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We propose an approach to measuring coupled systems, which gives a parametrically smaller error than the
conventional fast projective measurements. The measurement error is due to the excitations being not entirely
localized on individual systems even where the excitation energies are different. Our approach combines
spectral selectivity of the detector with temporal resolution and uses the ideas of the quantum diffusion theory.
The results bear on quantum computing with perpetually coupled qubits.
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I. INTRODUCTION

The understanding of quantum measurements has signifi-
cantly advanced in recent years, in part due to the fast devel-
opment of quantum information theory �1,2�. Measurements
constitute a necessary part of the operation of a quantum
computer. In the context of quantum computing, it is often
implied that measurements are performed on individual two-
state systems, qubits, and that during measurements qubits
are isolated from each other. However, in many proposed
implementations of quantum computers the qubit-qubit cou-
pling may not be completely turned off. The interest in mea-
suring coupled systems is by no means limited to quantum
computing; however, qubits provide a convenient language
for formulating the problem.

In a system of coupled qubits �coupled quantum systems�
excitations are not entirely localized on individual qubits
even where the qubits have different energies. Therefore, if a
qubit is excited, a projective measurement on this qubit �3�
can miss the excitation. A measurement can also give a false-
positive result: the detected excitation may be mostly local-
ized on another qubit but have a tail on the measured qubit.
In the context of quantum computing, this is a significant
complication since the overall error accumulates with the
number of qubits.

A familiar alternative to fast projective measurements is
provided by continuous measurements, in which the signal
from a qubit is accumulated over time �2�. Continuous mea-
surements are often implemented as quantum nondemolition
measurements �QNDMs� in which the quantity to be mea-
sured �such as population of the excited state� is preserved
while a conjugate quantity �such as phase� is made uncertain.
As we will see, the standard QNDMs do not solve the pre-
cision problem for interacting qubits.

The goal of the present paper is to find a way of measur-
ing nonresonantly coupled qubits that gives a parametrically
smaller error than standard fast or continuous one-qubit mea-
surements. The idea is to combine temporal and spectral se-
lectivities so as to take advantage of different time and en-
ergy scales in the system. The proposed measurement is
designed for measuring excited states and is continuous.

However, it is not of a QNDM type, both the amplitude and
the phase of the excitation wave function are changed.

The problem of measuring coupled qubits is related to the
problem of localization. Localization of single-excitation sta-
tionary states is well understood since Anderson’s work �4�
on disordered systems where qubit excitation energies �site
energies� �n are random. Anderson localization requires that
the bandwidth h of the energies �n be much larger than the
typical nearest-neighbor hopping integral J. One-excitation
localization becomes stronger for the same h /J, i.e., the lo-
calization length becomes smaller if �n are tuned in a regular
way so as to suppress resonant excitation transitions. Local-
izing multiple excitations is far more complicated, because
the number of states exponentially increases with the number
of excitations. However, at least for a one-dimensional qubit
system, by tuning �n one can obtain a long “localization
lifetime” within which all excitations remain strongly local-
ized on individual qubits, with small wave-function tails on
neighboring qubits. The localization lifetime can be as long
as �J−1�h /J�5 �5,6�; here and below, we set �=1.

We propose to detect an excitation by resonantly coupling
the measured qubit to a two-level detecting system �DS�. If
the qubit was initially excited and the DS was in the ground
state, the excitation can move to the DS. There, its energy
will be transferred to the reservoir and the change in the state
of the reservoir will be directly detected. For example, the
DS can emit a photon that will be registered by a photode-
tector. The typical rate of photon emission � should largely
exceed the rate of resonant �but incoherent� excitation hop-
ping between the qubit and the DS, so that the probability for
the excitation to go back to the qubit is small. The rate �
should also largely exceed the interaction-induced shift of
the qubit energy levels. At the same time, � should be small
compared to the bandwidth of site energies h. Then the qu-
bits adjacent to the measured qubit are not in resonance with
the DS, and the rate of excitation transfer from these qubits
to the DS is small.

