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Abstract
We show that in periodically driven systems, along with the delta-peak at the
driving frequency, the spectral density of fluctuations displays extra features.
These can be peaks or dips with height quadratic in the driving amplitude, for
weak driving. For systems where inertial effects can be disregarded, the peaks/
dips are generally located at zero frequency and at the driving frequency. The
shape and intensity of the spectra very sensitively depend on the parameters of
the system dynamics. To illustrate this sensitivity and the generality of the effect,
we study three types of systems: an overdamped Brownian particle (e.g., an
optically trapped particle), a two-state system that switches between the states at
random, and a noisy threshold detector. The analytical results are in excellent
agreement with numerical simulations.

Keywords: power spectrum, driven Brownian particle, fluctuating susceptibility,
inelastic scattering

1. Introduction

Fluctuation spectra and spectra of response to periodic driving are major tools for characterizing
physical systems. The spectra are conventionally used to find system frequencies and relaxation
rates and to characterize fluctuations in the system. For example, optical absorption spectra give
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the transition frequencies of atomic systems and the lifetimes of the excited states, and the
spectrum of spontaneous radiation is a well-known example of the fluctuation (power) spectrum
[1]. In macroscopic systems the spectra are often complicated by the effects of inhomogeneous
broadening. Recent progress in nanoscience has made it possible to study the spectra of
individual dynamical systems. A well-known example is provided by optically trapped
Brownian particles and biomolecules [2, 3], where the power spectra are a major tool for
characterizing the motion in the trap [4, 5]. Spectra of various types of individually accessible
mesoscopic systems are studied nowadays in optics [6, 7], nanomechanics and circuit quantum
electrodynamics, see [8], biophysics, see [9, 10], and many other areas; the technique based on
spectral measurements has found various applications, photonic force microscopy being a
recent example, see [11].

A familiar effect of weak periodic driving is forced vibrations of the system. When
ensemble-averaged, they are also periodic and occur at the driving frequency ωF. They lead to a
δ-shape peak at frequency ωF in the system power spectrum. However, the driving also
modifies the power spectrum away from ωF. Textbook examples are inelastic light scattering
and resonance fluorescence. In both cases, the system driven by a periodic electromagnetic field
emits radiation at frequencies that differ from the driving frequency [12]. This radiation is one
of the major sources of information about the system in optical experiments.

In this paper we study the spectra of periodically driven nonlinear systems. We show that,
in the presence of noise, along with the δ-shape peak at the driving frequency ωF, these spectra
display a characteristic structure. We are interested in the regime of relatively weak driving,
where the driving-induced change of the power spectrum is quadratic in the amplitude of the
driving, as in inelastic light scattering.

In view of the significant interest in the power spectra of systems optically trapped in
fluids, we consider systems where inertial effects play no role. In the absence of driving the
power spectra of such systems usually have a peak at zero frequency. In particular it is this peak
that is used to characterize the dynamics of optically trapped particles.

For a linear system, like a Brownian particle in a harmonic trap, the δ-shape peak at ωF is
the only effect of the driving on the power spectrum. This is because motion of such a system is
a linear superposition of forced vibrations at ωF and fluctuations in the absence of driving. The
amplitude and phase of the forced vibrations depend on the parameters of the system and
determine the standard linear susceptibility [13]. In nonlinear systems forced vibrations become
random, because the parameters of the system are fluctuating. The power spectrum of such
random vibrations is no longer just a δ-shape peak (although the δ-shape peak is necessarily
present). The driving-induced spectral features away from ωF result from mixing of fluctuations
and forced vibrations in a nonlinear system. We note the close relation of these features to
inelastic light scattering, see the appendix.

1.1. Qualitative picture

The idea of the driving-induced change of the power spectrum can be gained by looking at a
Brownian particle fluctuating in a confining potential, a typical situation for optical trapping.
The motion of the particle, after proper rescaling of time and particle coordinate q, is described
by the Langevin equation [14]
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= − ′ + ′ ≡q U q f t U q U q˙ ( ) ( ), ( ) d d , (1)

where U(q) is the scaled potential and f(t) is thermal noise. If potential U(q) is parabolic and the
system is additionally driven by a force ωF tcos F , forced vibrations are described by the
textbook expression

⎡⎣ ⎤⎦χ ω ω χ ω ω= − + = ″ −
−

( )( )q t F t U q( )
1
2

( ) exp i c. c ., ( ) i , (2)F F eq

1

where qeq is the equilibrium position (the minimum of U(q)) and χ ω( ) is the susceptibility.
For a nonlinear system the potential U(q) is nonparabolic. Because of thermal fluctuations,

the local curvature of the potential ″U q( ) is fluctuating. Intuitively, one can think of the effect of
thermal fluctuations on forced vibrations as if ″U q( )eq in equation (2) for the susceptibility were
replaced by a fluctuating curvature, see figure 1. If the driving frequency ωF largely exceeded
the reciprocal correlation time of the fluctuations −tc

1, the fluctuations would lead to the onset of
a structure in the power spectrum near frequency ωF with typical width −tc

1. The quantity −tc
1

also gives the typical width of the peak in the power spectrum at zero frequency in the absence
of driving (for a linear system, = ″−t U q( )c

1
eq ).

Another effect of the interplay of driving, nonlinearity, and fluctuations can be understood
by noticing that the periodic force causes a periodic change in the system coordinate. For a
nonlinear system, roughly speaking, this leads to a periodic modulation of the local curvature,
and thus of −tc

1. Since −tc
1 determines the shape of the zero-frequency peak in the power

spectrum, such modulation causes a change of this peak proportional to F2, to the lowest order
in F.

Even from the above simplistic description it is clear that the driving-induced change of
the spectrum is sensitive to the parameters of the system and the noise and to the nonlinearity
mechanisms. Explicit examples given below demonstrate this sensitivity and suggest that the
effects we discuss can be used for characterizing a system beyond the conventional linear
analysis. After formulating how the power spectrum can be evaluated in section 2, we
demonstrate the effects of the interplay of driving and fluctuations for three very different types
of nonlinear systems: an overdamped Brownian particle (section 3), a system that switches at
random between coexisting stable states (section 4), and a threshold detector (section 5). All
these systems are of broad interest, and all of them display a significant driving-induced change
of the power spectrum.

