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1t is shown that self-oscillations-can arise due to a polarizational sclf-action in a medium with a cubic nonlincarity in the absence
of delayina cavny The bifurcation relationships between the parameters of incident radiation are found, for which the number.
of stationary states of radiation in the cavity is altered or the self-oscillations are excited. The scheme of switching between. the

~stable states is presented.

Propagation of an intense radiation alongan optic

axis of a nonlinear medium is generally accom-
panied by a change of its polarization, If the:medium
is placed into a cavity and optical bistability (OB)
occurs, then the coexisting stable states differ not only
in intensity of the intracavity field, but also in its po-
larization. The existence of several stable states is it-
self due to absorption and/or refraction nonlinearity
and to nonlinear coupling between different com-
ponents of the radiation field [1].

Not only scveral stable states, but also sclf-oscnl-
lations and optical chaos may arise and coexist in a
- nonlinear cavity. The nhon-stationary regimes as arule

arc related .to a delay in the cavity or to a presence
of competing mechanisms of opticai nonlincarity [2].
Since a polarizational scif-action of radiation can be
. regarded as a sort of “competition” between the cou-
pled ficld components, it could be expected to give
rise to sclf-oscillations for a single mechanism of
. nonlincarity and in the absence of dclay.
A completc analysis of the systcm should result in
_the determination of the intracavity ficld and its
variation with varying parameters of the incident ra-
diation, Howwcr, to describe its main features it'is
safficient (i) to ﬁnd the su,ady-slatc regimes avails
ablc for the system and the ranges of their existence;
(ii) to analyze their stability and to find the scheme
of switching between them. Solution- of the first
problem requires investigation of the bifurcation re-
lationships between the parameters of -incident ra-

T Al dtm = o+ A | B+ A2 | B,

diation, for which the set of regimes is changed, say,
the number of stationary states is altered. The sec-
ond problem is reduced to the study of the cavity
transmission in the vicinity of the bifurcation pa-
rameter values.

In the present paper the solution of these problems
is given for a ring cavity containing a transparcnt
isotropic nongyrotropic medium with cubic optical
nonlinearity. The transmission of such cavity for
some values of the parameters of the medium and
the incident radiation was considered in refs. [3-5].
We supposc that the cavity round trip time L/cis
much smaller than the characteristic relaxalnon time
7 of the nonlinear medium response. Although in a’
nonlinear medium the two circularly polarized ficld
components E.,. and E_ arc coupled, their intensities
o | E+ |2 do not change in the absence of absorption.
Therefore in the Debye approximation for the re-
laxation of the nonlinear polarizability of the me-
dium the kinetics of the nonlincar phasc gains ¢, of
the components £ is given by

= i g )

|E)P=Es P+ 1E-)2, (1)

where Ay ).2 characterize the cubic. polarizability.
The cquations of type (1) refer to media with.var-

ious mechanisms of nonlincarity (clectronic, ori-
entational, -etc.). In the absence of frequency dis-
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persion 4, = —4,/2. Then allowing for the boundary
conditions in a ring cavity we obtain

Td¢(~,/df=0a(¢+,‘¢_-), A= i )
Gym =0y

+HI[(1+ae) g(pa) +2(1—ae) g(o_ RN
glg)=[1~fcos(p+¢)]~",
o= (I =l /(1 +12), (2)

where / is the properly normalized intensity of the
incident radiation, /. are the intensities of its cir~
' cularly polarized  components. ([=l,+]:;

IicAy | E . |?), ¢ is the weak-ficld phase-gain in'the
cavny, [is its finesse.

The. physical systems described by two coupled
differential equations of the type (2) can have [6]
one or more stationary states and limit cycles for
constant input. In our case the presence of more than
one stable stationary corresponds to optical bi- or
multistability, and a stable limit ¢ycle corresponds to
‘self-oscillations of the field in the cavity.

