation energies are interlevel distanesof the qubits. In many ases they an be individually ontrolled, whih makes it possible toonstrut an arbitrary energy sequene. However, sine the qubit tuning range is limited, soshould be the energy bandwidth. This imposes an important onstraint that has to be metwhen loalization is sought. A smaller bandwidth leads also to a higher speed of quantumgate operations, partiularly if they involve hanging qubit energies [3℄.We disuss loalization from two points of view. One is based on the analysis of stationarystates of a many-partile system. The other is based on studying the system dynamis. Asa result of hopping, an on-site many-partile state an hybridize with another on-site statewith nearly the same energy. We will study the time it takes for resonant hybridization tohappen, whih we all the loalization lifetime tlo.In a QC all states have a �nite oherene time due to oupling to the environment andexternal noise. For suessful QC operation, deloalization should not our during this time.For most of the proposed models of a QC, the oherene time is <� 105J�1. Therefore it issuÆient to have the loalization lifetime >� 105J�1. Suh lifetime-based formulation of themany-partile loalization problem is relevant to ondensed-matter systems as well, beauseof �nite deay and deoherene times of quasipartiles for nonzero temperatures.We show in this paper that, within the lifetime-based formulation, many-partile loaliza-tion of all states an be obtained in an in�nite hain by onstruting a sequene of on-siteenergies. For the proposed narrow-band sequene, all many-partile states remain on�nedfor a time that largely exeeds J�1. We �nd that all stationary many-partile states in mod-erately long hains are also strongly on-site loalized. This makes the proposed system apotential andidate for a quantum memory devie.To loalize one partile, the di�erene between exitation energies on neighboring sitesshould be muh larger than J . The energies of remote sites should also di�er. This is obviousfor long-range oupling, but is also true for nearest-neighbor oupling, whih is onsidered inthis paper. For suh oupling, hopping between remote states ours via sequential virtualtransitions to intermediate states. Beause the e�etive hopping amplitude deays with theintersite distane, the further away the sites are, the smaller their energy di�erene an be.We use this idea to obtain strong on-site single-partile on�nement for a bounded energybandwidth.



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 337For many-partile loalization one has to suppress not only single-partile, but also om-bined resonanes, where several interating exitations make a transition simultaneously.There is no known way to eliminate all suh resonanes. However, the e�etive many-partilehopping integral quikly falls o� with the inreasing number of involved exitations and in-termediate nonresonant sites, whih gives the e�etive \order" of a transition. To obtain adesired lifetime of a loalized state it is suÆient to eliminate resonanes up to a ertain order.We show how to do it to a fairly high order for an arbitrary number of exitations and for anin�nite system [13℄.2 The model and the on-site energy sequeneAn array of qubits an be modelled by a one-dimensional hain of S = 1=2 spins in a magneti�eld. The exitation energy of a qubit is the Zeeman energy of a spin. The qubit-qubitinteration is the exhange spin oupling. For many proposed realizations of QC's [1℄ - [6℄ ithas a form 12 P0 J��nmS�nS�m, where n;m are spin sites, � = x; y; z are spin projetions, andJxxnm = Jyynm for the e�etive magneti �eld in the z-diretion. The 1D spin system an bemapped, via Jordan-Wigner transformation, onto a system of fermions. For nearest neighboroupling, the fermion Hamiltonian isH = Xn "naynan + 12JXn�aynan+1 + ayn+1an�+J�Xn aynayn+1an+1an: (1)Here, ayn; an are the fermion reation and annihilation operators. Presene of a fermion on siten orresponds to the nth spin (qubit) being in the exited state. The on-site energies "n inEq. (1) are the Zeeman energies ounted o� from the harateristi entral energy, J � Jxxnn+1is the hopping integral, and J� � Jzznn+1 is the fermion interation energy; we set J;� > 0.To give an example, for a QC based on eletrons on helium, the typial distane betweenthe energy levels (in frequeny units) is � 100�200 GHz, the hopping integral J is � 0:1 GHz,and � varies from � 3 to � 28 depending on the operation onditions. The dynamial rangeover whih the frequenies "n an be