Figure 1. Sketch of a potential of a nonlinear system near the potential minimum.
Because of the interplay of nonlinearity and fluctuations, the curvature of the potential
fluctuates. These fluctuations are shown as the smearing of the solid line, which
represents the potential in the absence of fluctuations.
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2. General formulation

We consider fluctuating systems driven by a periodic force ωF tcos ( )F and assume that
fluctuations are induced by a stationary noise, like in the case of an optically trapped Brownian
particle, for example. After a transient time such system reaches a stationary state. The
stationary probability distribution of the system with respect to its dynamical variable q,
ρ q t( , )st , is periodic in time t with the driving period τ π ω= 2F F. The two-time correlation
function 〈 〉q t q t( ) ( )1 2 (〈 〉· implies ensemble averaging) is a function of −t t1 2 and a periodic
function of t2 with period τF. The power spectrum usually measured in experiment is of the
form

∫
∫

Φ ω

τ

= + ′ ′

+ ′ ′ = ′ + ′ ′

ω

τ

∞
t q t t q t

q t t q t t q t t q t

( ) 2Re d e ( ) ( ) ,

( ) ( )
1

d ( ) ( ) . (3)

t

F

0

i

0

F

The correlation function in equation (3) can be expressed in terms of ρ q t( , )st and the
transition probability density ρ q t q t( , | , )1 1 2 2 that the system that was at position q2 at time t2 is
at q1 at time ⩾t t1 2,

∫ ρ ρ= ( ) ( )q t q t q q q q q t q t q t( ) ( ) d d , , , . (4)1 2 1 2 1 2 1 1 2 2 st 2 2

For weak driving, function ρ q t( , )st 2 can be expanded in a series in ω±F texp ( i )F 2 with time-
independent coefficients, whereas ρ q t q t( , | , )1 1 2 2 can be expanded in ω±F texp ( i )F 2 with
coefficients that depend on −t t1 2. Therefore the power spectrum (3) does not have terms linear
in F. To the second order in F for ω ⩾ 0 we have

Φ ω Φ ω π χ ω δ ω ω Φ ω= + − +F F( ) ( )
2

( ) ( ) ( ). (5)F F F0
2 2 2

The term Φ ω( )0 describes the power spectrum of the system in the absence of driving. The term
δ ω ω∝ −( )F describes the conventional linear response, see equation (2). However, the

expression for the susceptibility χ ω( ) in nonlinear systems is far more complicated than
equation (2); generally, the susceptibility is determined by the linear in F term in ρ q t( , )st . In
optical language, the term δ ω ω∝ −( )F in (5) corresponds to elastic scattering of the field

ωF tcos F by the system.
Of primary interest to us is the term Φ ω( )F . This term is often disregarded in the analysis

of the power spectra of driven systems, while the major emphasis is placed on the δ-function in
equation (5). Function Φ ω( )F describes the interplay of fluctuations and driving in a nonlinear
system beyond the trivial linear response. In the considered lowest-order approximation in the
driving amplitude, ΦF does not contain a δ-peak at ω2 F. However, it may contain a δ-peak at
ω = 0, which corresponds to the static driving-induced shift of the average position of the
system. In what follows we do not consider this peak, as the static equilibrium position can be
measured independently.

Function ΦF can be found from equation (4) by calculating the transition probability
density and the stationary probability distribution. This can be done for Markov systems
numerically and also, in the case of weak noise, analytically, see sections 3 and 4. Alternatively,
function ΦF can be related to fluctuations of linear and nonlinear response of the system and
expressed in terms of the fluctuating linear and nonlinear susceptibility, see the appendix. We
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emphasize that the nonlinear response has to be taken into account when fluctuations are
considered even though we are not interested in the behavior of the power spectrum near ω2 F or
higher overtones or subharmonics of ωF.

3. Power spectrum of a driven Brownian particle

A simple example of a system where Φ ω( )F displays a nontrivial behavior is a periodically
driven overdamped Brownian particle in a nonlinear confining potential U(q), see equation (1).
This model immediately relates to many experiments on optically trapped particles and
molecules. We will assume that thermal noise f(t) is white and Gaussian and that it is not strong,
so that it suffices to keep the lowest-order nontrivial terms in the potential,

κ β γ δ= + + + … ′ = − ′U q q q q f t f t D t t( )
1
2

1
3

1
4

, ( ) ( ) 2 ( ), (6)2 3 4

where ∝D k TB is the noise intensity. In the absence of driving the stationary probability
distribution is of the Boltzmann form, ρ ∝ −U q Dexp [ ( ) ]st

(0) .
For small D and weak driving force equation of motion ω= − ′ + +q U q f t F t˙ ( ) ( ) cos F

can be solved directly by perturbation theory in the noise f(t) and in F, as indicated in the
appendix. Here we develop a different method, which is particularly convenient if one wants to
go to high orders of the perturbation theory in D and F.

3.1. Method of moments

Systems in which fluctuations are induced by white noise can be studied using the Fokker–
Planck equation

ρ ω ρ ρ∂ = −∂ − ′ + + ∂{ }[ ]U q F t D( ) cos . (7)t q F q
2

This equation can be solved numerically. A convenient analytical approach is based on the
method of moments, which are defined as

∫ ∫ ∫ω ρ ρ′ = ′ + ′ ′ ′ ′ ′ ′ω
∞

M t t qq q q t t q t q q t( ; ) d e d d ( , , ) ( , ). (8)n
t n

0

i
st

From equation (5), the power spectrum is ∫Φ ω τ ω= ′ ′τ
t M t( ) (2 ) Re d ( ; )F 0 1

F .
The moments Mn satisfy a set of simple linear algebraic equations

⎡⎣ ⎤⎦
ω ω ω ω

ω ω ω ω

− + = −

+ + + − + ′ω ω

−

′
−

− ′
− +

[ ]M n M Dn n M

F nM nM Q t

i ( ) ˆ ( ) ( 1) ( )

1
2

e ( ) e ( ) ( ). (9)

n n n

t
n F

t
n F n

2

i
1

i
1 1

F F

Here, we skipped the argument ′t in Mn and introduced the function
 κ β γ≡ + ++ +M M M Mˆ [ ] .n n n n1 2 Functions

∫ ρ=Q t qq q t( ) d ( , ) (10)n
n

st

in the right-hand side of equation (9) can themselves be found from a set of linear equations
similar to (9). They follow from equation (7), if one sets ρ ρ= q t( , )st and takes into account
that ρ q t( , )st is periodic in t. To the lowest order in F it suffices to keep in Qn(t) only terms that
are independent of t or oscillate as ω± texp ( i )F ; respectively, in equation (10)
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⎡⎣ ⎤⎦ω≈ + +Q t Q Q t( ) exp (i ) c. c.n n n F
(0) (1) , and