The ranges of existence of various regimes are
bounded by the bifurcation curves on the plane (e,
I) (incident radiation intensity versus its ellipticity
parameter). The appearance or merging of station-
ary states occur on the line /=/g(€) given by the
cquation

a(1, ¢€) G, G)
[a(¢+’¢-)]glx[a(¢*s¢—)]sl—o’ (3)
where the subscripts “'st” indicate that the jacobians
are calculated for the stationary values of the phascs
¢, ¢.. at given / and ¢. The curves /,,(¢) obtained
from (2), (3) and corresponding to 'several lowest
branches of the intracavity ficld are plottcd in fig. 1
by thin lines.

Due to the symmetry of the system ‘is
Iy(€¢)=1y(—¢). Hence if the branches of /(€) do
not intersect at €=0 they have an extremum here (cf.
the curves 1 and 2). The states of the intracavity
ficlds appearing near such extrema (| €| < 1, the in-
cident radiation is polarized almost lincarly) have
small degree of ellipticity. Al e=<0, /y(e) may be
cither analytic. (curve 1) or having a spinode point,
1:(€) =I,(0)ece?’? (curve 2). Such behaviour is a
consequence of symmetry and is inherent for the on-
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Fig. 1. Bifurcation curves /4(¢€) (thin) and /y(¢€) (thick) corre-
sponding 1o change of number of stationary states and appcar-
ance of a limit cycle, rcspccuvcly The branches | and 2 describe
the onset of refractive and polanzauonal OB, respectively. [y, ..
1, arc Aumbcred in the order of increasing / intersections of bl-’
furcation curves Jy(€) with the straight linc €=0.1 (scc ﬁg/. 2).

set of refractive and polarizational OB ( polariza-
tional switching), respectively [1]. In a spinodc point .
three stationary states of radiation in the cavity
merge. Two of them correspond to a finitc degree of

rcaking)
The conditions for the onset of sclf-oscxllauons are

[6]:

(Mméa#&* for ¢=0 (a spontancous symmctry
b .

o (96 _ a<G+,G_>] )
§(a¢a>“‘°’ [a<¢+,¢-> o (4)

\. The corresponding bifurcation curves I=/,(¢) arc

represented by thick lines in fig, | (note that the curve
3 lies above the curve | though very closc 1o it). Ev-
idently, fi1(€)=14(=¢). The curves f;;(¢) do not

- reach the boundaries €= T 1. because for circularly

polarized radiation set (2) reduces to one equation.
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The endpoints of the curves /;;(€) lie on the curves
Is(€) and may be shown to be the tangency of these
curves. At these points all the characteristic numbers
for the respective stationarystates vanish. On the
opposite sides of the tangency point on the curve
Iz (€) there appeat one stable and one unStablc or
two unstable stationary states. Using fig. 1 one may
judge of stability of the states with the aid of simple
arguments based on continuity of the intracavity field
when the parameters of the incident radiation are
varied without crossing the bifurcation curves. E.g.,
when the branch 1 of Iy(€) is intersected from below
for =0, one of the appearing states is stable (a stan-
dard case of refractive OB ), hence the corresponding
state is stable for all € (at />/Iy(¢€)) up to the tan-
gency point of Ig(€) and the branch 3 of I,;(¢€), and
then above Iy (e). When the branch 1 is intersected
below the branch 3 two unstable states appear; one
of them becomes stable when the curve 3 is inter-
sected, and simultaneously an unstable limit cycle
appears. Thus the branch '3 of I;j(€) in fact “eats
away"” the range of existence of stable states bounded
by the branch 1 of 7(€).

To illustrate the switching scheme we consxder the

behaviour of the system for different / and fixed .