If the above conditions are met, there should be a time
interval within which an excitation localized mostly on the
measured qubit will be detected with a large probability,
whereas excitations localized mostly on neighboring qubits
will have a very small probability to trigger a detection sig-
nal. As we show, the associated errors are much smaller than
in a projective measurement.

State measurements for coupled qubits have been per-
formed with Josephson-junction-based systems, where there*dykman@pa.msu.edu
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were studied oscillations of excitations between the qubits
�7,8�. The oscillations occurred where the qubits were tuned
in resonance with each other. The effect of the interaction on
measurements in the case of detuned qubits, which is of in-
terest for the present work, was not analyzed. The approach
proposed here, which combines spectral and temporal selec-
tivities to achieve high resolution, as well as the goal and the
results, are different not only from the standard continuous
quantum measurements �2� but also from other types of time-
dependent quantum measurements �cf. Refs. �9–12��.

In Sec. II we describe the system of two qubits and a
resonant inelastic-scattering-based DS. We identify the range
of the relaxation rate of the DS and the qubit parameters
where the measurement is most efficient. In Sec. III we study
time evolution of the system. We find that the decay rates of
stationary states centered at different qubits are strongly dif-
ferent. The detailed theory for one- and two-qubit excitations
is given in Appendixes A and B, respectively. Section IV
describes how initial states of the system can be efficiently
discriminated, and the analytical results are compared with a
numerical solution. Section V contains concluding remarks,
including an extension of the results to a multiqubit system.

II. MODEL

A. Two-qubit system

We will concentrate on a quantum measurement of two
coupled two-level systems �two spin-1/2 particles or two qu-
bits� and then extend the results to a multiqubit system. The
system is sketched in Fig. 1. We will assume that the qubit
excitation energies �the spin Zeeman energies� �1,2 largely
exceed both the interaction energy J and the energy differ-
ence ��21�, where �21=�2−�1; for concreteness, we assume
that �21�0.

Via the Jordan-Wigner transformation the system can be
mapped onto two spinless fermions with Hamiltonian

HS = �
n=1,2

�nan
†an +

1

2
J�a1

†a2 + a2
†a1� + J�a1

†a2
†a2a1. �1�

Here, the subscript n=1,2 enumerates the coupled qubits
and an ,an

† are the fermion annihilation and creation opera-

tors. The ground state corresponds to no fermions present. A
fermion on site n corresponds to the nth qubit being excited.
The parameter J in this language is the hopping integral,
whereas J� describes the interaction energy of the excita-
tions.

We will assume that J��21. In this case the stationary
single-particle states of the system ��1,2

�st�� are strongly local-
ized on site 1 or 2,

��n
�st�� = C��n� − 	�− 1�n�3 − n�� �n = 1,2� , �2�

where 	=2
�1 /J	−J /2�21 and C= �1+	2�−1/2 �
�1

= ��21−
�21
2 +J2� /2 is the shift of the energy level �1 due to

excitation hopping�.
Measurements are done by attaching a detector to a qubit,

i.e., to the physical system represented by the qubit. For
concreteness, we assume that the measured qubit is qubit 1.
It is seen from Eq. �2� that, if the measurement is fast pro-
jective and the system is in state ��1

�st��, the occupation of this
state will be detected with an error 	2. With probability 	2

the detector will “click” also if the system is in state ��2
�st��.

The same error occurs in quasielastic continuous measure-
ments, like measurements with quantum point contacts or
tunnel junctions �11,13�. Moreover, the decoherence of the
qubit brought about by such measurements, even where its
rate is small compared to �21 will lead, for coupled qubits, to
excitation spreading over both states ��1,2

�st��, which will limit
the measurement precision.

B. Resonant inelastic-scattering detector

The state of the system can be determined with a higher
precision using a detector that involves inelastic transitions.
A simple model is provided by a two-level DS which is
resonant with qubit 1 �see Fig. 1�. The measurement is the
registration of a transition of this system from its excited to
the ground state; for example, it can be detection of a photon
emitted in the transition. The Hamiltonian of the qubit-DS
system is

H = HS + �DaD
† aD + 1

2JD�a1
†aD + aD

† a1� , �3�

where �D is the energy of the excited state of the DS and JD
characterizes the coupling of the DS to qubit 1, JD��21.