tuned without ausing an inrease of the relaxation rateis limited by � 10 GHz [15℄.Loalization of stationary states in a many-partile system an be onveniently hara-terized by the inverse partiipation ratio (IPR), whih shows over how many sites the wavefuntion spreads. For an N -partile eigenstate j N�i (� enumerates the eigenstates) it isgiven by IN� = �Xn1<:::<nN ��h�n1:::nN j N�i��4��1 ; (2)where j�n1:::nN i is an on-site N -partile wave funtion (quantum register) with partiles onsites n1; : : : ; nN .For fully loalized stationary states IN� = 1. For deloalized states IN� � 1. Strongon-site loalization that we are interested in orresponds to IN� being lose to 1 for all states.Along with IN� we will be interested in its average value hIN i, where averaging is per-formed over all states � of the N -partile system.Loalization requires that the on-site energies "n be tuned away from eah other. Fornearest neighbor oupling a natural �rst step is to separate "n's into two subbands, for even



338 On-site loalization of exitationsand odd n, with the inter-subband distane h that signi�antly exeeds J . Then we furthersplit eah subband into two subbands to detune next nearest neighbors. Here the splittingan be smaller, beause next-nearest-neighbor hopping ours via a nonresonant site, andthe e�etive hopping integral is � J2=h. The proedure of band splitting is ontinued, withhigher-order splitting being smaller and smaller.A simple sequene of "n that implements the above idea has the form"n = 12h �(�1)n �Xn+1k=2(�1)bn=k�k�1� ; n � 1 (3)(b� is the integer part). The energies (3) are illustrated in Fig. 1(a). Besides the salingfator h, they are haraterized by one dimensionless parameter � < 1. One an see fromEq. (3) and Fig. 1(a) that sites with lose energies are indeed spatially separated and thatthe energy spetrum has a subband struture. Analytial estimates of the energy di�erenean be obtained for small �. We have j"n+m � "nj � h for odd m and � �h for odd m=2. Ingeneral, the larger is m the higher may be the order in � of the leading term in j"n+m � "nj.For � >� 0:4 all subbands overlap and the subband struture disappears.It is important for loalization that the sequene (3) has no simple symmetry. It is neitherself-similar nor quasi-periodi (quasi-periodiity is another example of \onstruted" disorder[16℄). For analytial estimates it is essential that the oeÆients at any given power �q arerepeated with period 2(q + 1) [13℄.2.1 Single-partile loalizationSpatial deay of the single-partile stationary states an be haraterized by the amplitude ofa partile transition from site n to site n+m. To the lowest order in J it has the formKn(m) =Ymk=1 J= [2("n � "n+k)℄ : (4)It an be shown using some results from number theory that Kn(m) deays with m nearlyexponentially [13℄. For small � and large jmj we haveKn(m) = ���jmj (J=2h)jmj: (5)The derement � depends on n;m. However, it is limited to a narrow region around � = 1with 0:89 < � < 1:19, f. Fig. 1(b). For estimates one an use � = 1, i.e., set Kn(m) =Km;K = J=2�h.Equation (5) desribes the tail of the transition amplitude for J=2h�� 1. On-site single-partile on�nement ours for � � �th, where the threshold value of � is �th � J=2h. Theondition �th � � < 0:4 an be satis�ed for a moderately large ratio of the energy bandwidthh to the hopping integral J .Strong on-site single-partile loalization for h=J = 20, as evidened by I1� being verylose to 1, is seen from Fig. 1(). The data are obtained by diagonalizing the Hamiltonian (1)for open hains with di�erent numbers of sites L.In the limit � ! 0 the stationary single-partile states are sinusoidal, whih gives hI1i �L=3, f. Fig. 1(). As � inreases, the bands are split into more and more subbands, and hI1idereases. It sharply drops to � 1 in a narrow region, whih an be onditionally assoiatedwith a smeared transition to on-site loalization. The enter of the transition region gives
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αthFig. 1. Single-partile loalization for the on-site energy sequene (3). (a) The energies "n=h for� = 0:3. (b) The derement � of the �-dependene of the transition amplitude Kn(m) (5) form = 200 as funtion of n. The dashed lines show the analytial limits on �. () The mean single-partile inverse partiipation ratio hI1i vs. � for h=J = 20 and for di�erent hain lengths L. Thevertial dashed line shows the analytial estimate for the threshold of strong on-site loalization.The inset shows the maximal IPR, I1max = max� I1�, demonstrating strong on�nement.
