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Abstract. — The spectral densities of the fluctuations of noise-driven underdamped nonlinear
oscillators are discussed with particular reference to the large class of systems whose
eigenfrequencies vary nonmonotonically with energy. It is shown by analogue electronic
experiments and theoretically that, astonishingly, the widths of their spectral peaks can
sometimes decrease with increasing noise intensity.

The study of vibrations and other oscillatory phenomena provides an important path
towards a scientific understanding of the physical world. Almost without exception, the
oscillators in question turn out to be nonlinear even though, in an earlier era, they were
often studied in (frequently misleading) linear approximations. It is largely the discoveries
of chaos and strange attractors in apparently deterministic nonlinear oscillators [1], and of
noise-induced transitions and other exotic effects in nonlinear oscillators subject to
fluctuations [2-5], that have contributed to the intensive investigations and accelerated
progress in nonlinear science of the last two decades; it has also become apparent that such
studies provide part of the essential basis for an understanding of the complexity that exists
universally in the real world [6]. Nonlinear oscillators in both their underdamped and
overdamped forms have been studied in a very wide range of situations, for example where
they are driven by periodic forcings [1, 6, 7], or by noise [2-6], or by combined periodic and
noisy forcings [8-10], or where they undergo bifurcations to self-oscillation as a control
parameter is varied either without [11] or with [12] external fluctuations (these references
being illustrative only, and in no way purporting to provide an overview of what is a huge
literature).

In what follows, we pursue and develop what might appear, qualitatively at least, to be
one of the simpler and more straightforward aspects of the subject: the spectral response of
an underdamped nonlinear oscillator subject to a random force. In general, there will be one

(*) Now at: Dipartimento di Fisica, Universita di Pisa - Piazza Torricelli 2, 56100 Pisa, Italy.



692 EUROPHYSICS LETTERS

or more peaks in the spectral density Q(2) of the fluctuations, corresponding to the
eigenfrequencies of the system. For small enough noise intensity, the peaks in question will
be narrow and symmetrical, with spectral widths that are determined mainly by dissipation.
For larger noise intensities, however, where nonlinearity becomes important, the variation
of the eigenfrequency w(E') with the energy E of the oscillator may be expected to give rise
to additional contributions to the width: that is, to «frequency straggling» caused by the
time variation of E. It is conventionally assumed, therefore, that spectral peaks broaden
with increasing noise intensity.

The purpose of this letter is to point out that there exists a large class of underdamped
nonlinear oscillators for which this conventional scenario does not necessarily hold true but
where, instead, the spectral peaks can often become narrower with increasing noise
intensity. As we shall demonstrate, this seemingly counterintuitive phenomenon can in
principle ocecur in any system for which the dependence of w(E) on E is significantly
nonlinear and where, in addition, the slope |dw(E)/dE | decreases with increasing E; the
effect is at its most pronounced in systems for which w(E) possesses an extremum at some
energy E.. A divergence is to be expected [13] in Q(Q) at w(E.) in the limit of zero damping.
Although it remains unclear whether it will be resolvable in practice in any real system, the
residual effect of this singularity nonetheless plays an important role in the formation of the
spectral peak when the noise intensity 7~ E, in a system with finite damping.

As a specific example of such a system, we consider the oscillator defined by
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where f(f) is a white Gaussian force with a correlator { ft) f(t')) =4I'T(t —t'). Here, we
assume that the linear dissipation constant I' << 1. If f(t) results from thermal fluctuations in
a bath, and it is the bath that gives rise to the dissipation, then the noise intensity parameter
T represents the temperature of the bath. With A =0, we have the noise-driven single-well
Duffing oscillator [3]. With A # 0, however, we have a system for which, as we shall show,
w(E') varies with E in precisely the manner discussed above. Despite its simplicity, (1) is a
system of considerable interest: not only may we expect it to display the spectral narrowing
phenomenon, but it is also directly related to local and resonant vibrations in certain doped
crystals [14]. The linear term Ag in the potential U(qg) arises for inversely symmetrical
defects when an electric field or external pressure are applied to the crystal, readily
enabling the parameter A to be varied.

The dependence of the frequency w(E) of the oscillations on the energy E of the system,
as measured from the bottom of the potential well, is readily calculated [15] for different
values of A, as shown in fig. 1a). Note that the bottom of the potential well does not occur at
¢=0 for finite A, but at g=g., given by ¢ + g, + A =0. The «eigenfrequency of the
oscillator» w,, defined as the frequency at the bottom of the potential well, is w,= w(0) =
= (1 + 3¢%)"?, which increases monotonically with increasing |A|; but the slope of w(E) at
E — 0 changes nonmonotonically. Using the small E asymptotics of ref. [16], we find that

h = (Ao BY AR5 = 3 (1= Tg2)I(1 + 32", @

which is plotted as a function of A in fig. 1b). For |A|> 8/7%% = (.43, wj is negative and the
dependence of w(E) on E becomes nonmonotonic. It is the corresponding extremum in w(£')
that would give rise to a singularity [18] in Q(Q2) in the absence of dissipation and which may
be expected to lead to spectral narrowing in the dissipative system under consideration.
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Fig. 1. — a) The calculated dependence of the oscillator eigenfrequency w(E) on the energy E measured
from the bottom of the potential well, for several values of the field strength parameter A in (1). From
the bottom, the curves correspond to: A = 0; 0.2; 0.4; 0.6; 1.0; 2.0. b) The calculated dependence on A of
the initial gradient w)=[dw(E)/dE]g-o of the curves shown in a).