The qubit-DS dynamics can be conveniently analyzed by
changing to the rotating frame with a unitary transformation
U�t�=exp�−i�1t��=1,2,Da�

†a��. We assume that relaxation of
the DS is due to coupling to a bosonic bath �photons�. If this
coupling is weak and other standard conditions are met �14�,
the qubit-DS dynamics in slow time �compared to �1

−1� is
described by the Markovian quantum kinetic equation for the
density matrix �,

�̇ = i��,H̃� − ��aD
† aD� − 2aD�aD

† + �aD
† aD� . �4�

Here, H̃=H−�1��=1,2,Da�
†a� and � is the DS decay rate. It is

assumed that the bath temperature is T��D /kB, so that there
are no thermal transitions of the DS from the ground to the
excited state.

Equation �4� should be solved with the initial condition
that for t=0 the DS is in the ground state whereas the qubits
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FIG. 1. �Color online� The measurement scheme. Qubits 1 and 2
are not in resonance, but are perpetually coupled, with the coupling
constant J��21, where �21=�2−�1 is the level detuning, �21

��1,2. The detecting system is resonantly coupled to qubit 1. When
an excitation is transferred to the DS, the DS makes a transition to
the ground state �for example, with photon emission�, which is di-
rectly registered. The transition rate � exceeds J ,JD, but is small
compared to �21 to provide spectral selectivity.
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are in a state to be measured. As a result of the excitation
transfer from the qubits, the DS can be excited and then it
will make a transition to the ground state. The directly mea-
sured quantity is the probability R�t� that such a transition
has occurred by time t,

R�t� = 2��
0

t

dt Tr���t�aD
† aD� . �5�

It is clear, in particular, that if one of the qubits is excited the
excitation will be ultimately fully transferred to the DS and
then further transferred to the photon bath, so that R�t�→1
for t→
. If on the other hand both qubits are in the ground
state, then R�t�=0.

As we show, qubit measurements can be efficiently done
for

�21 � � � J,JD, ��D − �1� . �6�

In this case, there are no oscillations of excitations between
the qubits and the DS and time evolution of R�t� is charac-
terized by two strongly different time scales, which makes it
possible to determine which of the qubits is excited. The
energy detuning �D−�1 plays no role, and without loss of
generality we can set �D=�1. We will start the analysis with
the case where there is no more than one excitation on the

qubits for t=0. Then one can replace H̃ in Eq. �4� with a
single-excitation Hamiltonian,

H̃ ⇒ �21a2
†a2 + 1

2 �Ja1
†a2 + JDa1

†aD + H.c.� . �7�

III. TIME EVOLUTION OF THE DENSITY MATRIX

A. One excitation

Evaluating expression �5� requires finding expectation
values �a�

†�t�a��t��
Tr a�
†a���t�
����t�, where � ,� run

through the subscripts 1 ,2 ,D. The matrix elements ���

=���
� satisfy a system of nine linear equations that follow

from the operator equations �4� and �7�. This system of equa-
tions is closed; the matrix elements ��� do not mix with the
expectation values �a��t�� , �a�

†�t��.
The solution of the equations for ����t� and the analysis

of the signal R�t� are simplified in range �6�. The relaxation
rate of the matrix elements �D� that involve the DS is ��.
For ��JD ,J this rate is faster than other relaxation rates, as
explained below �see Appendix A for details�, and therefore
over time �−1 the matrix elements �D� reach their quasista-
tionary values.

