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The spectrum of local and quasilocal vibrations of impurities is studied in the case where the frequency of
local vibrations and the electron transition frequency are in resonance. The case of resonance in a system of
three local vibration modes, two of which are high-frequency modes, is also considered. A system of linear
equations governing the spectral distribution of local vibrations is obtained and analyzed. Such a system of
equations converges rapidly (exponentially), which makes it possible to obtain the spectrum for an arbitrary
ratio of the resonance interaction parameter to the broadening of the levels and at arbitrary temperatures.
When the resonance splitting of the levels is much larger than their width, a fine structure of the spectrum
may appear in a well-defined range of temperatures. An operator equation is derived which can be used to
study the spectral distribution of arbitrary interacting local vibrations (including the symmetry-degenerate
vibrations) provided the energies of several lowest levels of the system are found analytically or

numerically.

PACS numbers: 63.20.Pw

When the spectrum of the infrared absorption and the Ra-
man scattering of light by impurity centers in a crystal is
studied, the frequency of vibrations localized in the vicin-
ity of an impurity (local or quasilocal vibrations) is some-
times close to the frequency of the impurity electrontran-
sition or to the combined frequency of other local vibra-
tions.1»2 The resonance interaction gives rise to a split-
ting of the levels of local vibrations which is analogous to
the Fermi resonance.®’ The resonance splitting of local
vibrations was studied by one of the present authors®® at
low temperatures. In particular, it has been shown that,
when only the occupation of the first excited level of local
vibrations is taken into account, additional fine structure
lines can occur in the spectrum.

At higher temperatures, a large number of excited
states participate in the formation of the spectrum and,
therefore, the number of fine structure lines increases,
different lines begin to overlap, and at high temperatures,
a unique nearly continuous distribution of lines is created
{in the classical limit, the fine structure disappears com-
pletely). Therefore, it is of interest to develop a unified
theory which could describe the spectrum in a wide range
of temperatures taking into account the fine structure and
the broadening of individual lines.

A new method was proposed in refs. 7 and 8 for the
microscopic description of the spectral distribution of an
anharmonic oscillator interacting with a thermostat. This
method is applicable in a wide temperature range and to a
wide range of parameters of the system. We shall gener-
alize the method of refs. 7 and 8 to arbitrary systems
whose spectrum in the absence of interaction with the
thermostat is known and represents a set of groups of lev-
els such that the energy gap between individual groups is
approximately constant and much larger than the separa-
tion of the lines within each group (for example, the lev-
els of an oscillator which are interaction-split exhibit such
a spectrum). The proposed method holds at arbitrary
temperatures and for an arbitrary ratio of the relaxation
linewidth to the separation of the levels within a group
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(provided the width is much smaller than the gap between
the groups).

We shall study the spectral distribution of resonance
local vibrations in the following cases: 1) Thelocal vibra-
tion frequency is close to the energy of a transition in a
two-level electron system; 2) the frequency of a local vi-
bration is close to the sum of the frequencies of high-fre-
quency and low-frequency local vibrations.

1. CORRELATION FUNCTIONS AND THE
HAMILTONIAN OF THE SYSTEM

The form of the spectrum of the infrared absorption
and of the Raman scattering in the approximation linear in
the displacements of local vibrations is governed by the
correlation function

@
Q, (w) =-_,17 S e (E) ¢, (U efwide

%% Re S {a, (t) af (N> eftdt, w~o,c,=a,+ a}. (1)
I

Here, a¥ , ay are the creation and annihilation operators
of local vibrations » with a frequency «w. The second
equality holds with the accuracy up to terms ~ T /wxp,
where T, is the damping of local vibrations and Ty < wy.

The Hamiltonian of the system under study is givenby

H=H,+ H,, 2)

where the term H; describes the energy of resonant local

excitations neglecting the interaction with the vibrations
of the continuous spectrum of the cryvstal. When the local
vibrations with ® = 1 are in resonance with a two-level
electron system, the Hamiltonian Hy has the form
1 1
Hy= (Wlafal + > “’B) J = A (afs™ + a;3%), 3)

where ¢ are the Pauli matrices. J is a unit matrix, wp is
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the electron transition frequency. V is the resonance in-
teraction parameter, and | w g— wql, | V] « w;.