We have tested this prediction with an analogue electronic circuit model of (1) driven by
external quasi-white noise from a noise generator. Full details of the design and operation of
the circuit and analysis system will be given elsewhere [15]; but they were very much in
accordance with the general principles discussed previously [17]. Spectral distributions
were measured for a wide range of the parameters A and T and their widths, characterized
by the half-width at the half-maximum (HWHM), were measured. It was found that there
was indeed a parameter range for which the width decreased with increasing T. As an
example, the central parts of the principal peaks of two fluctuation spectra are shown with
an expanded abscissa scale in fig. 2a); a vertical scaling factor of 0.6 has been applied to the
T =0.814 data to equalize the peak heights for more convenient comparison of their shapes.
The only parameter changed between the two measurements was T. It is immediately
evident that the peak for 7'=0.814 is about 40% narrower than that for 7'=0.614. The
measured dependence of the width on the noise intensity for a series of such spectra is
shown by the data points of fig. 2b).
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Fig. 2. - a) The experimental power spectral density measured for an electronic model of (1) with
A =2, using two different noise intensities 7. b) The half-width at the half-maximum (HWHM) of the
spectral peaks of the system (1) as measured for the analogue electronic circuit model (data points) and
calculated (full curve) from (9) with A =2.
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An intuitive understanding of the spectral narrowing phenomenon can be gained by
consideration of the effect of the cut-off frequency w, corresponding to the extremum in
o(E). At sufficiently large T, the peak starts to be «pressed» against w,: vibrations with
larger and larger amplitudes are being excited as T increases, and their frequencies
approach w,; but they cannot fall below w,. As a result, the peak becomes higher and higher,
but without broadening any further on the w, side, and the HWHM correspondingly
decreases.

These ideas are readily placed on a more quantitative basis [15], enabling us to calculate
explicitly the spectral density of the fluctuations of the coordlnate q, defined by

@, Qe =
Q@ =1Re f dt exp (10, Tg® — (q) 1[g® — (q)1) . ®)

To do so, we start from the Fokker-Planck equation associated with (1) and then follow the
same procedure as that used earlier by Dykman and Krivoglaz[18]. Thus, the probability
density w(g, p, t; go, Po, 0) for transitions from the phase space point (qo, po) occupied at time
zero to the point (g, p) occupied at time ¢ may be written as

w__ 8, .8 3 Fw
2= 2w+ LU Qul +2r[ap () + T apz}. @
If we define 7
W(q’ D, t) = quo de[qO - <q0> ] w(q, D, t: qo; Do, 0) wst(QO’ pO) y (5)

where wg(qo, po) is the stationary distribution, we can then write
Q)= [ dgdp(g— () Wi, p, 1. (6)

The function W(q, statlsfies the Fokker-Planck equation (4). We next make a canonical
transformation to energy-angle (E, ¢) variables (a procedure that is particularly useful
because of our assumption that I" is very small), and we introduce a set of functions W,(¥, Q)
enabling us to expand W(E, ¢, Qyas > W(E, Q) exp [ing]. The next step is to find a matrix

(/répresentation of (4) on this expansion set and to average over ¢, which is a fast-oscillating

, variable when compared to E. Finally, W(E, ¢, Q) is approximated by the first term
W.i(E, ¢) exp [+ i¢]; this procedure is reliable because we are mainly interested in the
spectral density in the immediate vicinity of w,. The resultant equation that one has to solve
is

— Q- o(B) WA(E,0) =
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where

2r 2=
Pos] wrEe, Wr=g. | deuE, pemy,
8
- ®
) =5 | 4 expl—iglg, &), waE)=Z" expl~EIT],
0

Y W(E,L?, a) = }Tmm W (1(6,9) plee), 1)




M. I. DYKMAN et al.: NOISE-INDUCED SPECTRAL NARROWING ETC. 695

Z'=2x f dEw Y(E) exp[— E/T ] and we assume that |Q — w(E)| <« w,. The final expression
0
obtained for Q(Q) is then

QQ) = Qi) =2Re f dE[w(E)] qHE)WA(E, Q). (€)
0

The conservative motion of the oscillator may be described by elliptic functions, so that the
coefficients (8) may readily be evaluated, thus enabling a numerical solution of (7) to be
obtained [15]. A comparison of the experimental spectral widths (points) with those
calculated from (9) (full curve) is shown in fig. 2b). Despite the scatter of the data the
agreement can be regarded as excellent.

In conclusion, we would emphasize that the remarkable phenomenon of noise-induced
spectral narrowing reported in this letter arises purely from nonlinearity (cf. motional
narrowing [19] of NMR lines, which occurs through a quite different mechanism). It is to be
anticipated, not only in the particular model (1) investigated here, but in all underdamped
systems whose eigenfrequencies vary nonmonotonically with energy. A fuller set of
experimental data, and a more detailed discussion of the underlying physics, will be
presented elsewhere [15].
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