Relaxation of the population �11 of qubit 1, on the other
hand, is determined by the excitation transfer from site 1 to
the DS. This transfer is similar to quantum diffusion of
weakly coupled defects in solids within narrow bands of
translational motion �15� or defect reorientation between
equivalent positions in an elementary cell �16�. It is charac-
terized by the rate

W1 = JD
2 /2�, W1 � � . �8�

Equation �8� can be readily understood in terms of the Fermi
golden rule: this is a transition rate from qubit 1 to the DS

induced by the interaction �JD, with � being the character-
istic bandwidth of final states and �−1 being the density of
states at the band center, respectively. The rate W1 describes
the relaxation of an excitation localized initially in state
��1

�st��.
If the excitation is localized mostly on qubit 2 and has

energy 	�21, its decay rate is much smaller. The decay can
be thought of as due to the interaction of qubit 2 with the DS,
which is mediated �nonresonantly� by qubit 1. Therefore the
effective interaction energy is 	JJD /2�21. The effective
density of final states is determined by the tail of the density
of states of the DS at frequency �21��. For the exponential
in time relaxation described by Eq. �4� the density of states is
Lorentzian, and on the tail at frequency �21 it is �� /�21

2 .
Therefore the expected decay rate W2 is

W2 = J2JD
2 �/8�21

4 , W2 � W1. �9�

It follows from the result of Appendix A that, if for t=0
the two-qubit system is in stationary state ��n

�st�� �n=1,2�, the
probability Rn�t� to receive a signal by time t is

Rn�t� = 1 − exp�− Wnt� �n = 1,2� . �10�

The strong difference between W1,2 and � justifies the as-
sumption that �D� reaches a quasistationary value before the
populations �11,�22 change. The full theory of qubit relax-
ation is described in Appendix A.

B. Two excitations

The above analysis can be readily extended to the case
where both qubits 1 and 2 are initially in the excited state,
i.e., initially there are two spinless fermions on sites 1 and 2.
We will assume that the interaction between the excitations
�fermions� J� is not strong, so that �J����. The qualitative
picture of the dynamics of the system then is simple. First,
over time ��−1 there is established a quasistationary “quan-
tum diffusion current” from qubit 1 to the DS, which is de-
termined by the transition rate W1 and is equal to W1�11�t�. It
drains stationary state ��1

�st�� over time �W1
−1. The presence

of an excitation �fermion� in state ��2
�st�� only weakly affects

this current because of the large energy difference of the
states �21. After state ��1

�st�� is emptied, further evolution cor-
responds to the single-excitation decay of state ��2

�st��. There-
fore the overall signal should be

R�2e��t� = R1�t� + R2�t� = 2 − e−W1t − e−W2t. �11�

A detailed derivation of this expression is given in Appendix
B. It is clear from the above analysis that the most interesting
problem is to distinguish which of the stationary states ��1,2

�st��
is initially occupied; the situation where both of them are
occupied is simpler.

IV. RESOLVING ONE-EXCITATION STATES FROM
TIME-DEPENDENT MEASUREMENTS

The rates W1 and W2 of signal accumulation for different
initially occupied one-excitation states are parametrically
different. This enables a high-accuracy discrimination be-
tween the states using a resonant DS. The results for time
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evolution of the signals R�t� obtained by a numerical solution
of the system of equations for the matrix elements ��� are
shown in Figs. 2 and 3. The figures refer, respectively, to the
cases where the system of qubits is initially in one of the
eigenstates ��1,2

�st�� and in a mixed state. It is seen from the
figures that, even where the parameter ratios � /�21 and
J /� ,JD /� are not particularly small, the results are well de-
scribed by the asymptotic expressions �10�.

The adiabatic expressions �10� do not describe how the
matrix elements ��� approach their adiabatic values, and thus
they do not describe the evolution of R for t��−1. Since the
DS is initially in the ground state, it follows from Eqs. �4�
and �5� that R�t�� t2 for t→0 in contrast to R� t as predicted
by Eq. �10�.

Breaking of the adiabaticity for short times explains the
shifts of the asymptotic curves �10� with respect to the nu-
merically calculated curves in Fig. 2. For the initially occu-
pied state ��1

�st��, adiabaticity is established over time t
��−1; this is the relaxation time of the matrix elements
��D ,�D�. Then from Eq. �10� the shift should be �W1 /�,
which agrees with Fig. 2�a�. For state ��2

�st�� the exponential
decay of R2 �Eq. �10�� is obtained in the double-adiabatic

approximation, which exploits the interrelation between the
relaxation rates ��W1�W2. The adiabatic regime is formed
over time �W1

−1, and the shift of the numerical curve with
respect to the asymptotic one is �W2 /W1, which agrees with
Fig. 2�b�.