�th. It appears to be independent of the hain length L. The estimate �th = J=2h is in goodagreement with the numerial data for di�erent h=J .When � � �th, all states are strongly on�ned. The wave funtion tails are small andlimited mostly to nearest neighbors. At its minimum over � for given h=J , for all statesI1� � 1 � J2=h2, see inset in Fig. 1(). We note that the peak of I1max for L = 300 near� = 0:1 is due to aidental degeneray at the boundary. It ours beause the state on theboundary has less neighbors than inside the hain, and therefore the hopping-indued shiftof the boundary energy � J2=h di�ers from that inside the hain; one an show that, for� � 0:1, the renormalized energies "296 and "300 are resonating. For � >� 0:4, when the bandsof "n start overlapping, the IPR inreases with �.3 Many-partile loalizationThe di�erene in the loalization problems for many-partile and single-partile systems stemsfrom the interation term/ J� in the Hamiltonian (1). For nonzero � (i) the energy levels areshifted depending on the oupation of neighboring sites, potentially leading to many-partileresonanes, and (ii) there our interation-indued many-partile transitions.To analyze many-partile e�ets, it is onvenient to hange from ayn; an to new reationand annihilation operators byn; bn that diagonalize the single-partile part of the Hamiltonian(1), an =Pk Unkbk. The interation part of the Hamiltonian beomesHi = J�XVk1k2k3k4byk1byk2bk3bk4 ; (6)



340 On-site loalization of exitationswhere the sum runs over k1;2;3;4, andVk1k2k3k4 =Xp U�pk1U�p+1 k2Up+1 k3Upk4 : (7)The Hamiltonian (6) desribes the interation of the exat single-partile exitations.If all single-partile stationary states are strongly loalized, the o�-diagonal matrix ele-ments Unk are small. They are determined by the deay of the wave funtions and fall o�exponentially, Unk � K jk�nj for jk � nj � 1. At the same time, the diagonal matrix elementis Unn � 1. Therefore the major terms in the matrix Vk1k2k3k4 are those with { = 0, where{ = minp (jk1 � pj+ jk2 � p� 1j+ jk3 � p� 1j+ jk4 � pj): (8)The terms with { = 0 lead to an energy shift / J� from eah pair of oupied neighboringsites in a given many-partile state.The meaning of the parameter { (8) an be understood by notiing that the terms/ Vk1k2k3k4 in Eq. (6) desribe two-partile inter-site transitions (k4; k3) $ (k1; k2) of therenormalized fermions. For a given transition, { is simply the number of virtual steps thathave to be made by the original fermions. The steps are ounted o� from the on�gurationwhere two suh fermions oupy neighboring sites, and eah step is a transition by one of thefermions to a nearest site. In other words, the original fermions go �rst from sites (k4; k3) tosites (p; p + 1) and then to (k1; k2) (we assume for onreteness that k3 > k4 and k2 > k1);the value of p is hosen so as to minimize the number of steps.To make the meaning of { even more intuitive we give examples of some { = 4 transitions.For the initial and �nal states (n; n+1) and (n� 2; n+3) one of the sequenes of steps of theoriginal fermions is (n; n+1)! (n; n+ 2)! (n� 1; n+ 2)! (n� 1; n+3)! (n� 2; n+ 3),whereas for the initial and �nal states (n; n + 2) and (n � 1; n + 3) one of the sequenesis (n; n + 2) ! (n; n + 1) ! (n � 1; n + 1) ! (n � 1; n + 2) ! (n � 1; n + 3) [the energydenominators must be obtained diretly from Eqs. (3), (6), (7)℄.It follows from the above argument that, for �� �th,Vk1k2k3k4 � K{ for { � 1: (9)Transitions of renormalized fermions are not limited to nearest neighbors. However, fromEq. (9), the amplitudes of transitions over many sites are small and rapidly derease with thenumber of involved virtual steps.In higher orders of the perturbation theory, the interation (6) leads also to many-partiletransitions. The overall transition amplitude is determined by the total number of involvedvirtual single-partile steps.In order to loalize many-partile exitations, one has to suppress ombinational many-partile resonanes keeping in mind that, for loalization, the e�etive hopping integral mustbe smaller than the energy detuning of the initial and �nal on-site states. Beause of thelarge number of possible resonanes, we do not have an analytial proof of many-partileloalization in an in�nite system for our energy sequene (3). However, our numerial resultsdemonstrate strong on-site loalization of all stationary states in a hain of a limited size.Numerial results on the many-partile IPR are shown in Fig. 2. We have studied hainsof length L = 10; 12, and 14 with L=2 exitations, whih have the largest number of states



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 341for given L (/ 2L for large L). The results for all L were similar, and we present the data forL = 12, in whih ase the total number of states is 924.For small �, the IPR is independent of � and is large beause of the large number ofresonating on-site states j�n1:::n6i. It is redued by the interation / J� that splits theenergy spetrum into subbands depending on the number of oupied neighboring sites. Onthe whole, the IPR dereases with inreasing � as long as � <� 0:4. In the region 0:2 <� � <� 0:4and for h=J = 20 we have hI6i � 1:01 exept for narrow peaks. This indiates that away fromthe peaks the stationary states are strongly loalized. Strong on-site loalization of all statesis indiated by the data on I6max = max� I6�.
