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oRe
eived O
tober 1, 2004Revised November 14, 2004We demonstrate that, in a quantum 
omputer with perpetually 
oupled qubits, all ex
i-tations 
an be 
on�ned to their sites (qubits) even without refo
using. The on-site lo
al-ization is obtained by 
onstru
ting a sequen
e of qubit energies that eÆ
iently suppressesresonant hopping. The time during whi
h a many-ex
itation state remains strongly lo-
alized in an in�nite 
hain 
an ex
eed the re
ipro
al hopping frequen
y by >� 105 alreadyfor a moderate bandwidth of qubit energies. The proposed energy sequen
e is also 
on-venient for performing quantum operations on the qubits.Keywords: perpetually 
oupled qubits, lo
alization, many-parti
le transitions, lifetimeCommuni
ated by : D Lidar1 Introdu
tionIn many proposed physi
al implementations of a quantum 
omputer (QC) the qubit-qubitintera
tion is never turned o� [1℄- [7℄. A generi
 
onsequen
e of the intera
tion is hoppingof ex
itations between the qubits. Preventing hopping is a prerequisite for quantum 
ompu-tation. In all proposed s
hemes, 
ontrol of a QC and measurement are done assuming thatex
itations remain lo
alized between operations. For perpetually 
oupled qubits lo
alization
an be a

omplished with refo
using te
hniques [1℄. Re
ently there were also proposed ap-proa
hes that do not require ongoing resonant pulsing [8, 9℄. At the same time, lo
alizationhas been one of the 
entral problems of 
ondensed-matter physi
s [10℄. One-parti
le lo
aliza-tion often results from disorder 
aused by randomness of parti
le energies on di�erent sitesand/or inter-site hopping integrals. The problem of lo
alization is parti
ularly 
hallenging formany-body systems, where only a limited number of results has been obtained [11℄.In this paper we provide an overview and further extend our re
ent work [12, 13℄ on on-sitemany-parti
le lo
alization. Su
h lo
alization means strong 
on�nement of ex
itations to thequbits (sites) where they were 
reated. It is a stronger requirement than just exponential335



336 On-site lo
alization of ex
itationsde
ay of the wave fun
tion at large distan
es, and it is this requirement that must hold in aQC. Throughout the paper we use the term \parti
les" and \sites" for ex
itations and qubits,respe
tively. For 1D 
hains there is one-to-one mapping of the ex
itations onto fermions viathe Jordan-Wigner transformation.On-site lo
alization does not arise in a disordered many-parti
le system with boundedrandom on-site energies [14℄. Indeed, 
onsider an N -parti
le state where ea
h parti
le is fullylo
alized on its site, with no more than one parti
le per site. We 
all this an on-site state ora quantum register. For short-range hopping ea
h on-site N -parti
le state is dire
tly 
oupledto � N other su
h states. With probability / N one of them will be in resonan
e with theinitial state, provided the on-site energies are uniformly distributed over a �nite-width band.For large N this leads to state hybridization over time � J�1, where J is the intersite hoppingintegral (we set ~ = 1).In a QC, the quantity J is determined by the qubit-qubit intera
tion and often 
hara
ter-izes the rate of two-qubit operations. The on-site ex
itation energies are interlevel distan
esof the qubits. In many 
ases they 
an be individually 
ontrolled, whi
h makes it possible to
onstru
t an arbitrary energy sequen
e. However, sin
e the qubit tuning range is limited, soshould be the energy bandwidth. This imposes an important 
onstraint that has to be metwhen lo
alization is sought. A smaller bandwidth leads also to a higher speed of quantumgate operations, parti
ularly if they involve 
hanging qubit energies [3℄.We dis
uss lo
alization from two points of view. One is based on the analysis of stationarystates of a many-parti
le system. The other is based on studying the system dynami
s. Asa result of hopping, an on-site many-parti
le state 
an hybridize with another on-site statewith nearly the same energy. We will study the time it takes for resonant hybridization tohappen, whi
h we 
all the lo
alization lifetime tlo
.In a QC all states have a �nite 
oheren
e time due to 
oupling to the environment andexternal noise. For su

essful QC operation, delo
alization should not o

ur during this time.For most of the proposed models of a QC, the 
oheren
e time is <� 105J�1. Therefore it issuÆ
ient to have the lo
alization lifetime >� 105J�1. Su
h lifetime-based formulation of themany-parti
le lo
alization problem is relevant to 
ondensed-matter systems as well, be
auseof �nite de
ay and de
oheren
e times of quasiparti
les for nonzero temperatures.We show in this paper that, within the lifetime-based formulation, many-parti
le lo
aliza-tion of all states 
an be obtained in an in�nite 
hain by 
onstru
ting a sequen
e of on-siteenergies. For the proposed narrow-band sequen
e, all many-parti
le states remain 
on�nedfor a time that largely ex
eeds J�1. We �nd that all stationary many-parti
le states in mod-erately long 
hains are also strongly on-site lo
alized. This makes the proposed system apotential 
andidate for a quantum memory devi
e.To lo
alize one parti
le, the di�eren
e between ex
itation energies on neighboring sitesshould be mu
h larger than J . The energies of remote sites should also di�er. This is obviousfor long-range 
oupling, but is also true for nearest-neighbor 
oupling, whi
h is 
onsidered inthis paper. For su
h 
oupling, hopping between remote states o