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦


ω

= − +

+ = − +

− −

− −

Q D n Q F Q

Q n Q Dn n Q nFQ

ˆ ( 1) Re ,

i ˆ ( 1)
1
2

. (11)

n n n

F n n n n

(0)
2

(0)
1

(1)

(1) (1)
2

(1)
1

(0)

The system of coupled linear equations for the moments Mn and Qn can be quickly solved
with conventional software to a high order in the noise intensity D. Nontrivial results emerge
already if we keep terms ∝ DF2: these are the terms that contribute to the power spectrum
Φ ω( )F to the lowest order in D. To find them it suffices to consider termsMn with ⩽n 3 and Qn

with ⩽n 4. This gives

⎧
⎨⎪
⎩⎪ ⎡⎣ ⎤⎦⎡⎣ ⎤⎦

⎫
⎬⎪
⎭⎪

Φ ω
κ ω κ ω

β
κ ω κ ω ω

κ ω ω κ ω ω
γκ

≈
+ +

×
+ + +

+ − + +
−

( )( )
( )( )

( ) D2

2
4

( ) ( )
3 . (12)

F

F

F F

F F

2 2 2 2 2

2
2 2 2 2 2

2 2 2 2

This expression refers to ω >| | 0; function Φ ω( )F contains also a δ-peak at ω = 0, which comes
from the driving-induced shift of the average static value of the coordinate.

The solution of the equations for the moments in the considered approximation gives a
correction ∝ D2 to the power spectrum in the absence of driving Φ ω( )0 . To the lowest order in
D this function displays a Lorentzian peak at ω = 0, Φ ω κ ω= +D( ) 2 ( )0

2 2 . This peak is used
in the analysis of optical traps for Brownian particles [4, 5]; with account taken of the term ∝ D2

the zero-frequency peak of Φ ω( )0 becomes non-Lorentzian.

3.2. Power spectrum for comparatively large driving frequency

The interpretation of equation (12) is simplified in the case where the driving frequency exceeds
the decay rate, ω κ≫F . In this case, periodic driving leads to two well-resolved features in the
spectrum ΦF. One is located at ω = 0 and has the form

Φ ω ω β γκ κ ω ω ω≈ − + ≪
−( )( )( )D( ) 2 2 3 ( ). (13)F F F

2 2 2 2 2

This equation can be easily obtained directly by solving the equation of motion
ω= − ′ + +q U q F t f t˙ ( ) cos ( )F by perturbation theory in which q(t) is separated into a part

oscillating at high frequency ωF (and its overtones) and a slowly varying part. To the lowest
order in F and D, the fast oscillating part renormalizes the decay rate of the slowly varying part
of q(t), with κ κ ω κ β γ→ − −−F( ) [ (3 2) )]F

2 1 2 . Using this correction in the expression for the
power spectrum of a linear system Φ ω κ ω= +D( ) 2 ( )0

(0) 2 2 , one immediately obtains
equation (13) to the leading order in κ ωF.

Interestingly, equation (13) describes a peak or a dip depending on the sign of β γκ−2 32 .
That is, the sign of ΦF is determined by the competition of the cubic and quartic nonlinearity of
the potential U(q). This shows high sensitivity of the spectrum to the system parameters. The
typical width of the peak/dip of ΦF near ω = 0 is κ; the shape of the peak/dip is non-Lorentzian.
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The other spectral feature is located at ωF and near the maximum has the form of a
Lorentzian peak, Φ ω β ω κ ω ω≈ + − −D( ) ( )[ ( ) ]F F F

2 4 2 2 1. The height of this peak is smaller by
a factor κ ω ≪ 1F

2 2 than the height of the feature near ω = 0. We note that the height of the
peak at ωF is proportional to the squared parameter of the cubic nonlinearity of the potential β,
but is independent of the quartic-nonlinearity parameter γ, to the leading order in the noise
intensity D.

In figure 2 we compare the analytical expression (12) with the results of numerical
simulations. The simulations were done by integrating the stochastic differential equation

ω= − ′ + +q U q f t F t˙ ( ) ( ) cos F using the Heun scheme (see [15]). Panel (a) shows that the
cubic nonlinearity of the potential leads to a peak at ω = 0 and a comparatively small peak at
ω .F The spectrum becomes more interesting in the generic case where both cubic and quartic
terms in the potential are present and β2 is comparable to γκ. Here, as seen from panel (b), as a
result of the competition between these terms, Φ ω( )F can have a dip at ω = 0 and two peaks,

Figure 2. Scaled driving induced terms in the power spectrum of an overdamped
Brownian particle moving in the quartic potential U(q) given by equation (6),
Φ ω κ Φ ω= D˜ ( ) 10 ( ) 2F F

2 2 . Panels (a), (b), and (c) refer to the scaled cubic nonlinearity
β κ =D 0.0022 3 and quartic nonlinearity γ κ =D 0.0006,2 0.00147, and 0.002,
respectively. The black dots and red solid curves correspond to the numerical
simulations and equation (12). The scaled driving frequency is ω κ = 5F and the
driving strength is κ ω =F D 20F

2 2 . For this driving strength and the noise intensity, the
simulation results in panels (b) and (c) deviate from the theoretical curve. The deviation
decreases for weaker driving. This is seen from the simulation data in panel (b) that refer
to κ ω =F D 5F

2 2 (blue triangles) and 1.25 (green squares). The corresponding spectra
are scaled up by factors 4 and 16, respectively.
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one near ωF and the other with the position determined by β γκ2 and ω κF . Where the quartic
nonlinearity dominates, γκ β≫ 2, see panel (c), it is hard to detect the peak at ωF for small noise
intensity. Our analytical calculations and numerical simulations show that, for larger noise
intensity, this peak becomes more pronounced.

A significant deviation of simulations and the asymptotic expression (12) in panel (b) for
small ω is a consequence of the near compensation of the contributions to Φ ω( )F from the cubic
and quartic nonlinear terms in U(q) to the lowest order in F2 and D. The terms of higher-order
in D and F2 then become substantial. Panel (b) illustrates how the difference is reduced if F2 is
reduced. We checked that by reducing also the noise intensity we obtain a quantitative
agreement of simulations with equation (12).