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Fig. 2. Many-partile loalization for a hain of length L = 12 with 6 exitations. The data referto the �rst 12 sites of the hain (3), the redued bandwidth is h=J = 20. The dashed, solid, anddot-dashed urves give the mean IPR for the oupling parameter � = 0; 0:3, and 1, respetively.The inset shows the maximal I6 for � = 1. Sharp isolated peaks for � 6= 0 result from thehybridization of many-partile on-site states that are in resonane for the orresponding �. Thepeaks for � = 0 are due to the boundaries.A distintive feature of the many-partile IPR as funtion of � are multiple resonant peaks,a part of whih is resolved in Fig. 2. They our when two on-site states resonate. Two-siteresonanes lead to I6max <� 2. The strongest peaks of I6max happen when the two-partileenergy di�erene Æ" = j"k1 + "k2 � "k3 � "k4 j (10)is lose to MJ� with M = 0; 1; 2.As we inrease � starting from � = 0, pronouned peaks of hI6i appear �rst for Æ" �s�h � J� with s = 1; 2. They are due to hybridization of pairs on sites (n; n + 1) and(n; n+3) for s = 1, and (n; n+1) and (n�1; n+2) for s = 2, for example ({ = 2-transitions).For larger �, resonanes our when s�nh � MJ� with n � 2. In most ases (see,however, below for a notable exeption) suh resonanes require more intermediate steps,with { � 4. The widths of the IPR peaks are small and are in good agreement with simpleestimates based on Eq. (6) [12, 13℄. In between the peaks I6max = 1:02 for 0:2 <� � <� 0:4 andh=J = 20.For the sequene (3), a speial role is played by two-partile resonanes where Æ"� J forall � < 0:4. They emerge already for { = 2-transitions (n; n+ 1)$ (n� 1; n+ 2). Here, if nand n+ 2 are prime numbers, Æ" � �n�1h is extremely small for large n and small �. Strongresonane ours for all n = 6k � 1, in whih ase Æ"=h / �� with � � 4. For example, for atransition (23; 24)$ (22; 25) we have Æ"=h / �4, whereas for a transition (29; 30)$ (28; 31)



342 On-site loalization of exitationswe have Æ"=h / �28. As a result of these resonanes the ondition Æ" � J�K{ may not besatis�ed in an in�nite hain.For di�erent setions of the hain (3) we found that the resonanes (n; n+1)$ (n�1; n+2)for n = 6k � 1 inrease hI6i up to 1.15 between the peaks, for h=J = 20; 0:2 < � < 0:4, and� = 1. These resonanes an be eliminated by modifying the sequene (see the next setion).This modi�ation brings hI6i and I6max bak to � 1:01 and � 1:02, respetively [12, 13℄. Weemphasize that suh small values of hI6i � 1 and I6max � 1 were obtained for all 12-site longsetions of the hain that we have tested.4 Lifetime of strongly loalized statesThe problem of strong loalization an be viewed also from a di�erent perspetive. In theontext of quantum omputing, it suggests a more appropriate formulation then the onebased on the analysis of stationary states. It is also relevant for ondensed-matter systems atnonzero temperatures.First we note that exitations in quantum omputers and in ondensed-matter systemshave a �nite oherene time toh. For QC's, this time has to be ompared with the durationof a single- or two-qubit operation and measurement. The duration of a two-qubit swapoperation is of order of the time it takes to resonantly transfer an exitation between thequbits, whih is � J�1. A single-qubit operation is often faster; however, the measurementan sometimes be slower or even muh slower. In most proposed realizations of a QC theoherene time exeeds the gate operation time by a fator . 