urs via sequential virtualtransitions to intermediate states. Be
ause the e�e
tive hopping amplitude de
ays with theintersite distan
e, the further away the sites are, the smaller their energy di�eren
e 
an be.We use this idea to obtain strong on-site single-parti
le 
on�nement for a bounded energybandwidth.
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le lo
alization one has to suppress not only single-parti
le, but also 
om-bined resonan
es, where several intera
ting ex
itations make a transition simultaneously.There is no known way to eliminate all su
h resonan
es. However, the e�e
tive many-parti
lehopping integral qui
kly falls o� with the in
reasing number of involved ex
itations and in-termediate nonresonant sites, whi
h gives the e�e
tive \order" of a transition. To obtain adesired lifetime of a lo
alized state it is suÆ
ient to eliminate resonan
es up to a 
ertain order.We show how to do it to a fairly high order for an arbitrary number of ex
itations and for anin�nite system [13℄.2 The model and the on-site energy sequen
eAn array of qubits 
an be modelled by a one-dimensional 
hain of S = 1=2 spins in a magneti
�eld. The ex
itation energy of a qubit is the Zeeman energy of a spin. The qubit-qubitintera
tion is the ex
hange spin 
oupling. For many proposed realizations of QC's [1℄ - [6℄ ithas a form 12 P0 J��nmS�nS�m, where n;m are spin sites, � = x; y; z are spin proje
tions, andJxxnm = Jyynm for the e�e
tive magneti
 �eld in the z-dire
tion. The 1D spin system 
an bemapped, via Jordan-Wigner transformation, onto a system of fermions. For nearest neighbor
oupling, the fermion Hamiltonian isH = Xn "naynan + 12JXn�aynan+1 + ayn+1an�+J�Xn aynayn+1an+1an: (1)Here, ayn; an are the fermion 
reation and annihilation operators. Presen
e of a fermion on siten 
orresponds to the nth spin (qubit) being in the ex
ited state. The on-site energies "n inEq. (1) are the Zeeman energies 
ounted o� from the 
hara
teristi
 
entral energy, J � Jxxnn+1is the hopping integral, and J� � Jzznn+1 is the fermion intera
tion energy; we set J;� > 0.To give an example, for a QC based on ele
trons on helium, the typi
al distan
e betweenthe energy levels (in frequen
y units) is � 100�200 GHz, the hopping integral J is � 0:1 GHz,and � varies from � 3 to � 28 depending on the operation 
onditions. The dynami
al rangeover whi
h the frequen
ies "n 
an be tuned without 
ausing an in
rease of the relaxation rateis limited by � 10 GHz [15℄.Lo
alization of stationary states in a many-parti
le system 
an be 
onveniently 
hara
-terized by the inverse parti
ipation ratio (IPR), whi
h shows over how many sites the wavefun
tion spreads. For an N -parti
le eigenstate j N�i (� enumerates the eigenstates) it isgiven by IN� = �Xn1<:::<nN ��h�n1:::nN j N�i��4��1 ; (2)where j�n1:::nN i is an on-site N -parti
le wave fun
tion (quantum register) with parti
les onsites n1; : : : ; nN .For fully lo
alized stationary states IN� = 1. For delo
alized states IN� � 1. Strongon-site lo
alization that we are interested in 
orresponds to IN� being 
lose to 1 for all states.Along with IN� we will be interested in its average value hIN i, where averaging is per-formed over all states � of the N -parti
le system.Lo
alization requires that the on-site energies "n be tuned away from ea
h other. Fornearest neighbor 
oupling a natural �rst step is to separate "n's into two subbands, for even
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alization of ex
itationsand odd n, with the inter-subband distan
e h that signi�
antly ex
eeds J . Then we furthersplit ea
h subband into two subbands to detune next nearest neighbors. Here the splitting
an be smaller, be
ause next-nearest-neighbor hopping o

urs via a nonresonant site, andthe e�e
tive hopping integral is � J2=h. The pro
edure of band splitting is 
ontinued, withhigher-order splitting being smaller and smaller.A simple sequen
e of "n that implements the above idea has the form"n = 12h �(�1)n �Xn+1k=2(�1)bn=k
�k�1� ; n � 1 (3)(b�
 is the integer part). The energies (3) are illustrated in Fig. 1(a). Besides the s
alingfa
tor h, they are 
hara
terized by one dimensionless parameter � < 1. One 
an see fromEq. (3) and Fig. 1(a) that sites with 
lose energies are indeed spatially separated and thatthe energy spe
trum has a subband stru
ture. Analyti
al estimates of the energy di�eren
e
an be obtained for small �. We have j"n+m � "nj � h for odd m and � �h for odd m=2. Ingeneral, the larger is m the higher may be the order in � of the leading term in j"n+m � "nj.For � >� 0:4 all subbands overlap and the subband stru
ture disappears.It is important for lo
alization that the sequen
e (3) has no simple symmetry. It is neitherself-similar nor quasi-periodi
 (quasi-periodi
ity is another example of \
onstru
ted" disorder[16℄). For analyti
al estimates it is essential that the 
oeÆ
ients at any given power �q arerepeated with period 2(q + 1) [13℄.2.1 Single-parti
le lo
alizationSpatial de
ay of the single-parti
le stationary states 
an be 
hara
terized by the amplitude ofa parti
le transition from site n to site n+m. To the lowest order in J it has the formKn(m) =Ymk=1 J= [2("n � "n+k)℄ : (4)It 
an be shown using some results from number theory that Kn(m) de
ays with m nearlyexponentially [13℄. For small � and large jmj we haveKn(m) = ���jmj (J=2h)jmj: (5)The de
rement � depends on n;m. However, it is limited to a narrow region around � = 1with 0:89 < � < 1:19, 
f. Fig. 1(b). For estimates one 
an use � = 1, i.e., set Kn(m) =Km;K = J=2�h.Equation (5) des
ribes the tail of the transition amplitude for J=2h�� 1. On-site single-parti
le 
on�nement o