If the initial state of the system ���0�� is a superposition
of stationary states ��1

�st�� and ��2
�st��, for �t�1 the signal R�t�

is the appropriately weighted superposition of the signals
R1�t� and R2�t� �see Appendix A�,

R�t� 	 P1�1 − exp�− W1t�� + P2�1 − exp�− W2t�� ,

Pn = ����0���n
�st���2. �12�

Here, P1,2 are the initial populations of the stationary states.
We note that P1+ P2�1 in the general case where the initial
state is a superposition of the ground and one- or two-
excitation states.

Over time �W1
−1 the function R�t� approaches the popu-

lation P1 of state ��1
�st��. Further change in R�t� occurs over a

much longer time �W2
−1. This is seen in Fig. 3. As explained

in Appendix A, a contribution to R�t� from fast-oscillating
terms �exp��i�21t� in the density matrix is small compared
to �J /�21�2: for �t�1 the corresponding correction to Eq.
�12� is �JJD

2 /4�21
3 Re �12�0��J2 /4�21

2 �we assume JD�J�.
From Eq. �12�, in a broad time interval an error in the

measured population of state ��1
�st�� is smaller than in a fast

projective measurement. If the initial state is ���0��
= P1

1/2��1
�st��+ P2

1/2 exp�i����2
�st�� �plus a possible contribution

from the ground state of the qubits�, a fast projective mea-
surement on qubit 1 gives

Γ t
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Γ t0 5 1 0 1 5

-  l n ( 1 - R )

0

1

2
( a )

(a)

Γ t

0 . 0

0 . 5

1 . 0

1 0
5

2   1 0
5

Γ t0 . 0 2 . 5 5 . 0

-  l n ( 1 - R )

2    1 0
- 4

0

1 0
- 4

0

( b )

(b)

FIG. 2. �Color online� Time dependence of the probability to
detect a signal for the two-qubit system being initially in the sta-
tionary states �a� ��1

�st�� and �b� ��2
�st��. Note the difference of the

time scales. The parameters are �21 /�=4,J /�=JD /�=1 /2. The
solid and the dashed lines show, respectively, the numerical solution
of the master equation and the asymptotic expressions �10� for the
limiting case �21���J ,JD. The insets show �ln�1−R1�t��� for
small time, where the difference between the numerical and the
asymptotic expressions is most pronounced.

Γ t

0 . 0

0 . 5

1 . 0

1 1 0
4

1 0
2

1 0
6

1 2

Γ t
5 0 1 0 0 1 5 0

R

0 . 4

0 . 5

0 . 6

FIG. 3. �Color online� Time dependence of the probability to
detect a signal for the two-qubit system being initially in a super-
position of stationary states ���0��=cos ���1

�st��+sin ���2
�st��. Curves

1 and 2 present the numerical solution of the master equation and
refer to �=� /4 and � /3, respectively. The parameters of the qubits
and the DS are the same as in Fig. 2. Inset: the solid line shows R�t�
for �= �� /4 �state population P1=1 /2� in the optimal time range
�14�, the dashed lines show the results of fast projective measure-
ments on qubit 1, ��1 ���0���2, for �= �� /4, which significantly
differ from P1.
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��1���0���2 	 �1 −
J2

4�21
2 ��P1

1/2 + P2
1/2ei� J

2�21
�2

. �13�

This differs from P1 by �J /�21 for P1� P2; in the case of
strongly different populations where P1 / P2 or P2 / P1 is
�J2 /�21

2 the difference becomes �J2 /�21
2 . The proposed

measurement gives a parametrically smaller error. We have

�R�t� − P1� �
J2

4�21
2 for e−W1t,W2t �

J2

4�21
2 . �14�

In the explicit form, the time interval for a high-accuracy
measurement of state ��1

�st�� is determined by the condition
2 ln�2�21 /J��W1t� ��21 /��2. This condition is easy to sat-
isfy in the parameter range �6�. The difference between the
proposed approach and a fast projective measurement is il-
lustrated in the inset in Fig. 3.