105.We de�ne the loalization lifetime tlo as the time it takes for exitations to leave oupiedsites. Loalization of exitations is only relevant on times � toh. Then to have meaningfulon-site loalization it suÆes that tlo & toh. It follows from the estimate for toh that thelatter ondition is met if tlo & 105J�1: (11)The ondition (11) must be satis�ed for all on-site many-partile states. It is this onditionthat the energy sequene "n must meet in an in�nite system.The time tlo is determined by hopping between resonant on-site states. It ours throughvirtual transitions via nonresonant sites. For a two-partile resonant transition, the minimalnumber of the needed virtual steps is given by the parameter { (8). Then from Eqs. (6), (9)the hopping integral for a resonant transition (k4; k3)$ (k1; k2) is J�Vk1k2k3k4 � J�K{ for{ � 1. Here, K is de�ned by Eq. (5), K � J=2�h, and K � 1 in the region �=�th � 1.In the ase of the energy sequene (3) and for � <� 1, up to a fairly high number of virtualsteps (� 5), of interest for the estimate of tlo are resonanes between two-partile on-sitestates. This applies to systems with an arbitrary number of partiles; only those transitionsmatter in whih up to two partiles hange sites. Indeed, transitions where three partileshange sites emerge in the seond order in the two-partile Hamiltonian (6), (7), and theiramplitude ontains an extra nonresonant denominator.For resonant two-partile transitionstlo � �J�K{min��1;



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 343where {min is the minimal value of { for all pairs of resonating initial and �nal on-site states.To have tloJ that exeeds a given value, we must have an appropriate {min. This means thatwe should eliminate resonanes between all states onneted by { < {min virtual transitions.A two-partile transition with odd { = 1; 3; 5; : : : involves a hange of the total number ofoupied sites with n of given parity. Therefore, for the sequene (3) with �� 1, the energyhange in suh a transition is Æ" � h. If J� � h, then Æ" signi�antly exeeds the hangeof the interation energy J�, 2J�. As a result, resonant two-partile transitions may ouronly for even {.We will modify the sequene (3) to eliminate resonanes with { = 2 and { = 4. This willallow us to have the loalization time tlo � J�1K�4 and > J�1K�6, respetively, for � <� 1.4.1 Eliminating seond order many-partile resonanesThe potentially resonant transitions with { = 2 are(n; n+ 1)$ (n; n+ 1� 2); (n� 2; n+ 1)(n; n+ 1)$ (n� 1; n+ 2): (12)In the transitions listed in the �rst line of this equation, one of the partiles in the pair movesby two sites in one or the other diretion, whereas for the transition shown on the seond lineboth partiles move by one site.We note that Eq. (6) desribes \diret" transitions over several sites, with amplitude/ K{ , whih is a result of the diagonalization of the single-partile Hamiltonian; for example,a transition (n; n+1)$ (n; n�1) does not involve double-oupany on site n. Alternatively,one an think of this transition as a sequene of steps (n; n+1)$ (n� 1; n+1)$ (n; n� 1).The number of oupied nearest sites in the transitions (12) an hange by one or remainunhanged. Therefore the maximal hange of the interation energy is J�. Seond-orderresonanes will be eliminated if the detuning of the on-site energy di�erenes Æ" for thetransitions (12) is Æ" > J�:This means that we need a zero-energy gap of an appropriate width in Æ".We note that this is a suÆient, not the neessary ondition. In priniple, it would suÆeto have narrow gaps at Æ" = 0 and J�. These gaps should just be broader than the tunnelingmatrix element and than the energy shifts due to oupation of next nearest neighbors. Fora spei� �nite-length setion of a hain this may be more pratial. However, here we areinterested in an in�nite hain, and we want to demonstrate that even for suh a hain allresonanes with { < 4 an be eliminated.To reate the zero-energy gap, sequene (3) has to be modi�ed. The modi�ation has toeliminate, in the �rst plae, the \anomalous" broad-band resonanes for transitions (n; n +1)$ (n� 1; n+ 2) with n = 6k � 1 disussed before. A simple and suÆient modi�ation isa onstant shift of "n for eah 6th site,"mdn = "n + (h=2)�0 for n = 6k; (13)while "mdn = "n for n 6= 6k.