When the resonance interaction of three local vibra-
tion modes takes place, the Hamiltonian H; is given by
Hy=8,= ¥

]
*=1,2,3

w,ata, + V (ajafaf + ataue,). (4)
We shall assume that wy, » wjand Jw; —w;~wsl,

| V| <« w3q The nonresonance and higher-order terms

with respect to the intrinsic anharmonicity of local vibra-

tions are neglected in H, and H,.

The Hamiltonian H, describes the vibrations belong-
ing to the continuous spectrum of the crystal and their in-
teraction with local vibrations:

Hy=H}"+H Zw,a a,;
)
Hi=— 2 Vg9, ExCqCq, 2 V oarg€aCarCq = 2 Vg dia.ata,
N %

+
where aq and aq are the creation and annihilation opera-

tors of vibrations belonging to the continuous spectrum of
the crystal and having the wave vectorq and the frequency wq.

The index ® may also label weakly coupled quasilocal
vibrations. In this case, q labels the vibrations of an im~
perfect crystal from which an impurity has been removed.
The Hamiltonian H; should then be supplemented by the

term
Hi =3V t:L (5a)
y
The parameters Vg which appear in Hj are assumed
to be small so that the damping of local vibrations satis-
fies Ty <wy and |dTy/dwy | « 1. For simplicity, the in-
trinsic relaxation of electron states is neglected.

Inthe calculation of the correlation function (R(t)Q(0)),
where R and Q are the operators of a subsystem under
study, it is convenient to average first over the vibrations
of the continuous spectrum and then over the states of the
Hamiltonian H,.

We shall now introduce the interaction representation
by means of the operator U(t) = exp(iHot)exp(—iHt). The
correlation function (R(t)Q(0)) is given by

<R (£)Q (0> =Tr, [exp (1Ht) R exp(—iHt) Gy (t)];
Gy (8)=Z1 Ty, [U (t) Q exp (—1H) U™ (2)); (6)
Z = Sp, Ty exp (—AH),

where Try and Try, are taken over the wave functions of
Hyand HPR, A = T-' k=8 = 1).

It follows from Eq. (1) that the calculation of the line
profile of the spectral distribution requires the knowledge
of the correlation function at times t ~ Ti{'. We can obtain
this correlation function by the asymptotic method devel-
oped in refs. 7 and 8. Using this method, we can carryout

the averaging over phonons, which yields anoperator equa--

tion for the function GQ(t) which is given in the Appendix.

2, RESONANCE OF LOCAL VIBRATIONS
WITH AN ELECTRON TRANSITION
The exact eigenvalues wjln) and the eigenfunctions
ln)j §=1,2:n=0,1, 2, ..) of the Hamiltonian H, defined
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by Eq. (8), which describes the resonance interaction of
local vibrations (» = 1) with an electron transition, are

given by
mj(n)=w,n+%——(——i)15.. nzl, j=1,2 o()=0; S=wz—u;
=Vt )
_Jeim)n—1> . 1 0.
S BTN n=|_ 0>i’ o
vva (—1)7 3, 402
W= G=———
o (n) = 233 + (—1)7 83, !

The structure of the energy spectrum defined by Eq.
(7) is similar to the spectrum of an oscillator whose lev-
els n (with the exception of the lowest level n = 0) are split
in a doublet. The separation of the levels in a doublet sat-
isfies the inequality 24 < wy, wpg. The quantity |n) in
Eq. (8) is the wave function of a harmonic vibration of type
1 in the second-quantization representation.

The nonzero matrix elements of the operators corre-
sponding to the oscillator of type 1 hetween the wave func-
tions defined by Eq. (8) are given by

A (n)=
= ma(r+) Ve + 3, (M (r+1)n - 1 9)

Ny (n)= jn]atay|n)p=ndy —a; (max (n); |, k=1, 2

jnlain+ 1

Without loss of generality, we can assume in Eq. (9)
and in our further discussion that n = 0. We shall set
ay,z (0) = B1(0) = 0; By(0) = ~1.