The proposed approach can be compared with a seem-
ingly simpler scheme in which one directly turns on the cou-
pling of qubit 1 to a thermal reservoir and detects the emitted
excitation. The scheme is similar to the one implemented in
Josephson phase qubits �7,8� where qubit decay was effec-
tively turned on by reducing the appropriate tunnel barrier.
This is essentially a “fast” projective measurement of qubit 1
with duration equal to qubit lifetime �−1. For large detuning,
�21�� ,J, the decay rate of the stationary state localized
mostly on qubit 2 can be estimated, following the arguments
of Sec. III, as �J2� /�21

2 . Therefore, if the system is initially
in state ��2

�st��, over time �−1 the detector will click with
probability ��J /�21�2�t��J /�21�2. This is an expected er-
ror of a projective measurement of coupled qubits; in our
approach the error is much smaller. We note that in the Jo-
sephson phase qubits system �7,8� two-qubit measurements
are additionally complicated by cross talk �17�.

V. CONCLUSIONS

We have demonstrated that a state of two coupled two-
level systems �qubits�, which are detuned from each other,
can be determined with an accuracy much higher than that of
a fast projective measurement. This is accomplished by com-
bining frequency and temporal selectivities. The detector is
tuned in resonance with the qubit to which it is directly
coupled. When the detector relaxation rate � is larger than
the coupling J ,JD, but smaller than the energy difference
between the qubits �21, the overall relaxation of the system
is characterized by two strongly different time scales. One is
the reciprocal decay rate of the excited stationary state local-
ized mostly on the resonant qubit W1

−1=2� /JD
2 . The other is

the parametrically larger reciprocal decay rate of the excited
stationary state localized mostly on the nonresonant qubit
W2

−1=8�21
4 / �JJD�2�. This makes it possible to discriminate

between the states using time-dependent measurements.
The measurement requires turning on the interaction be-

tween the measured qubit and the DS. This can be done
either directly or, often more conveniently, by tuning the DS
in resonance with the qubit. The required precision is deter-
mined by the decay rate of the DS �. Moreover, one can
slowly sweep the DS energy level through the qubit energy,

so that the energies stay in resonance �to the accuracy of ���
for a time �W1

−1.
The results can be generalized to the case of a many-qubit

system. Of particular interest is a qubit chain with Hamil-
tonian

H = �
n

�nan
†an +

1

2
J�

n

�an
†an+1 + an+1

† an�

+ J��
n

an
†an+1

† an+1an, �15�

which is an immediate extension of the two-qubit Hamil-
tonian �1�. As mentioned in Sec. I, for appropriately tuned
site energies �n all many-particle excitations in such a chain
remain localized for a long time, which scales as a high
power of h /J �h is the typical bandwidth of energies �n�
�5,6�. However, excitations are not fully localized on indi-
vidual sites; in �quasi�stationary states the tails of their wave
functions on neighboring sites are �J /h.

Following the proposed method, to determine whether
there is an excitation localized in a quasistationary state cen-
tered at a given qubit, one should couple this qubit reso-
nantly to a DS. The excitation will be detected over time
�W1

−1. Excitations localized mostly on neighboring qubits
will not affect the measurement as long as the duration of the
measurement is small compared to W2

−1. The reduction in the
measurement error compared to a fast projective measure-
ment facilitates scalable quantum computing with perpetu-
ally coupled qubits.
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Science Foundation through Grants No. PHY-0555346 and
No. EMT/QIS-0829854.