344 On-site loalization of exitationsFor the modi�ed sequene (13), the gap in the on-site energies for the 2nd-order transitions(12) is Æ" � �2h; �0h=2 to leading order in �. A more aurate estimate is min Æ" � (�2 ��3)h; �0h=2. We assume that �2 . �0 � �, in whih ase no new resonanes are reated forthe transitions (12) as a result of the modi�ation (13).It follows from the above estimate that, for an in�nite hain and an arbitrary numberof partiles, all resonant transitions with { < 4 will be eliminated provided J�=h < �2 ��3; �0=2, . Then the loalization time tlo � 105J�1 already for h=J = 30, � = 0:3, �0 �0:1� 0:2, and � <� 1.4.2 Eliminating fourth order resonanesThe loalization time is further dramatially inreased if { = 4 resonanes are eliminated.The potentially resonant 4th order transitions are(n; n+ 1)$ (n� 2; n+ 3);(n; n+ 1)$ (n+ 2; n+ 3);(n; n+ 3)$ (n� 1; n+ 2);(n; n+ 3)$ (n� 2; n+ 1); (14)and (n; n+ 1)$ (n� 1; n+ 4);(n; n+ 1)$ (n� 3; n+ 2);(n; n+ 1)$ (n; n+ 1� 4); (n� 4; n+ 1): (15)In the last line of Eq. (15) we list transitions where one of the partiles in the pair moves by4 sites, whereas in all other transitions both partiles move away from their sites.For the modi�ed sequene (13), the minimal energy hange in the transitions (14), (15)is min Æ" � �3h, to leading order in �, provided �0 � �3. The value of �0 has to bein suh a range that the modi�ation (13) does not lead to extra resonanes between theon-site energies for the states (14) and (15). The \dangerous" ombinations in Æ"=h arej� � �0=2j; j2� � �0=2j; j�2 � �0=2j; j2�2 � �0=2j, to leading order in � [13℄. We will hoose�; �0 so that all of them exeed min Æ"=h � �3.Fig. 3 shows how the modi�ation (13) leads to a zero-energy gap in Æ". We plot Æ"mdnfor all transitions (12), (14), (15), with n being the smallest number of the site involved in atransition, n > 2. Therefore we show all potentially resonant transitions with { � 5.The left panel in Fig. 3 shows that, for the initial sequene (3), there is pratially nogap in the values of Æ" at low energies. The right panel demonstrates that the orretion(13) leads to a zero-energy gap. The gap depends on the values of � and �0. For the spei�parameter values in Fig. 3 we have Æ"=h � 0:01. It an be shown that this result applies foran in�nite hain [13℄.It follows from the disussion above that, for 2J� . 0:01h, all partiles will remainloalized on their sites for the time tlo � (J�)�1K�6=� [we have taken into aount herethat the hopping integral for transitions with { = 6 is limited by � J�(J=2h)6��5 ratherthan J�(J=2h)6��6, as would be expeted from the asymptoti expression (9)℄. For h=J = 50and � = 0:25 this gives an extremely long loalization time, tloJ & 1010. This estimate holds
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0 50 100nFig. 3. The low-energy part of the two-partile energy di�erenes Æ"n=h (10) for all transitionswith { � 5; n is the smallest number of the site involved in a transition, n > 2. The data refer to� = 0:25. The left panel orresponds to the sequene (3). The right panel refers to the modi�edsequene (13) with �0 = 0:22; it shows the zero-energy gap.
provided the oupling is weak, � . 0:25 for the used parameter values. It is important that,as a proof of priniple, the results on a gap apply for arbitrary oupling. However, as we showbelow, for stronger oupling an alternative approah beomes more pratial.4.3 Strong oupling: an alternative approahFor strong oupling, where � � 1, the ondition 2J� < 0:01h may beome too restritive.Suh situation is of interest for several models of QC's, in partiular for a QC based oneletrons on helium, as it follows from the estimate of � given above. The results desribedin the previous setions apply for large �, but the ratio h=J required for loalization beomesvery large. Large bandwidth of "n may limit the speed of quantum operations where qubitenergies are tuned in resonane with an external mirowave �eld or with eah other [3℄,beause in an operation "n has to be varied over a broad range / h. It may also be simplyinompatible with the bounds on the range of "n imposed by physial onstraints in a system.An alternative approah for obtaining long loalization time is to have an energy sequenewith suÆiently broad gaps in the spetra of the ombination energies, and to use separategaps for the transitions with the hange of interation energy ÆE = 0 and ÆE = J�; 2J�.The ourrene of gaps in the ombination energies Æ" is seen from Fig. 4. From Eqs. (3),(10), Æ" form bands entered at 0; h, and 2h. To lowest order in �, the bandwidths are 2�h,4�h, and 2�h. The interband gap between the lowest and �rst band is broad, � (1� 4�)h.For strong oupling, one an adjust the parameters so that the oupling energies J�; 2J�lie inside the gap between the bands of Æ" entered at Æ" = 0; h. The transitions where thenumber of nearest neighbors is not hanged should lie inside a zero-energy gap (whih is notseen in Fig. 4). The orresponding onditions an be redued in the limit of small � to(2�)1=3 < 2�h=J < �(here we have taken into aount that the zero-energy gap � �3h should exeed the transitionmatrix element / J�(J=2h)2). The above ondition allows using a muh smaller bandwidthh for large � than the ondition 2J� < 0:01h. However, for very large � one may have totake into aount transitions in whih more than two partiles are involved; this may modifythe onstraint on h=J .