€=0.1. A scquence of phase portraits of the’ system
(2) is given in fig. 2, For I</, (the values /1y, ..., I
arc the same as in fig. 1) there is only oné stable slate
represented by the stable node Py. At /=/, the saddle
P, and the stable node P; (bécoming a stable focus
for somewhat higher /) appear (fig. 2a). At /=1, a
similar pair P,, P5 appcars, Then after the first in-
tersection of IH(e) the focus P; becomes unstable and
the stable limit cycle C, corresponding to a self-os-
cillatory regime appears around it (fig. 2b). When
the next branch of 7, (¢) is intersected, the same oc-
curs with the focus Py, and.the stable limit cycle C,
appears. At /=1, the saddle P, and the stable node
P; appear. Notc that with further incrcasc of / the
limit cycle C, “crawls” to the saddle point P¢ and
disappears (fig. 2¢c). At I=/, the pair of states Py,
Py, similar to P, P; appears, and then the limit cycle
C, disappears in the same way as C, (fig. 2d). For
higher 7 the unstable states merge: Ps and Py at /=175
(fig..2¢), P, and P at I=/, (fig. 2f). At I=1, the
stable state P, mecrges with P, and disappears, the
only remaining stable states being P, and Ps.

The general rule of appearing and merging of the
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Fig. 2.-Trajectorics of the dynamic system (2) in the region of

‘the phasc plane (9., ¢_) containing the singular points Py, ..,

Py. The parameters €, / (a)=-(f) are the same as for the points a—-
fin fig. 1, respectively. (a) Iy </ <ly; (b) i<l <ly, ()y<i <y
(@) Iy<i<ly (¢) Is<i<ie () lg<i<],.

stationary states is that one saddle point corresponds
to cach branch of I, (¢). Il there are no spinode points
on a part of a branch between'its two successive in-
tersections with varying / or ¢, then the saddle merges
with one and the same (that is topologically equiv-
alent) node; otherwise, with non-cquivalent nodes.

Thus, with constant € and / slowly incrcasing from

zero the system begins with the state labelled £ the

point representing it in the static characteristics
moves along the P, branch. At /=/, this branch dis-
appears and the system is switched to the branch P,
(sce'fig, 3). If then 7 is slowly decreased the sysiem
stays on the branch P; until it disappears at /=/;.
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Fig. 3. The lowest branches of the steady steady-state dependence of the nonlinear phase gain ¢ o [E., | on the intensity of the incident
radiation./ for ¢=0.1. Solid and dotted lines are stable and unstable stationary states. Self-oscillations are shown by dashed arcas, whose
height corresponds to the spread of the self-oscillations. Switchings are indicated by arrow. The closed loop P~Ps~Pg~Ps can be reached

either from similar loops of higher order or by-changing e.

‘Then the system is attracted to the limit.cycle C,, i.e.

the self-oscillations of finite amplitude are excited. ~

With further decrease of / the limit cycle shrinks to

a point P; (a soft quenching of the self-oscillations).

and when the branch P; disappears at /=17, the sys-
tem returns to its initial state P, (cf. [7]).

The branches of stable states Ps, Py and the self-

oscillatory regime C, are not switched by this way.
To cxcite them the polarization of the incident ra-
‘'diation should be varied slowly together with its in-
tensity. In particular, for small ncgative ¢ the first
switching with increased 7 brings the system to the
branch Py where its stays if the sign of ¢ is changed
at fixed 1. An escape from this branch may be due to
variation not only of ¢, but of / as well, sce fig. 3.
The characteristic period of the considered sclf-os-
cillations is determined by the relaxation time of op-
tical Kerr nonlinearity. It can vary over a wide range,
depending on the properties of the system, down to
the order of picoseconds. As the hard quenching of
the scif-oscillations is approached, their period in~
crecases sharply. Such behaviour under self-induced
anisotropy was indced observed [8]. Adjusting the
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- parameters of incident radiation one can realize both
_soft (with a smoothly increasing amplitude ) and hard

excitation of the self-oscillations.

- The authors are grateful to V.A. Makarov for use-

ful-discussions.
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