urs for � � �th, where the threshold value of � is �th � J=2h. The
ondition �th � � < 0:4 
an be satis�ed for a moderately large ratio of the energy bandwidthh to the hopping integral J .Strong on-site single-parti
le lo
alization for h=J = 20, as eviden
ed by I1� being very
lose to 1, is seen from Fig. 1(
). The data are obtained by diagonalizing the Hamiltonian (1)for open 
hains with di�erent numbers of sites L.In the limit � ! 0 the stationary single-parti
le states are sinusoidal, whi
h gives hI1i �L=3, 
f. Fig. 1(
). As � in
reases, the bands are split into more and more subbands, and hI1ide
reases. It sharply drops to � 1 in a narrow region, whi
h 
an be 
onditionally asso
iatedwith a smeared transition to on-site lo
alization. The 
enter of the transition region gives
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αthFig. 1. Single-parti
le lo
alization for the on-site energy sequen
e (3). (a) The energies "n=h for� = 0:3. (b) The de
rement � of the �-dependen
e of the transition amplitude Kn(m) (5) form = 200 as fun
tion of n. The dashed lines show the analyti
al limits on �. (
) The mean single-parti
le inverse parti
ipation ratio hI1i vs. � for h=J = 20 and for di�erent 
hain lengths L. Theverti
al dashed line shows the analyti
al estimate for the threshold of strong on-site lo
alization.The inset shows the maximal IPR, I1max = max� I1�, demonstrating strong 
on�nement.
�th. It appears to be independent of the 
hain length L. The estimate �th = J=2h is in goodagreement with the numeri
al data for di�erent h=J .When � � �th, all states are strongly 
on�ned. The wave fun
tion tails are small andlimited mostly to nearest neighbors. At its minimum over � for given h=J , for all statesI1� � 1 � J2=h2, see inset in Fig. 1(
). We note that the peak of I1max for L = 300 near� = 0:1 is due to a

idental degenera
y at the boundary. It o

urs be
ause the state on theboundary has less neighbors than inside the 
hain, and therefore the hopping-indu
ed shiftof the boundary energy � J2=h di�ers from that inside the 
hain; one 
an show that, for� � 0:1, the renormalized energies "296 and "300 are resonating. For � >� 0:4, when the bandsof "n start overlapping, the IPR in
reases with �.3 Many-parti
le lo
alizationThe di�eren
e in the lo
alization problems for many-parti
le and single-parti
le systems stemsfrom the intera
tion term/ J� in the Hamiltonian (1). For nonzero � (i) the energy levels areshifted depending on the o

upation of neighboring sites, potentially leading to many-parti
leresonan
es, and (ii) there o

ur intera
tion-indu
ed many-parti
le transitions.To analyze many-parti
le e�e
ts, it is 
onvenient to 
hange from ayn; an to new 
reationand annihilation operators byn; bn that diagonalize the single-parti
le part of the Hamiltonian(1), an =Pk Unkbk. The intera
tion part of the Hamiltonian be
omesHi = J�XVk1k2k3k4byk1byk2bk3bk4 ; (6)



340 On-site lo
alization of ex
itationswhere the sum runs over k1;2;3;4, andVk1k2k3k4 =Xp U�pk1U�p+1 k2Up+1 k3Upk4 : (7)The Hamiltonian (6) des
ribes the intera
tion of the exa
t single-parti
le ex
itations.If all single-parti
le stationary states are strongly lo
alized, the o�-diagonal matrix ele-ments Unk are small. They are determined by the de
ay of the wave fun
tions and fall o�exponentially, Unk � K jk�nj for jk � nj � 1. At the same time, the diagonal matrix elementis Unn � 1. Therefore the major terms in the matrix Vk1k2k3k4 are those with { = 0, where{ = minp (jk1 � pj+ jk2 � p� 1j+ jk3 � p� 1j+ jk4 � pj): (8)The terms with { = 0 lead to an energy shift / J� from ea
h pair of o

upied neighboringsites in a given many-parti
le state.The meaning of the parameter { (8) 
an be understood by noti
ing that the terms/ Vk1k2k3k4 in Eq. (6) des
ribe two-parti
le inter-site transitions (k4; k3) $ (k1; k2) of therenormalized fermions. For a given transition, { is simply the number of virtual steps thathave to be made by the original fermions. The steps are 
ounted o� from the 
on�gurationwhere two su
h fermions o