In some cases the confining potential of an overdamped system has inversion symmetry,
and then β = 0 in equation (6). In such cases spectral features of ΦF at the driving frequency are

γ∝ D( )2. They can be found by solving the equations for the moments Mn with ⩽n 5 and Qn

with ⩽n 6 or by solving the equations of motion by perturbation theory to the second order in
γ, see the appendix.

4. Power spectrum of a driven two-state system

We now consider the effect of driving on a two-state system. Various types of such systems are
studied in physics, from spin-1/2 systems to two-level systems in disordered solids to classical
Brownian particles mostly localized at the minima of double-well potentials. We will assume
that the system dynamics are characterized by the rates Wij of interstate →i j switching, where
i, j = 1, 2. In the case of quantum systems, this means that the decoherence rate largely exceeds
Wij; in other words, the typical duration of an interstate transition is small compared to W1 ij. For
classical systems, this description means that small fluctuations about the stable states are
disregarded.

4.1. The model: modulated switching rates

A major effect of periodic driving is modulation of the switching rates. It can be quite strong
already for comparatively weak driving. Indeed, if the rates are determined by the interstate
tunneling, since the field changes the tunneling barrier, its effect can be exponentially strong.
Similarly, it may be exponentially strong in the classical limit if the switching is due to
thermally activated overbarrier transitions, because the driving changes the barrier heights.
Nevertheless, for weak sinusoidal driving ωF tcos F the modulated rates W t( )ij

F( ) can still be
expanded in the driving amplitude,

α ω≈ − =W W F t i jcos , , 1, 2. (14)ij
F

ij ij F
( )

This equation is written in the adiabatic limit, where the driving frequency ωF is small
compared to the reciprocal characteristic dynamical times, like the imaginary time of motion
under the barrier in the case of tunneling [16] or the periods and relaxation times of vibrations
about the potential minima in the case of activated transitions. The rates Wij are also assumed to
be small compared to the reciprocal dynamical times. The driving frequency ωF is of the order
of Wij.
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Parameters αij in equation (14) describe the response of the switching rates to the driving.
They contain factors ∼Wij. Indeed, for activated processes Δ∝ −W U k Texp ( )ij i B , where ΔUi is
the height of the potential barrier for switching from the state i. If ωF tcos F is the force that
drives the system, then α ≈ W d k Tij ij i B , where di is the position of the ith potential well

counted off from the position of the barrier top [17]. The terms ∝ F2, which have been
disregarded in equation (14), are ∝ W d k T( )ij i B

2 in this case; a part of these terms that are
ω∝ tcos 2 F do not contribute to Φ ω( )F to the second order in F, whereas the contribution of the

time-independent terms ∝ F2 comes to renormalization of the parameters Wij in Φ ω( )0 , see
below. For incoherent interstate quantum tunneling, α ∝ Wij ij, too.

We will use quantum notations ∣ 〉i (i = 1, 2) for the states of the system. One can associate
these states with the states of a spin-1/2 particle by setting ∣ 〉 ≡ ∣ ↑ 〉1 and ∣ 〉 ≡ ∣ ↓ 〉2 . The
system dynamics is most conveniently described by the dynamical variable q defined as

σ= − ≡q 1 1 2 2 , (15)z

where σz is the Pauli matrix. For a particle in a double-well potential, q is the coordinate that
takes on discrete values 1 and −1 at the potential minima 1 and 2, respectively.

The power spectra of driven two-state systems have been attracting much interest in the
context of stochastic resonance, see [18–21] for reviews. By now it has been generally accepted
that, for weak driving, the power spectrum of a system has a δ-peak at the driving frequency
with area ∝ F2, which is described by the standard linear response theory [22]. This peak is of
central interest for signal processing. However, as we show in this section, along with this peak,
the spectrum has a characteristic extra structure, which is also ∝ F2, to the leading order in F.

4.2. Kinetic equation and its general solution

It is convenient to write the analog of equation (4) for the correlation function of the discrete
variable q as

∑ σ ρ σ ρ= ( )q t q t i t t t j( ) ( ) ˆ ˆ ( ) . (16)
i j

z z1 2

,

1 2 st 2

Here, ρ t tˆ ( | )1 2 is the transition density matrix, ρ ρ≡ ∑ 〉 〈t t i t t jˆ ( | ) | ( | ) |ij1 2 1 2 , and

ρ ρ≡ ∑ 〉 〈i iˆ | ( ) |iist st is the stationary density matrix. By construction (in particular, because of
the decoherence in the quantum case) the stationary density matrix is diagonal. Its matrix
elements ρ( )iist give the populations of the corresponding states and periodically depend on
time, ρ π ω ρ+ =t tˆ ( 2 ) ˆ ( )Fst st . The transition matrix elements ρ t t( | )ij 1 2 give the probability to be
in state i at time t1 given that the system was in state j at time t2. At equal times we have
ρ =t t Iˆ ( | ) ˆ2 2 , where Î is the unit matrix.

Equation (16) does not have the form of a trace over the states ∣ 〉i ; rather it expresses the
correlator in terms of the joint probability density to be in state ∣ 〉j at time t2 and in state ∣ 〉i at
time t1, with summation over i j, [23]. In the quantum formulation, the applicability of this
expression is a consequence of the decoherence and Markovian kinetics.

Matrix elements ρ ′t t( | )ij satisfy a simple balance equation, which in the presence of
driving reads
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ρ ρ ρ ρ ρ∂ ′ = − + + =t t W t W t( ) ( ) ( ) , 1, (17)t j
F

j
F

j j j1 12
( )

1 21
( )

2 1 2

where j = 1, 2. The equation for the matrix elements of ρ tˆ ( )st has the same form, except that
subscript j has to be set equal to the first subscript.

From equations (16) and (17) we obtain a general expression for the correlator of interest,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ ∫

∫

σ= − +

× − ′ ′ = ±

+ −

+ ±

q t q t tW t t tW t

t W t W t W t W t

( ) ( ) exp d ( ) ( ) d ( )

exp d ( ) , ( ) ( ) ( ). (18)

t

t
F

z
t

t
F

t

t
F F F F

1 2
( )

2 st
( )

( ) ( )
21
( )

12
( )

2

1

2

1

1

Here, σ σ ρ〈 〉 ≡ 〈 〉 ≡t q t t( ) ( ) Tr [ ˆ ( )]z zst st st is the time-dependent difference of the state
populations in the stationary state. Generally, σ〈 〉t( )z st is nonzero even in the absence of
driving unless the switching rates are equal, =W W12 21. In the presence of driving there emerges
a periodic term in σ〈 〉t( )z st, which describes the linear response, for weak driving.