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Fig. 4. The two-partile energy di�erenes Æ"n=h for two-partile transitions with { � 4; n is thesmallest number of the site involved in a transition. The data refer to the energy sequene (3)with � = 0:1. The energy di�erenes form bands entered at Æ"=h = 0; 1, and 2. The bandwidthsare � 2�h, 4�h, and 2�h, respetively.
5 Robustness with respet to errors in on-site energiesIn a real system, it will be impossible to implement sequene of on-site energies (3) preisely.This is beause these energies ontain high powers of the small parameter �, while the preisionto whih they an be set and/or measured is limited. Therefore it is neessary to studyloalization in the presene of errors in "n and to �nd how large these errors an be beforethey ause deloalization.We will address this problem by looking at the zero-energy gap in the energy di�erenesÆ" in the presene of errors in "mdn (13). This gap is most sensitive to errors. For weakto moderate oupling, � <� 1, as long as the gap remains larger than 2J� for all resonanttransitions with { � 5, the loalization lifetime tlo will remain large.The e�et of errors on the zero-energy gap an be modelled by adding a random term toon-site energies, i.e., replaing "mdn with"errn = "mdn + 12Dhrn: (16)Here, rn are random numbers uniformly distributed in the interval (�1; 1), andD haraterizesthe error amplitude. It should be ompared with �s with di�erent exponents s � 1. WhenD � �s it means that the energies "n are well ontrolled up to terms � �s�1, to leading orderin �.From the above arguments it follows that, for � � �0 >� �2 the gap should remain un-hanged if D � �4. This is beause, for the modi�ed energies "mdn , the terms � �4 dropout from the energy di�erenes that we disuss. For D � �4 the gap should be somewhatredued. For D � �3 it should beome signi�antly smaller than for D = 0, and it shouldultimately disappear with inreasing D.



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 347Numerial results on the gap Æ" as a funtion of logD are shown in Fig. 5 [13℄. The gapis alulated for two-partile transitions with { � 5, as in Fig. 3. In the lower panel the gapis saled by its value in the absene of errors,R = minn Æ"errn =minn Æ"mdn : (17)The data refer to the same �; �0 as in Fig. 3. They are in full agreement with the aboveestimate.
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Fig. 5. Upper panels: all energy di�erenes Æ"errn =h = j"errn +"errn1 �"errn2 �"errn3 j=h for the transitions(12), (14), (15) that orrespond to the number of intermediate steps { � 5. The data refer to� = 0:25, �0 = 0:22, and to a spei� realization of the random numbers rn in Eq. (16). The boxesfrom left to right orrespond to the values of the noise intensity D = �s in Eq. (16) with s = 5; 4,and 3. Lower panel: the saled minimal gap R (17) as a funtion of the exponent s = lnD= ln�;the value of R is averaged over 10 realizations of noise.The results of Fig. 5 demonstrate that the loalization persists even for relatively largeerrors in the on-site energies. At least for the hosen � and �0, errors in "n up to � 0:4%(when D = �4) lead to a hange in the width of the energy gap by � 50%.The observed dependene on the noise strength suggests that, in the presene of noise,sequene (3), (13) an be ut so that the terms / �s with s > suto� are disregarded. Thevalue of suto� depends on the noise, suto� = lnD= ln�. As a result of the uto�, the energies"n beome polynomials in � of power � suto� . From Eq. (3), these polynomials are periodiin n, with the period determined by twie the least ommon multiple of (2; 3; : : : ; suto� +1).For example, for suto� = 5 the period in n is 120. For suh a long period and short-rangehopping, exitations will stay on their sites for a long time ompared to J�1.6 ConlusionsIn this paper we have reviewed and extended the results [12,13℄ on on-site loalization of exi-tations in a quantum omputer with perpetually oupled qubits. We proposed a sequene ofon-site energies that is extremely e�etive, in terms of loalization. Two aspets of the loal-ization problem have been addressed. One is loalization of stationary states. For one-partile(one-exitation) states, it has been studied analytially. We found that the wave funtions de-ay quasi-exponentially and obtained the bounds on the deay length. The numerial resultson strong loalization are in agreement with the theory.