upy neighboring sites, and ea
h step is a transition by one of thefermions to a nearest site. In other words, the original fermions go �rst from sites (k4; k3) tosites (p; p + 1) and then to (k1; k2) (we assume for 
on
reteness that k3 > k4 and k2 > k1);the value of p is 
hosen so as to minimize the number of steps.To make the meaning of { even more intuitive we give examples of some { = 4 transitions.For the initial and �nal states (n; n+1) and (n� 2; n+3) one of the sequen
es of steps of theoriginal fermions is (n; n+1)! (n; n+ 2)! (n� 1; n+ 2)! (n� 1; n+3)! (n� 2; n+ 3),whereas for the initial and �nal states (n; n + 2) and (n � 1; n + 3) one of the sequen
esis (n; n + 2) ! (n; n + 1) ! (n � 1; n + 1) ! (n � 1; n + 2) ! (n � 1; n + 3) [the energydenominators must be obtained dire
tly from Eqs. (3), (6), (7)℄.It follows from the above argument that, for �� �th,Vk1k2k3k4 � K{ for { � 1: (9)Transitions of renormalized fermions are not limited to nearest neighbors. However, fromEq. (9), the amplitudes of transitions over many sites are small and rapidly de
rease with thenumber of involved virtual steps.In higher orders of the perturbation theory, the intera
tion (6) leads also to many-parti
letransitions. The overall transition amplitude is determined by the total number of involvedvirtual single-parti
le steps.In order to lo
alize many-parti
le ex
itations, one has to suppress 
ombinational many-parti
le resonan
es keeping in mind that, for lo
alization, the e�e
tive hopping integral mustbe smaller than the energy detuning of the initial and �nal on-site states. Be
ause of thelarge number of possible resonan
es, we do not have an analyti
al proof of many-parti
lelo
alization in an in�nite system for our energy sequen
e (3). However, our numeri
al resultsdemonstrate strong on-site lo
alization of all stationary states in a 
hain of a limited size.Numeri
al results on the many-parti
le IPR are shown in Fig. 2. We have studied 
hainsof length L = 10; 12, and 14 with L=2 ex
itations, whi
h have the largest number of states



M.I. Dykman, L.F. Santos, M. Shapiro and F.M. Izrailev 341for given L (/ 2L for large L). The results for all L were similar, and we present the data forL = 12, in whi
h 
ase the total number of states is 924.For small �, the IPR is independent of � and is large be
ause of the large number ofresonating on-site states j�n1:::n6i. It is redu
ed by the intera
tion / J� that splits theenergy spe
trum into subbands depending on the number of o

upied neighboring sites. Onthe whole, the IPR de
reases with in
reasing � as long as � <� 0:4. In the region 0:2 <� � <� 0:4and for h=J = 20 we have hI6i � 1:01 ex
ept for narrow peaks. This indi
ates that away fromthe peaks the stationary states are strongly lo
alized. Strong on-site lo
alization of all statesis indi
ated by the data on I6max = max� I6�.
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Fig. 2. Many-parti
le lo
alization for a 
hain of length L = 12 with 6 ex
itations. The data referto the �rst 12 sites of the 
hain (3), the redu
ed bandwidth is h=J = 20. The dashed, solid, anddot-dashed 
urves give the mean IPR for the 
oupling parameter � = 0; 0:3, and 1, respe
tively.The inset shows the maximal I6 for � = 1. Sharp isolated peaks for � 6= 0 result from thehybridization of many-parti
le on-site states that are in resonan
e for the 
orresponding �. Thepeaks for � = 0 are due to the boundaries.A distin
tive feature of the many-parti
le IPR as fun
tion of � are multiple resonant peaks,a part of whi
h is resolved in Fig. 2. They o

ur when two on-site states resonate. Two-siteresonan
es lead to I6max <� 2. The strongest peaks of I6max happen when the two-parti
leenergy di�eren
e Æ" = j"k1 + "k2 � "k3 � "k4 j (10)is 
lose to MJ� with M = 0; 1; 2.As we in
rease � starting from � = 0, pronoun
ed peaks of hI6i appear �rst for Æ" �s�h � J� with s = 1; 2. They are due to hybridization of pairs on sites (n; n + 1) and(n; n+3) for s = 1, and (n; n+1) and (n�1; n+2) for s = 2, for example ({ = 2-transitions).For larger �, resonan
es o

ur when s�nh � MJ� with n � 2. In most 
ases (see,however, below for a notable ex
eption) su
h resonan
es require more intermediate steps,with { � 4. The widths of the IPR peaks are small and are in good agreement with simpleestimates based on Eq. (6) [12, 13℄. In between the peaks I6max = 1:02 for 0:2 <� � <� 0:4 andh=J = 20.For the sequen
e (3), a spe
ial role is played by two-parti
le resonan
es where Æ"� J forall � < 0:4. They emerge already for { = 2-transitions (n; n+ 1)$ (n� 1; n+ 2). Here, if nand n+ 2 are prime numbers, Æ" � �n�1h is extremely small for large n and small �. Strongresonan
e o