Disregarding terms oscillating as ω± texp ( 2i )F , to the second order in F we obtain from
the balance equation (17) written for ρ( )iist

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

σ χ ω
α

χ ω

χ ω α α ω

≈ + + +

= − −

ω−

+

− +

+

+ +( )( )

t
W

W

F F

W

W W W W

( )
2

( )e c.c.
2

Re ( ),

( ) 2 i . (19)

z F
t

Fst 1
i

2

1

1 12 21 21 12

F

Here we introduced notations

α α α= ± = ±± ±W W W, . (20)21 12 21 12

Function χ ω( )1 gives the linear susceptibility. In the case of thermally activated transitions,
equation (19) for χ1 coincides with the classical result [17]. The term − +W W gives the

difference of the state populations in the absence of driving, whereas the term ∝ F2 gives the
time-independent part of the driving-induced correction to this difference.

4.3. The driving-induced part of the power spectrum

Equation (18) allows one to calculate the period-averaged correlator 〈〈 〉〉q t q t( ) ( )1 2 in the
explicit form and to obtain the power spectrum. As before, we will not consider the δ-peak in
Φ ω( ) for ω = 0. The spectrum is an even function of ω, and we will consider it for ω > 0:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑

Φ ω
ω

Φ ω Φ ω Φ ω

Φ ω α ϕ μω νω

ϕ ω ω ω ω
α

ω ω
χ ω

=
+

= +

=

= − − − +

μ ν

+

+

+

+
=±

+
− +

+

−

+
[ ]

W W

W

W

W

W i
W W

W
i

W

W

( ) 8 , ( ) ( ) ( ),

( ) ( , ),

( , ) ( )
2

( ) . (21)

F F F

F F F

F F F
F F

F

0
12 21

2 2 2
(r) (c)

(r)

,

1 12 21

2 2 1
*

The term Φ0 is the familiar power spectrum of a two-state system in the absence of driving [17].
It has a peak at ω = 0 with halfwidth +W equal to the sum of the switching rates. The term ΦF

(c)

describes the driving-induced modification of the peak centered at ω = 0,

10

New J. Phys. 16 (2014) 113064 Y Zhang et al



Φ ω α ω Φ ω χ ω ω= − ++ + +( ) ( )( ) W W( ) 2 ( ) . (22)F F F
(c) 2 2

0 1
2 2 2

Of major interest to us is the part Φ ω( )F
(r) of the driving-induced term in the power

spectrum (21). For ω > 0, it shows a resonant peak (or a dip, depending on the parameters) at
the driving frequency ωF. In contrast to the δ-peak of the linear response, the peak has a finite
halfwidth ∼ = ++W W W12 21. It is well separated from the peak at ω = 0 for ω ≫ +WF and
generally is of a non-Lorentzian shape. We stress that, to the order of magnitude, the peak has
the same overall area as the δ-peak of the linear response (in the case of a dip, the absolute value
of the area should be considered). Another important feature of the peak/dip seen from
equation (21) is that it is proportional to the parameter α α α= ++ 12 21. This parameter describes
the change of the sum of the switching rates due to the driving.

For activated switching between potential minima considered in the classical stochastic
resonance theory, α = ++

−k T W d W d( ) ( )B
1

12 1 21 2 . For a symmetric potential α =+ 0, since
=W W12 21 and = −d d1 2. Then Φ = 0F

(r) , in agreement with [24] where a symmetric potential
was considered. On the other hand, for strong driving it was found [25] that the power spectrum
for an asymmetric potential displays peaks close to odd multiples of the driving frequency and
dips close to even multiples of driving frequency. In our weak-driving analysis we do not
consider peaks/dips near the overtones of ωF; however, as seen from equation (21), the sign of
Φ ω( )F

(r) near ωF can be positive or negative, depending on the parameters.

Figure 3. The driving induced terms in the power spectrum of the two-state system for
the ratio of the switching rates =W W 7 321 12 . The scaled driving frequency and
amplitude are ω =+W 5F and α =F W 1.12 12 On the thick solid (red), dot-dashed
(black), long-dashed (blue), short-dashed (green), and thin solid (purple) lines the ratio
α α21 12 is 7/3, 7/6, 0 , −7/6, and −7/3. The vertical line at ωF shows the position of the
δ-peak at ωF. The areas of the δ-peaks for different α α21 12 are given by the heights of
the vertical segments. The heights are counted off from the lines to the symbols of the
same color, i.e., to the circle, triangle, and open and full square, in the order of
decreasing α α21 12; there is no symbol for α α = 7 321 12 as there is no δ-peak in this
case. The inset shows the full spectrum with (red) and without (black) driving for
α α = 7 321 12 . The curves and the dots show the analytical theory and the simulations,
respectively.
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Examples of the driving-induced spectra Φ ω( )F are shown in figure 3. One can clearly see
the peaks or dips both at ω = 0 and at the driving frequency ωF. In agreement with
equations (21) and (22), the signs of the features of ΦF are determined by the interrelation
between the parameters of the two-states system. For illustration purposes we chose the values
of the ratio of the response parameters α α21 12 to lie between plus and minus the ratio of the
switching rates in the absence of driving, W W21 12. As seen from figure 3, the spectra are very
sensitive to the ratio α α21 12. We have seen this sensitivity also for different values of W W21 12.

Unexpectedly, a finite-height spectrum Φ ω( )F emerges even where the linear suscept-
ibility is equal to zero, which happens for α α=W W12 21 21 12. This is seen from equation (21) and
also from figure 3. The red line with α α = 7 321 12 refers to this case, and the area of δ-peak in
the spectrum is zero. As seen from the figure, numerical simulations are in excellent agreement
with the analytical expressions.

The structure of the spectrum near ω = 0 will be modified if one takes into account terms
∝ F2 in the expressions for the switching rates (14). In the considered leading-order F-
approximation these terms have to be averaged over the driving period and are thus independent
of time. The correction due to these terms can be immediately found from equation (21) for
Φ ω( )0 by expanding Φ0 to the first order in the corresponding increments of Wij; this correction
is of a non-Lorentzian form.