348 On-site loalization of exitationsFor many-partile (many-exitation) stationary states, the loalization has been analyzednumerially for a hain of a �nite length. It was found that, already for a relatively smallbandwidth of on-site energies, the inverse partiipation ratio beomes very lose to its valuefor the ase of fully loalized states.A di�erent approah is based on studying the lifetime of on-site states. For a quantumomputer, it is suÆient to have a loalization lifetime tlo that exeeds the oherene timeof the exitations. We have shown that suh tlo an be ahieved in a hain of an arbitrarylength and with an arbitrary number of exitations. For the expliit onstrution of on-siteenergies (3), (13), resonant transitions that lead to deloalization require at least 4 or even 6virtual transitions. Even in the 4-step ase this gives the ratio of the deloalization rate tothe inter-site hopping integral � 10�5 for K � 0:06 and for the oupling parameter � <� 1.An advantageous feature of the suggested on-site energy sequene (3) and its modi�ation(13) is that one radiation frequeny an be used to resonantly exite di�erent qubits. This anbe ahieved by seletively tuning them to this frequeny without bringing neighboring qubitsin resonane with eah other, or by sweeping the frequeny of the targeted qubit throughthe radiation frequeny and having a Landau-Zener-type interstate transition. A two-qubitgate an be onveniently done by seletively tuning neighboring qubits in resonane with eahother and having a Landau-Zener type exitation swap [3℄.We note that, in fat, implementing loalization does not require operations on qubits,and therefore does not require a fully operational quantum omputer. An important exampleof suh system is quantum memory. Of ourse, many-exitation loalization is a neessaryingredient of a quantum memory devie.Loalization is also a prerequisite for a projetive measurement of the states of individualqubits. To enable suh measurement, tlo should exeed the measurement time. In ourapproah, loalization does not require refousing [1℄, whih is not always easy to implementand whih is sometimes inompatible with slow measurement.A potential advantage of our approah ompared to an elegant idea [8℄ is that the in-teration does not have to be ever turned o�, and no multi-qubit enoding is neessary foroperating a QC. Another distintion from the approah [8℄ is that the presented sheme anbe extended to systems with long-range oupling. For several proposed QC's the interqubitoupling is dipolar for a few near neighbors and beomes quadrupolar or falls down even fasterfor remote neighbors [2, 3℄. Long-range interation makes transitions over several sites moreprobable. We leave detailed analysis for a separate paper.In this paper we have not addressed the question of optimization of the energy sequene,so that maximal loalization lifetime ould be obtained for a minimal bandwidth of on-siteenergies. For a �nite-length hain the optimization problem an be approahed using Eq. (3)as an initial approximation and adjusting energies of several spei� sites.In onlusion, we have provided proof of priniple of long-lived strong on-site loalizationof all states of a quantum omputer, independent of its size and the number of exitations.We have also demonstrated numerially on-site loalization of all stationary states in om-paratively long hains of perpetually oupled qubits. The loalization does not require usingrefousing tehniques. The proposed sequene of on-site energies (3) and its modi�ation (13)have low symmetry, whih allows eliminating resonanes between the states to a high orderin the hopping integral. When seond-order resonanes are eliminated, the lifetime exeeds



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 349the reiproal hopping integral by 5 orders of magnitude provided the bandwidth of on-siteenergies is larger than the inter-site hopping integral by a fator � 40. We show that itan be further signi�antly inreased by eliminating fourth-order resonanes and propose anapproah that gives long lifetime for strong oupling without large inrease of the bandwidth.The proposed energy sequene is stable with respet to errors.AknowledgementsWe are grateful to P.M. Platzman for a disussion. This researh was supported in part bythe Institute for Quantum Sienes at Mihigan State University and by the NSF throughgrant No. ITR-0085922.Referenes
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