urs for all n = 6k � 1, in whi
h 
ase Æ"=h / �� with � � 4. For example, for atransition (23; 24)$ (22; 25) we have Æ"=h / �4, whereas for a transition (29; 30)$ (28; 31)
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alization of ex
itationswe have Æ"=h / �28. As a result of these resonan
es the 
ondition Æ" � J�K{ may not besatis�ed in an in�nite 
hain.For di�erent se
tions of the 
hain (3) we found that the resonan
es (n; n+1)$ (n�1; n+2)for n = 6k � 1 in
rease hI6i up to 1.15 between the peaks, for h=J = 20; 0:2 < � < 0:4, and� = 1. These resonan
es 
an be eliminated by modifying the sequen
e (see the next se
tion).This modi�
ation brings hI6i and I6max ba
k to � 1:01 and � 1:02, respe
tively [12, 13℄. Weemphasize that su
h small values of hI6i � 1 and I6max � 1 were obtained for all 12-site longse
tions of the 
hain that we have tested.4 Lifetime of strongly lo
alized statesThe problem of strong lo
alization 
an be viewed also from a di�erent perspe
tive. In the
ontext of quantum 
omputing, it suggests a more appropriate formulation then the onebased on the analysis of stationary states. It is also relevant for 
ondensed-matter systems atnonzero temperatures.First we note that ex
itations in quantum 
omputers and in 
ondensed-matter systemshave a �nite 
oheren
e time t
oh. For QC's, this time has to be 
ompared with the durationof a single- or two-qubit operation and measurement. The duration of a two-qubit swapoperation is of order of the time it takes to resonantly transfer an ex
itation between thequbits, whi
h is � J�1. A single-qubit operation is often faster; however, the measurement
an sometimes be slower or even mu
h slower. In most proposed realizations of a QC the
oheren
e time ex
eeds the gate operation time by a fa
tor . 105.We de�ne the lo
alization lifetime tlo
 as the time it takes for ex
itations to leave o

upiedsites. Lo
alization of ex
itations is only relevant on times � t
oh. Then to have meaningfulon-site lo
alization it suÆ
es that tlo
 & t
oh. It follows from the estimate for t
oh that thelatter 
ondition is met if tlo
 & 105J�1: (11)The 
ondition (11) must be satis�ed for all on-site many-parti
le states. It is this 
onditionthat the energy sequen
e "n must meet in an in�nite system.The time tlo
 is determined by hopping between resonant on-site states. It o

urs throughvirtual transitions via nonresonant sites. For a two-parti
le resonant transition, the minimalnumber of the needed virtual steps is given by the parameter { (8). Then from Eqs. (6), (9)the hopping integral for a resonant transition (k4; k3)$ (k1; k2) is J�Vk1k2k3k4 � J�K{ for{ � 1. Here, K is de�ned by Eq. (5), K � J=2�h, and K � 1 in the region �=�th � 1.In the 
ase of the energy sequen
e (3) and for � <� 1, up to a fairly high number of virtualsteps (� 5), of interest for the estimate of tlo
 are resonan
es between two-parti
le on-sitestates. This applies to systems with an arbitrary number of parti
les; only those transitionsmatter in whi
h up to two parti
les 
hange sites. Indeed, transitions where three parti
les
hange sites emerge in the se
ond order in the two-parti
le Hamiltonian (6), (7), and theiramplitude 
ontains an extra nonresonant denominator.For resonant two-parti
le transitionstlo
 � �J�K{min��1;
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J that ex
eeds a given value, we must have an appropriate {min. This means thatwe should eliminate resonan
es between all states 
onne
ted by { < {min virtual transitions.A two-parti
le transition with odd { = 1; 3; 5; : : : involves a 
hange of the total number ofo

upied sites with n of given parity. Therefore, for the sequen
e (3) with �� 1, the energy
hange in su
h a transition is Æ" � h. If J� � h, then Æ" signi�
antly ex
eeds the 
hangeof the intera
tion energy J�, 2J�. As a result, resonant two-parti
le transitions may o

uronly for even {.We will modify the sequen
e (3) to eliminate resonan
es with { = 2 and { = 4. This willallow us to have the lo
alization time tlo
 � J�1K�4 and > J�1K�6, respe
tively, for � <� 1.4.1 Eliminating se
ond order many-parti
le resonan
esThe potentially resonant transitions with { = 2 are(n; n+ 1)$ (n; n+ 1� 2); (n� 2; n+ 1)(n; n+ 1)$ (n� 1; n+ 2): (12)In the transitions listed in the �rst line of this equation, one of the parti
les in the pair movesby two sites in one or the other dire
tion, whereas for the transition shown on the se
ond lineboth parti
les move by one site.We note that Eq. (6) des
ribes \dire
t" transitions over several sites, with amplitude/ K{ , whi
h is a result of the diagonalization of the single-parti
le Hamiltonian; for example,a transition (n; n+1)$ (n; n�1) does not involve double-o

upan
y on site n. Alternatively,one 
an think of this transition as a sequen
e of steps (n; n+1)$ (n� 1; n+1)$ (n; n� 1).The number of o

upied nearest sites in the transitions (12) 
an 
hange by one or remainun
hanged. Therefore the maximal 
hange of the intera
tion energy is J�. Se
ond-orderresonan
es will be eliminated if the detuning of the on-site energy di�eren
es Æ" for thetransitions (12) is Æ" > J�:This means that we need a zero-energy gap of an appropriate width in Æ".We note that this is a suÆ
ient, not the ne
essary 
ondition. In prin
iple, it would suÆ
eto have narrow gaps at Æ" = 0 and J�. These gaps should just be broader than the tunnelingmatrix element and than the energy shifts due to o