5. Threshold detector

An insight into the dynamical nature of the driving-induced change of the power spectrum can
be gained from the analysis of the spectrum of a threshold detector. Such detectors are widely
used in science and engineering, and their analogs play an important role in biosystems. We will
employ the simplest model where the output of a threshold detector is = −q 1 if the signal at the
input is below a threshold value η, whereas q = 1 otherwise, and will consider the case where
the input signal is a sum of the periodic signal ωF tcos F and noise ξ t( ),

Θ ξ η= + − −q t F t t( ) 2 [ ( ) ( ) ] 1, (23)

where Θ x( ) is the Heaviside step function. To avoid singularities related to non-differentiability
of the Θ-function, we will model the output by

Λ ξ η Λ= + − ≫q t F t t( ) tanh[ ( ( ) ( ) )], 1, (24)

and in the final expressions will go to the limit Λ → ∞. Much work on the interplay of noise
and driving in threshold detectors has been done in the context of stochastic resonance, see [26–
28]. In these papers of primary interest was the signal-to-noise ratio; the issues we are
considering here, i.e., the occurrence of the effective ‘inelastic scattering’ and ‘fluorescence’ as
a result of interplay of nonlinearity and noise, have not been addressed, to the best of our
knowledge.

In the absence of noise, the power spectrum of q(t) is a series of δ-peaks at ωF and its
overtones (including ω = 0), provided the driving amplitude η>F , whereas for η<F we have

= −q 1 and the power spectrum is just a δ-peak at ω = 0. On the other hand, if F = 0 and ξ t( ) is
white noise, in the limit Λ → ∞ in equation (24) the correlator 〈 ′ 〉 =q t q t( ) ( ) 0 for ≠ ′t t , since
the values of q(t) at different instants of time are uncorrelated and 〈 〉 →q 0, whereas 〈 〉 →q 12 .

The singular behavior of the correlator 〈 ′ 〉q t q t( ) ( ) in the case of white noise persists also
in the presence of driving. This is a consequence of the absence of dynamics, i.e., any memory
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effects in the variable q(t) (23), and the singular distribution of white noise, where the intensity
ξ〈 〉t( )2 diverges.

Dynamics can be brought into the system by the noise color. Such noise can be thought of
as coming from a dynamical system with retarded response, which is driven by white noise. We
will be interested in the correlator 〈 ′ 〉q t q t( ) ( ) and the power spectrum Φ ω( ) for weak driving,
where the driving amplitude is η≪F (subthreshold driving), and for a simple colored noise,
the Ornstein–Uhlenbeck noise. This is Gaussian noise with correlator

ξ ξ κ κ′ = − − ′t t D t t( ) ( ) ( ) exp ( ). (25)

Parameter κ characterizes the decay rate of noise correlations.
Because the threshold detector has no dynamics on its own, the value of the variable q(t) is

determined by the instantaneous value of the noise ξ t( ). We can write ξ≡q t q t t( ) ˜ ( , ( )), where
ξq t˜ ( , ) is given by equations (23), (24) with ξ t( ) replaced with ξ. Then the general expression

for the correlator of q(t), equation (4), can be rewritten as

∫ ξ ξ ξ ξ ρ ξ ξ ρ ξ= ξ ξ( ) ( ) ( ) ( )q t q t q t q t t t t( ) ( ) d d ˜ , ˜ , , , , . (26)1 2 1 2 1 1 2 2
( )

1 1 2 2 st
( )

2 2

Here, the superscript ξ indicates that the corresponding transition probability density and the
stationary distribution refer to the random process ξ t( ).

The form of the transition probability for the process (25) is well-known [29],

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

ρ ξ ξ κ
π

κ ξ ξ
=

−
−

−

−
ξ

κ

κ

κ− −

− −

− −( )
( )

( )
( )t t

D D
, ,

2 1 e
exp

e

2 1 e
. (27)

t t

t t

t t
( )

1 1 2 2
2

1 2
2

21 2

1 2

1 2

The stationary distribution ρ ξξ t( , )st
( )

1 1 is given by the same expression with → −∞t2 .
Substituting these expressions into equation (26) and expanding ξq t˜ ( , ) in F(t), after averaging
over the driving period we obtain to second order in F(t) for >t t1 2

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

∫ ∫

∫

ξ ξ ρ ξ ξ ρ ξ ρ ξ

ω ρ η η ρ η

ξ ρ ξ
η

ρ η ξ ρ η

= + −

+ −

− −

η η
ξ ξ ξ

ξ ξ

η

ξ ξ ξ

∞ ∞

∞

( ) ( ) ( )

( )

( ) ( )

q t q t C t t

F t t t t

F t t

( ) ( ) 4 d d , ,

2 cos ( ) , , ( )

2 d
d
d

, , ( ) . (28)

F

1 2 1 2
( )

1 1 2 2 st
( )

1 st
( )

2

2
1 2

( )
1 2 st

( )

2
2 st

( )
2

( )
1 2 2 st

( )

Here, C is a constant independent of time; it leads to a δ peak at ω = 0 in the power spectrum
and will not be considered in what follows. The remaining terms are time-dependent. They
decay with increasing −t t| |1 2 , except for the term that oscillates as ω± −t texp [ i ( )]F 1 2 and
describes the standard linear response to periodic driving. As seen from equation (28), this term
has the form

⎡⎣ ⎤⎦ω ρ η χ ω ω

χ ω ρ η κ π κη

− ≡ −

= ≡ −

ξ

ξ ( )
F t t F t t

D D

2 cos ( ) ( )
1
2

( ) cos ( ),

( ) 2 ( ) (2 ) exp 2 , (29)

F F F
2

1 2 st
( ) 2 2 2

1 2

st
( ) 1 2 2

where χ ω( ) is the standard linear susceptibility [13] of the threshold detector. Interestingly, this
susceptibility is independent of frequency. This is because the detector has no dynamics, its
response to the driving is instantaneous. An alternative derivation of the expression for the
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susceptibility, which provides a useful insight into the response of the threshold detector, is
given in the appendix. It also shows how to deal with the singularities in equation (28) for

→t t ,1 2 which emerge after the transition Λ → ∞ in equations (24) and (26).
The power spectrum Φ ω( ) is obtained from equation (28) by a Fourier transform. The F-

independent term in equation (28) gives the power spectrum Φ ω( )0 in the absence of driving. It
has a peak at ω = 0. The term ω∝ −t tcos ( )F 1 2 gives a δ-peak and also a finite-width peak

Φ ωF ( )F
2 (r) at frequency ωF. The last term in equation (28) gives a driving-induced feature in the

power spectrum at zero frequency Φ ωF ( )2 (c) .
The shape of the spectra is determined by the dimensionless parameter that characterizes

the ratio of the threshold to the noise amplitude η κ D( )1 2. For weak noise, where
η κ ≫D( ) 1,1 2 the peak near ωF has the form

⎛
⎝⎜

⎞
⎠⎟Φ ω

π
κη ω ω

κ
≈ +

− κη
−

−

D D
i( )

1

2
Re

4
e . (30)F

F D(r)
2 1 2

22

Here we assumed that ω κF is sufficiently large, so that the features of ΦF centered at ωF and
ω = 0 are well separated; equation (30) applies for ω ω ω− ≪| |F F. The spectrum (30) has a
characteristic non-Lorentzian form with typical width κ η D42 2 . However, its area is small.