APPENDIX A: ADIABATIC APPROXIMATION

Here we consider the dynamics of a two-qubit system
coupled to the DS where there is initially one excitation on
the qubits. The dynamics is described by Eqs. �4� and �7�,
which can be written as nine linear first-order equations for
the matrix elements ����t�= �a�

†�t�a��t��. Formally one can
solve these equations by finding the corresponding eigenval-
ues and eigenfunctions. For a strong inequality between the
transition frequency �21, on one hand, and the decay rate �
and the hopping integrals J ,JD, on the other hand, the eigen-
values can be separated into those corresponding to fast
weakly damped oscillations and to slow evolution. There are
four “fast” eigenvalues with imaginary part close to ��21. In
particular, as seen from Eq. �4�, to zeroth order in J ,JD we
have �12,�D2�exp�i�21t�. In turn, where ��J ,JD, among
the remaining “slow” eigenvalues there are three with real
parts �−�; indeed, �DD�exp�−2�t� and �D1=�1D

�

�exp�−�t�, to zeroth order in J ,JD. The remaining two
“slow” eigenvalues, as we will show, are given by Eqs. �8�
and �9�.

The analysis of slow dynamics can be done in the adia-
batic approximation. Since the relaxation rate of �D�

��=1,2 ,D� is ��, over time t��−1 these matrix elements
reach quasistationary values. These values adiabatically fol-
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low the slowly evolving matrix elements �nm, where roman
subscripts n ,m=1,2. In particular, by noting that
�� /�t������=−2��DD we obtain

�DD 	 − ��̇11 + �̇22�/2� . �A1�

1. Evolution of the one-excitation stationary state resonant
with the DS

We assume first that the system is in the stationary
state ��1

�st��, which has energy close to the DS energy. In
this case, for t=0 we have �11��22	�J /�21�2�11 and all
off-diagonal matrix elements ��� with ��� are small
compared to �11. As we will see, this hierarchy persists for
t�0 as well. For t��−1, to the leading order
in J ,JD, we have �D1	 i�JD /2����DD−�11�+ i�J /2���D2 and
�DD	−�JD /2��Im �D1. Substituting �D1 into the equation
for �̇11 and eliminating �DD, we obtain, to the leading order,

�̇11 	 − W1�11 + �11,

�11 =
1

2
iJ��12 − �21� +

JJD

2�
Re �D2, �A2�

where W1 is given by Eq. �8�; as seen from Eq. �A2�, this is
the relaxation rate of �11. In agreement with the adiabaticity
assumption, we have W1��.

To find the time evolution of �22, one has to use the
equations

�̇12 = i�21�12 + 1
2 iJ��11 − �22� − 1

2 iJD�D2,

�̇22 = − 1
2 iJ��12 − �21� �A3�

that immediately follow from the operator equation �4�. Us-
ing the equation for �̇D2 that also follows from Eq. �4� and
the expression for �D1 given above, one can show that, for
�11��22, �D2	 i�JJD /4�21���11 �cf. Eq. �A4� below�. This
expression should be substituted into Eqs. �A3� for �12. One
then obtains Im �12	�J /4�21

2 ��̇11. Then from the second
equation in Eqs. �A3�, �̇22	�J /2�21�2�̇11. Therefore, if the
system is initially in the stationary state ��1

�st��, the relation
between �22�t� and �11�t� remains unchanged, to the leading
order in J.

From Eqs. �5�, �A1�, and �A2� we see that, if the two-
qubit system is initially in the stationary state ��1

�st��, the
probability to have detected this state by time t is R1�t�=1
−exp�−W1t�. We use this expression in Eq. �10�.

2. Evolution of the nonresonant one-excitation stationary state

If the system is initially in state ��2
�st��, we have �11��22.

Then it is important to keep track of higher-order corrections
in J /�21 in the equations for ���. In particular, in the adia-
batic approximation one has to write �D2�t� as

�D2�t� 	 �2��21 + i���−1�JD�12�t� + i
JJD

2�
�11�t�� . �A4�

The decay rate of �12�t� can be obtained by substituting
Eq. �A4� into Eqs. �A3� for �̇12, which gives the decay rate as

�JD /2�21�2�. This rate is small compared to the decay rate �
of �D2, justifying the adiabatic approximation used in Eq.
�A4�. At the same time, as we will see, it is large compared
to the decay rate of �22.

To describe the decay of �22, we substitute the adiabatic
solution of Eqs. �A3� for Im �12 �with account taken of Eq.
�A4�� into Eqs. �A3� for �22. This gives

�̇22 	 − W2�22, �A5�

with the decay rate W2 of the form of Eq. �9�.
Noting that Re �12	�J /2�21��22, we obtain from Eqs.