upation of next nearest neighbors. Fora spe
i�
 �nite-length se
tion of a 
hain this may be more pra
ti
al. However, here we areinterested in an in�nite 
hain, and we want to demonstrate that even for su
h a 
hain allresonan
es with { < 4 
an be eliminated.To 
reate the zero-energy gap, sequen
e (3) has to be modi�ed. The modi�
ation has toeliminate, in the �rst pla
e, the \anomalous" broad-band resonan
es for transitions (n; n +1)$ (n� 1; n+ 2) with n = 6k � 1 dis
ussed before. A simple and suÆ
ient modi�
ation isa 
onstant shift of "n for ea
h 6th site,"mdn = "n + (h=2)�0 for n = 6k; (13)while "mdn = "n for n 6= 6k.



344 On-site lo
alization of ex
itationsFor the modi�ed sequen
e (13), the gap in the on-site energies for the 2nd-order transitions(12) is Æ" � �2h; �0h=2 to leading order in �. A more a

urate estimate is min Æ" � (�2 ��3)h; �0h=2. We assume that �2 . �0 � �, in whi
h 
ase no new resonan
es are 
reated forthe transitions (12) as a result of the modi�
ation (13).It follows from the above estimate that, for an in�nite 
hain and an arbitrary numberof parti
les, all resonant transitions with { < 4 will be eliminated provided J�=h < �2 ��3; �0=2, . Then the lo
alization time tlo
 � 105J�1 already for h=J = 30, � = 0:3, �0 �0:1� 0:2, and � <� 1.4.2 Eliminating fourth order resonan
esThe lo
alization time is further dramati
ally in
reased if { = 4 resonan
es are eliminated.The potentially resonant 4th order transitions are(n; n+ 1)$ (n� 2; n+ 3);(n; n+ 1)$ (n+ 2; n+ 3);(n; n+ 3)$ (n� 1; n+ 2);(n; n+ 3)$ (n� 2; n+ 1); (14)and (n; n+ 1)$ (n� 1; n+ 4);(n; n+ 1)$ (n� 3; n+ 2);(n; n+ 1)$ (n; n+ 1� 4); (n� 4; n+ 1): (15)In the last line of Eq. (15) we list transitions where one of the parti
les in the pair moves by4 sites, whereas in all other transitions both parti
les move away from their sites.For the modi�ed sequen
e (13), the minimal energy 
hange in the transitions (14), (15)is min Æ" � �3h, to leading order in �, provided �0 � �3. The value of �0 has to bein su
h a range that the modi�
ation (13) does not lead to extra resonan
es between theon-site energies for the states (14) and (15). The \dangerous" 
ombinations in Æ"=h arej� � �0=2j; j2� � �0=2j; j�2 � �0=2j; j2�2 � �0=2j, to leading order in � [13℄. We will 
hoose�; �0 so that all of them ex
eed min Æ"=h � �3.Fig. 3 shows how the modi�
ation (13) leads to a zero-energy gap in Æ". We plot Æ"mdnfor all transitions (12), (14), (15), with n being the smallest number of the site involved in atransition, n > 2. Therefore we show all potentially resonant transitions with { � 5.The left panel in Fig. 3 shows that, for the initial sequen
e (3), there is pra
ti
ally nogap in the values of Æ" at low energies. The right panel demonstrates that the 
orre
tion(13) leads to a zero-energy gap. The gap depends on the values of � and �0. For the spe
i�
parameter values in Fig. 3 we have Æ"=h � 0:01. It 
an be shown that this result applies foran in�nite 
hain [13℄.It follows from the dis
ussion above that, for 2J� . 0:01h, all parti
les will remainlo
alized on their sites for the time tlo
 � (J�)�1K�6=� [we have taken into a

ount herethat the hopping integral for transitions with { = 6 is limited by � J�(J=2h)6��5 ratherthan J�(J=2h)6��6, as would be expe
ted from the asymptoti
 expression (9)℄. For h=J = 50and � = 0:25 this gives an extremely long lo
alization time, tlo
J & 1010. This estimate holds
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0 50 100nFig. 3. The low-energy part of the two-parti
le energy di�eren
es Æ"n=h (10) for all transitionswith { � 5; n is the smallest number of the site involved in a transition, n > 2. The data refer to� = 0:25. The left panel 
orresponds to the sequen
e (3). The right panel refers to the modi�edsequen
e (13) with �0 = 0:22; it shows the zero-energy gap.
provided the 
oupling is weak, � . 0:25 for the used parameter values. It is important that,as a proof of prin
iple, the results on a gap apply for arbitrary 
oupling. However, as we showbelow, for stronger 
oupling an alternative approa
h be
omes more pra
ti
al.4.3 Strong 
oupling: an alternative approa
hFor strong 
oupling, where � � 1, the 
ondition 2J� < 0:01h may be
ome too restri
tive.Su
h situation is of interest for several models of QC's, in parti
ular for a QC based onele
trons on helium, as it follows from the estimate of � given above. The results des
ribedin the previous se
tions apply for large �, but the ratio h=J required for lo
alization be
omesvery large. Large bandwidth of "n may limit the speed of quantum operations where qubitenergies are tuned in resonan
e with an external mi
rowave �eld or with ea
h other [3℄,be
ause in an operation "n has to be varied over a broad range / h. It may also be simplyin
ompatible with the bounds on the range of "n imposed by physi
al 
onstraints in a system.An alternative approa
h for obtaining long lo
alization time is to have an energy sequen
ewith suÆ
iently broad gaps in the spe
tra of the 
ombination energies, and to use separategaps for the transitions with the 
hange of intera
tion energy ÆE = 0 and ÆE = J�; 2J�.The o