In the opposite limit of low threshold, η κ ≪D( ) 11 2 , to the leading order

⎜ ⎟⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥Φ ω

π
Γ

ω ω
κ

Γ
ω ω

κ
≈

−
+

−
D

i i( )
1

2
Re

2
1
2 2

(31)F
F F(r)

near ωF. This spectrum falls off slowly away from the maximum, as ω ω− −| |F
1 2 for

ω ω κ− ≫| |F . Equation (31) does not contain the threshold η. The small-η correction to (31)
for ω ω= F is κη π− D(1 ln 2) 2 2. It is positive. From the comparison of equations (30) and

Figure 4. Power spectrum of the threshold detector. (a) The full power spectrum; the
scaled frequency and the intensity of the driving are ω πκ =2 100F and

κ =F D 0.00252 . The scaled threshold is η κ =D( ) 0.51 2 . Inset: the spectrum near
the driving frequency. The delta peak has been subtracted. The curves and black dots
refer to the theory and simulations, respectively. (b) The low-frequency part of the
driving-induced term in the power spectrum for ω κ = 50F as given by equation (28).
The solid (black), long-dashed (red), short-dashed (blue) and dot-dashed (green) curves
correspond to the scaled value of the threshold η κ =D( ) 0.1, 0.8, 1.21 2 , and 2. Inset:
the spectrum near the driving frequency, ω κ = 50F .
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(31), one sees that the height of the peak at ωF first increases with the increasing η κ D( )1 2, but
then starts decreasing.

In figure 4 we show analytical results for the power spectra obtained from equation (28) for
several parameter values and compare them with the results of simulations. Immediately seen
from this figure is that the driving modifies the overall spectrum most significantly near ω = 0
and near ωF for large ω κF . There emerges a finite-width peak at ωF. As seen from the inset in
panel (b), the width of this peak increases with decreasing noise intensity, that is, with
increasing η κ D( )1 2. This is a counterintuitive consequence of the unusual interplay of noise
and driving in a threshold detector. The height of the peak displays a nonmonotonic dependence
on η κ D( )1 2.

The low-frequency spectrum Φ ω Φ ω≈( ) ( )F F
(c) also displays a pronounced feature near

ω = 0. One can show from the analysis of the last term in equation (28) that, for small η κ D( )1 2,
this feature is a dip, with Φ = − D(0) 1F

(c) for η κ →D( ) 01 2 . The shape of the dip is non-
Lorentzian, with typical width κ. As η κ D( )1 2 increases, the depth of the dip decreases.
Ultimately the shape of the spectrum changes completely. For large η κ D( )1 2 the spectrum ΦF

(c)

becomes broad and shallow. To the leading order in η κ −D[ ( ) ]1 2 1, it can be written as

π κη κη Φ ω κ η−D D D D(2 )( ) exp ( 2 ) ˜ (2 )F
2 1 2 2 (c) 2 2 , where the dimensionless function Φ x˜ ( )F

(c) is
zero for x = 0, has a minimum at ≈x 1.7, where it is ≈ −0.6, and then approaches zero with
increasing x as −x 1 2.

6. Conclusions

The results of this paper demonstrate that the interplay of driving and fluctuations leads to the
onset of specific spectral features in the power spectra of dynamical systems. Such features are
analogs of inelastic light scattering and fluorescence in optics, where an electromagnetic field
can excite radiation at a frequency shifted from its frequency and also at the characteristic
system frequency. Our results show that, in classical systems and in incoherent quantum
systems, the spectral features emerge as a result of the fluctuation-induced modulation of the
response to the driving. Such modulation is common to nonlinear systems.

Since nonlinearity and noise are always present in real systems, the occurrence of the
driving-induced spectral features in the power spectra should be also generic. However, these
features are specific for particular systems, which allows one to use them for system
characterization.

We have studied three types of systems, all of which are attracting significant interest in
mesoscopic physics and in several other areas of science. The first one is an overdamped
Brownian particle fluctuating in a nonparabolic potential well. This model describes, in
particular, small particles and molecules optically trapped in a liquid. We find that, when the
particle is periodically driven, the nonparabolicity of the potential leads to an extra spectral peak
or a dip at zero frequency. For comparatively weak noise, the sign of the driving-induced term
in the spectrum at small ω is determined by the competition of the cubic and quartic
nonlinearity of the potential. The overall shape of the low-frequency spectrum strongly depends
on the form of the confining potential as well. In addition, along with a δ-peak at the driving
frequency, the driving-induced spectrum displays a peak at this frequency with a width of the
order of the relaxation rate of the system.
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We have also studied a two-state system that at random switches between the states. We
assumed that the driving modulates the rates of interstate switching. The driving-induced
spectrum has a rich form. Depending on the interrelation between the switching rates without
driving and the driving-induced corrections to the rates, it can have peaks or dips both at ω = 0
and at the driving frequency. The typical width of the peaks/dips is given by the sum of the
interstate switching rates without driving. Interestingly, these finite-width spectral features can
emerge even where the δ-peak at the driving frequency has very small (or zero) intensity.

The third system we studied is a threshold detector. Here the dynamical nature of the
driving-induced spectral change is particularly pronounced, as this change does not occur if the
noise in the detector is white, except for the δ-peak at the driving frequency. On the other hand,
for colored noise driving does change the power spectrum nontrivially. As in other systems, we
find a driving-induced spectral feature near zero frequency. It can be a peak or a dip depending
on the ratio of the threshold to the appropriately scaled noise intensity. Also, the height of the
finite-width peak at the driving frequency displays a nonmonotonic dependence on this ratio, as
does the width of the peak, i.e., noise can both increase or decrease the width.

In all studied systems inertial effects played no role: the peaks of the power spectra are
located at zero frequency in the absence of driving. Therefore driving-induced spectral features
near the driving frequency and zero frequency correspond to inelastic scattering and
fluorescence, respectively. However, in contrast to conventional fluorescence, driving can
induce a dip in the spectrum at zero frequency, as we have seen in all studied systems (the total
power spectrum remains positive, of course). The occurrence of the dip looks as if the driving
were decreasing the noise in the system, although in fact the dip has dynamical nature.