�A2� and �A4� that, for time t�W1
−1, we have �11�t�

	�J /2�21�2�22�t�. Then from Eqs. �5�, �A1�, and �A5�, we
obtain the explicit expression �10� for the probability to de-
tect state ��2

�st�� in time t.
If initially the system is in a superposition of states ��1

�st��
and ��2

�st��, the density matrix along with slowly varying �on
time �21

−1� terms has terms that contain fast oscillating factors
�exp��i�21t�. One can show that, for t��−1, their decay is
controlled by the decay of the fast-oscillating component
�12

�f��t�= ��21
�f��t���, which is characterized by the factor

exp�−W1t /2�. The corresponding fast-oscillating term
in the population of the excited state of the DS is
�DD

�f� �t�� i�JJD
2 /8��21

2 ��12
�f��t�+c.c. Therefore the contribution

of the fast-oscillating terms to the observed probability R�t�
is ��JJD

2 /2�21
3 �Re �12�0�. It is small compared to the mea-

surement error �J2 /�21
2 that we want to overcome.

APPENDIX B: DYNAMICS OF THE
TWO-EXCITATION STATE

In the presence of two excitations, along with two-particle
matrix elements ����t�= �a�

†�t�a��t��, the dynamics of the
system is characterized by four-particle matrix elements
����
�t�= �a


†�t�a�
†�t�a��t�a��t��. For a two-qubit system

coupled to a DS, each greek subscript runs through three
values. The dynamics is described by a set of 18 linear dif-
ferential equations that follow from the equation of motion
for the density matrix in the operator form �4�: nine equa-
tions for �̇�� and nine equations for �̇���
. The number of
independent matrix elements follows from the permutation
symmetry 
�� ,��� �a permutation is accompanied by a
sign change� and the commutation relations for the fermion
operators a� ,a�

† . The system of equations for the four-
particle matrix elements is closed: ����
 are expressed in
terms of each other, whereas their evolution affects the two-
particle matrix elements ���.

We will again use the adiabatic approximation to study
the dynamics and will start with the matrix elements ����
.
Formally, their time evolution is determined by the eigenval-
ues of the system of equations for �. Four of these eigenval-
ues have imaginary part 	��21 and correspond to fast os-
cillations. In the limit J→0 the corresponding eigenvectors
����
 have one of the subscripts equal to 2, whereas other
three subscripts are two 1 and one D or two D and one 1.
Among the eigenvalues that describe slow motion, there are
two 	−� and two 	−2�. In the limit J→0 the correspond-
ing eigenvectors are �D212, �12D2, and �nnDD �n=1,2�. Only
one eigenvector controls the evolution of the four-particle
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matrix elements on times longer than �−1; the leading-order
term in this eigenvector is �1221.

Over time t��−1 the matrix elements ����
 reach their
quasistationary values which are determined by �1221�t�.
They can be found by disregarding �̇���
 in all equations
except for the equation for �̇1221. This gives, in particular,

�D221�t� 	 −
iJD

2�
�1221�t�, �̇1221 	 − W1�1221, �B1�

whereas �1D21	 i�JJD /4�21���1221. It is seen from Eq. �B1�
that all slowly varying components of ����
 decay to zero
over time �W1

−1. This makes sense since this is the time over
which the occupation of state ��1

�st�� decays, after which there

remains only one excitation in the system. The fast-
oscillating components of ����
 decay even faster, over time
�−1.

The signal R�t� �Eq. �5�� is determined by the two-particle
matrix element �DD�t�. One can show that, in the time range
t��−1, the major result of the interaction between the exci-
tations on the two-particle matrix elements is that �D1�t� is
incremented by 	�iJ� /���D221�t� and the slow part of �D2�t�
is incremented by 	−�J� /�21��1D21�t�. The first of these
corrections drops out from the expression for �DD, whereas
the contribution from the second is small compared to
�J /�21�2. Therefore, to the accuracy we are interested in, the
interaction between excitations does not affect measurements
in the proposed approach.
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