urren
e of gaps in the 
ombination energies Æ" is seen from Fig. 4. From Eqs. (3),(10), Æ" form bands 
entered at 0; h, and 2h. To lowest order in �, the bandwidths are 2�h,4�h, and 2�h. The interband gap between the lowest and �rst band is broad, � (1� 4�)h.For strong 
oupling, one 
an adjust the parameters so that the 
oupling energies J�; 2J�lie inside the gap between the bands of Æ" 
entered at Æ" = 0; h. The transitions where thenumber of nearest neighbors is not 
hanged should lie inside a zero-energy gap (whi
h is notseen in Fig. 4). The 
orresponding 
onditions 
an be redu
ed in the limit of small � to(2�)1=3 < 2�h=J < �(here we have taken into a

ount that the zero-energy gap � �3h should ex
eed the transitionmatrix element / J�(J=2h)2). The above 
ondition allows using a mu
h smaller bandwidthh for large � than the 
ondition 2J� < 0:01h. However, for very large � one may have totake into a

ount transitions in whi
h more than two parti
les are involved; this may modifythe 
onstraint on h=J .
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Fig. 4. The two-parti
le energy di�eren
es Æ"n=h for two-parti
le transitions with { � 4; n is thesmallest number of the site involved in a transition. The data refer to the energy sequen
e (3)with � = 0:1. The energy di�eren
es form bands 
entered at Æ"=h = 0; 1, and 2. The bandwidthsare � 2�h, 4�h, and 2�h, respe
tively.
5 Robustness with respe
t to errors in on-site energiesIn a real system, it will be impossible to implement sequen
e of on-site energies (3) pre
isely.This is be
ause these energies 
ontain high powers of the small parameter �, while the pre
isionto whi
h they 
an be set and/or measured is limited. Therefore it is ne
essary to studylo
alization in the presen
e of errors in "n and to �nd how large these errors 
an be beforethey 
ause delo
alization.We will address this problem by looking at the zero-energy gap in the energy di�eren
esÆ" in the presen
e of errors in "mdn (13). This gap is most sensitive to errors. For weakto moderate 
oupling, � <� 1, as long as the gap remains larger than 2J� for all resonanttransitions with { � 5, the lo
alization lifetime tlo
 will remain large.The e�e
t of errors on the zero-energy gap 
an be modelled by adding a random term toon-site energies, i.e., repla
ing "mdn with"errn = "mdn + 12Dhrn: (16)Here, rn are random numbers uniformly distributed in the interval (�1; 1), andD 
hara
terizesthe error amplitude. It should be 
ompared with �s with di�erent exponents s � 1. WhenD � �s it means that the energies "n are well 
ontrolled up to terms � �s�1, to leading orderin �.From the above arguments it follows that, for � � �0 >� �2 the gap should remain un-
hanged if D � �4. This is be
ause, for the modi�ed energies "mdn , the terms � �4 dropout from the energy di�eren
es that we dis
uss. For D � �4 the gap should be somewhatredu
ed. For D � �3 it should be
ome signi�
antly smaller than for D = 0, and it shouldultimately disappear with in
reasing D.
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al results on the gap Æ" as a fun
tion of logD are shown in Fig. 5 [13℄. The gapis 
al
ulated for two-parti
le transitions with { � 5, as in Fig. 3. In the lower panel the gapis s
aled by its value in the absen
e of errors,R = minn Æ"errn =minn Æ"mdn : (17)The data refer to the same �; �0 as in Fig. 3. They are in full agreement with the aboveestimate.
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Fig. 5. Upper panels: all energy di�eren
es Æ"errn =h = j"errn +"errn1 �"errn2 �"errn3 j=h for the transitions(12), (14), (15) that 
orrespond to the number of intermediate steps { � 5. The data refer to� = 0:25, �0 = 0:22, and to a spe
i�
 realization of the random numbers rn in Eq. (16). The boxesfrom left to right 
orrespond to the values of the noise intensity D = �s in Eq. (16) with s = 5; 4,and 3. Lower panel: the s
aled minimal gap R (17) as a fun
tion of the exponent s = lnD= ln�;the value of R is averaged over 10 realizations of noise.The results of Fig. 5 demonstrate that the lo
alization persists even for relatively largeerrors in the on-site energies. At least for the 
hosen � and �0, errors in "n up to � 0:4%(when D = �4) lead to a 
hange in the width of the energy gap by � 50%.The observed dependen
e on the noise strength suggests that, in the presen
e of noise,sequen
e (3), (13) 
an be 
ut so that the terms / �s with s > s
uto� are disregarded. Thevalue of s
uto� depends on the noise, s
uto� = lnD= ln�. As a result of the 
uto�, the energies"n be
ome polynomials in � of power � s
uto� . From Eq. (3), these polynomials are periodi
in n, with the period determined by twi
e the least 
ommon multiple of (2; 3; : : : ; s
uto� +1).For example, for s
uto� = 5 the period in n is 120. For su
h a long period and short-rangehopping, ex
itations will stay on their sites for a long time 
ompared to J�1.6 Con
lusionsIn this paper we have reviewed and extended the results [12,13℄ on on-site lo
alization of ex
i-tations in a quantum 
omputer with perpetually 
oupled qubits. We proposed a sequen
e ofon-site energies that is extremely e�e
tive, in terms of lo
alization. Two aspe
ts of the lo
al-ization problem have been addressed. One is lo
alization of stationary states. For one-parti
le(one-ex
itation) states, it has been studied analyti
ally. We found that the wave fun
tions de-
ay quasi-exponentially and obtained the bounds on the de
ay length. The numeri
al resultson strong lo
alization are in agreement with the theory.