The power spectra of weakly damped nonlinear systems should also display extra features
in the presence of weak periodic driving. The effect should be most pronounced where the
driving is resonant. Along with the features near the driving frequency and near ω = 0, there
should arise features near the eigenfrequencies of slowly decaying vibrations about the stable
states. Several features of the power spectra have been studied for nonlinear oscillators in the
regime of strong driving, see recent papers [32, 33] and references therein. Interestingly, the
results do not immediately extend to the weak-driving regime, and the features of the interplay
of nonlinearity and driving where they are of comparable strength remain to be explored.
However, it is clear from the presented results that the driving-induced change of the spectra is a
general effect that provides a sensitive tool for characterizing fluctuating systems and their
parameters.
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Appendix. Formulation in terms of fluctuating susceptibilities

The change of the power spectrum induced by the driving can be analyzed in terms of the
fluctuating linear and nonlinear susceptibility of the system. If the dynamical variable that
describes the state of the system is q(t), to the second order in the driving F(t) we have
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∫ ∫∫χ χ≈ + ′ ′ ′ + ′ ″ ′ ″ ′ ″
−∞ −∞

q t q t t t t F t t t t t t F t F t( ) ( ) d ( , ) ( ) d d ( , , ) ( ) ( ), (A.1)
t t

0 1 2

where q t( )0 is the (random) value of q(t) in the absence of driving. Functions χ1 and χ2 describe
the linear and nonlinear response. We emphasize that these functions themselves are random,
there is no ensemble averaging in equation (A.1). This equation is merely a consequence of the
causality principle. Spatial and temporal fluctuations of the linear susceptibility χ1 are
standardly considered in the context of light scattering [30, 31]. However, the analysis of the
power spectrum of nonlinear systems in the presence of driving requires also taking into
account the fluctuating nonlinear susceptibility χ2.

The linear and nonlinear fluctuating susceptibilities lead to two terms in the driving-
induced part of the power spectrum defined by equation (5), Φ ω Φ ω Φ ω= +( ) ( ) ( )F F F

(1) (2) .
Substituting into (A.1) ω ϵ=F t F t t( ) cos exp ( )F with ϵ → +0, we obtain [34]

⎡⎣ ⎤⎦

∫ ∫∫Φ ω

χ χ χ
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ω ω ω
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Re d e d d e
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⎡⎣ ⎤⎦

∫ ∫∫Φ ω ω

χ χ
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× + ′ + ″ + ′ ″
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[ ]t t t t t

t t t t t q q t t t

( ) Re d e d d cos ( )

( , , ) (0) ( ) (0, , ) , (A.3)

F
t

F
(2)

0

i
0

2 0 0 2

where we assumed 〈 〉 =q t( ) 00 .
The general form of equations (A.2) and (A.3) immediately shows two distinct effects of

the driving, which are pronounced where the driving frequency ωF largely exceeds the typical
relaxation rate of the system. The term Φ ω( )F

(1) is a function of the detuning of frequency ω
from the driving frequency ωF. Therefore one may expect that Φ ω( )F

(1) displays features like
peaks or dips near ωF. In contrast, Φ ω( )F

(2) should display features near the characteristic
frequencies of the system. In particular, for overdamped systems that we consider here such
features occur around ω = 0. We note that ΦF

(1) may also display features at the system
eigenfrequency, since the integrand in equation (A.2) depends on ωF.

A convenient way to calculate the fluctuating susceptibilities χ1,2 is based on solving
dynamical equations of motion of the system. For example, for an overdamped Brownian
particle described by the Langevin equation ω= − ′ + +q U q f t F t˙ ( ) ( ) cos F with nonlinear
potential (6), one can proceed by rewriting this equation in the integral form,

⎡⎣ ⎤⎦∫ ∫ β γ

ω

= ′ − ″ ″ + ″

× ′ + ′

κ
−∞

− − ′
′{ }

[ ]

q t t t q t q t

F t f t

( ) d e exp d ( ) ( )

cos ( ) . (A.4)

t
t t

t

t

F

( ) 2

For small f and F, one can then expand the q-dependent exponential in the right-hand side and
use successive approximations in F and f. The fluctuating susceptibility χ1 is given by terms
linear in F, whereas χ2 is given by the terms quadratic in F. The advantageous feature of this
method is that it is not limited to white noise. However, the method becomes impractical if the
noise intensity is not weak, and even for weak noise it becomes cumbersome if one goes to
high-order terms in the noise intensity.
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We have checked that the calculation based on equation (A.4) gives the same result for the
driving-induced part of the power spectrum Φ ω( )F as the method of moments. We have also
found that, in the second order in the noise intensity D, the term γq 44 in U(q) leads to the onset
of a peak in Φ ω( )F at ωF.

A.1. Fluctuating susceptibility of a threshold detector

Fluctuating linear susceptibility has a particularly simple form for a threshold detector. By
linearizing in F(t) expression (23) for the output of the detector, we obtain from the definition of
the susceptibility (A.1)

χ δ δ ξ η′ = − ′ − −t t t t t( , ) 2 ( 0) ( ( ) ), (A.5)

where η is the threshold and ξ t( ) is the noise. Zero in δ − ′ −t t( 0) reflects causality: the
detector output q(t) is determined by the value of the driving just before the observation time;
the very δ-function indicates that the effect of the driving is not accumulated over time, the
response is instantaneous (but causal).

The standard linear susceptibility χ ω( ) is given by expression

∫χ ω χ= ω
∞

t t( ) d e ( , 0) .t

0

i

From (A.5), χ ω ρ η= ξ( ) 2 ( )st , where ρ ηξ ( )st is the stationary probability density of the noise ξ t( ),
see equation (29). It applies for an arbitrary noise ξ t( ), not just for the exponentially correlated
noise considered in section 5.

Similarly, the fluctuating nonlinear susceptibility of the detector is

χ δ δ δ ξ η′ ″ = − − ′ − − ″ − ∂ −ηt t t t t t t t( , , ) ( 0) ( 0) ( ( ) ). (A.6)2

Substituting equations (A.5) and (A.6) into the general expressions for the power spectrum in
terms of fluctuating susceptibilities, equations (A.2) and (A.3), we obtain the power spectrum in
the same form as what follows from equation (28).
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