348 On-site lo
alization of ex
itationsFor many-parti
le (many-ex
itation) stationary states, the lo
alization has been analyzednumeri
ally for a 
hain of a �nite length. It was found that, already for a relatively smallbandwidth of on-site energies, the inverse parti
ipation ratio be
omes very 
lose to its valuefor the 
ase of fully lo
alized states.A di�erent approa
h is based on studying the lifetime of on-site states. For a quantum
omputer, it is suÆ
ient to have a lo
alization lifetime tlo
 that ex
eeds the 
oheren
e timeof the ex
itations. We have shown that su
h tlo
 
an be a
hieved in a 
hain of an arbitrarylength and with an arbitrary number of ex
itations. For the expli
it 
onstru
tion of on-siteenergies (3), (13), resonant transitions that lead to delo
alization require at least 4 or even 6virtual transitions. Even in the 4-step 
ase this gives the ratio of the delo
alization rate tothe inter-site hopping integral � 10�5 for K � 0:06 and for the 
oupling parameter � <� 1.An advantageous feature of the suggested on-site energy sequen
e (3) and its modi�
ation(13) is that one radiation frequen
y 
an be used to resonantly ex
ite di�erent qubits. This 
anbe a
hieved by sele
tively tuning them to this frequen
y without bringing neighboring qubitsin resonan
e with ea
h other, or by sweeping the frequen
y of the targeted qubit throughthe radiation frequen
y and having a Landau-Zener-type interstate transition. A two-qubitgate 
an be 
onveniently done by sele
tively tuning neighboring qubits in resonan
e with ea
hother and having a Landau-Zener type ex
itation swap [3℄.We note that, in fa
t, implementing lo
alization does not require operations on qubits,and therefore does not require a fully operational quantum 
omputer. An important exampleof su
h system is quantum memory. Of 
ourse, many-ex
itation lo
alization is a ne
essaryingredient of a quantum memory devi
e.Lo
alization is also a prerequisite for a proje
tive measurement of the states of individualqubits. To enable su
h measurement, tlo
 should ex
eed the measurement time. In ourapproa
h, lo
alization does not require refo
using [1℄, whi
h is not always easy to implementand whi
h is sometimes in
ompatible with slow measurement.A potential advantage of our approa
h 
ompared to an elegant idea [8℄ is that the in-tera
tion does not have to be ever turned o�, and no multi-qubit en
oding is ne
essary foroperating a QC. Another distin
tion from the approa
h [8℄ is that the presented s
heme 
anbe extended to systems with long-range 
oupling. For several proposed QC's the interqubit
oupling is dipolar for a few near neighbors and be
omes quadrupolar or falls down even fasterfor remote neighbors [2, 3℄. Long-range intera
tion makes transitions over several sites moreprobable. We leave detailed analysis for a separate paper.In this paper we have not addressed the question of optimization of the energy sequen
e,so that maximal lo
alization lifetime 
ould be obtained for a minimal bandwidth of on-siteenergies. For a �nite-length 
hain the optimization problem 
an be approa
hed using Eq. (3)as an initial approximation and adjusting energies of several spe
i�
 sites.In 
on
lusion, we have provided proof of prin
iple of long-lived strong on-site lo
alizationof all states of a quantum 
omputer, independent of its size and the number of ex
itations.We have also demonstrated numeri
ally on-site lo
alization of all stationary states in 
om-paratively long 
hains of perpetually 
oupled qubits. The lo
alization does not require usingrefo
using te
hniques. The proposed sequen
e of on-site energies (3) and its modi�
ation (13)have low symmetry, whi
h allows eliminating resonan
es between the states to a high orderin the hopping integral. When se
ond-order resonan
es are eliminated, the lifetime ex
eeds
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ipro
al hopping integral by 5 orders of magnitude provided the bandwidth of on-siteenergies is larger than the inter-site hopping integral by a fa
tor � 40. We show that it
an be further signi�
antly in
reased by eliminating fourth-order resonan
es and propose anapproa
h that gives long lifetime for strong 
oupling without large in
rease of the bandwidth.The proposed energy sequen
e is stable with respe
t to errors.A
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