We shall consider the correlation function of local vi-
bration Q() defined by Eq. (1). Setting R = a,, Q = a;,
and taking Tr, in Eq. (6) over the wave functions defined
by Eq. (8), we obtain

w

(10}
REE 2 Apj(n)pgp(n Q) Q=0 —0,

n=0 f, k=l, 2

Q1 (w)=

©

7k (n, Q)= S dt P +1] G‘f @1 n),
°

X oxp {it {2 — (—1)% 4, + (—1)/ 34511} (11)

Equation (10) represents the spectral distribution of
local vibrations, which consists of a set of partial spectra
ka(n Q) corresponding to transition between the states
)y —in+ 1)j. Since the frequencies of these transitions
are close to one another, they are mutually coupled be-
cause of the relaxation effects and, therefore, all these
transitions contribute to the function Re wjk(n, Q).

Using the operator equation (A.1) and Eq. (A.4), we
obtain the following set of linear equations for the function
‘ﬂjk(ﬂ, Q):

, g:l e (—1M By — (—1)F 8,185 By,
+ Djkj,k, (")) Pk, (n, Q) (12)
exp (—i
+ Firgm, 0 D g (n 1 Q)= 4y (")-_gr('z +01‘n) ;
I=31 jy, ky=l, 2 b
7y = [exp (Awy) — 1],
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where

Djpjr, (M) =T (0 +1) By + T (n) 355,

+ 0y X [N, (1) Nyy In 1) gy
k 2

2=1,

+ Nk,k, (r) Nk,k (r) ajj, - N”-‘ (1) Nk,k (n)];

Ty = Viggrfig (g 4 1) B (0 — wg0); 13)
99’

T, (m)=Qr+ 1) IV ;; (n) +TAgd, 55
ijj,k,(n- fy=-2(a,+1) rlAjj‘ (r+ 1)Akk,(n)i
(n, —1)=—2T'\md; ; (n) A} ; (n —1).

sk,

As in H;, we have omitted in Egs. (12) and (13) all the
terms related to the nonequidistant distribution of the lo-
cal vibration levels which result in a dependence of the
resonance detuning on the oscillator level. When the de-
viation from an equidistant distribution is much smaller
than the electron—vibrationinteraction constant V, such
terms can be neglected.

We shall now discuss the physical origin of the terms
in Eq. (12). The diagonal terms Dijkjk (n) describe the in-
trinsic line broadening wjk(n, Q); T';s(n) is the reciprocal
lifetime of the state ln)j, and the terms containing T'M, cor-
respond to the modulation line broadening. The nondiag-
onal terms Djk;j k, (n) describe the interference of differ-
ent transitions between the n-th and (n+ 1)-th levels of the
doublets. The terms ijjiki(n’ 1) couple the transitions

In)—~ |n + 1) with the transitions between the levels of neigh-
boring doublets |n—1) —|n) and {n+ 1)~ |n +2).

For large n, the right-hand side of Eq. (12) is expo-
nentially small [proportional to exp(—Ac jn)l, which repre-
sents an important special feature of the system (12).
Therefore, we can truncate the system (12). The result-
ing finite system of linear equations can be easily resolved
on a computer for arbitrary values of the parameters in a
wide range of temperatures. Therefore, the system (12)
yields a complete solution of the problem of the spectrum
of an oscillator in resonance with the electron transitions
and interacting with a thermostat (in the approximation
Ty/wi,|VI/wy 161/wy, [dT/dwy| , BiTy/T, 8| V]/T « 1).

An analytic solution of the system (12) can be obtained
in several limiting cases. For « /T > 1, it is sufficient
to consider in Eq. (12) only two equations with n = 0 de-
scribing the interference of the transitions 10)— |1), and
|0) =~11),. Therefore, we obtain

1 T (Q—3)

13
Qx("’)=;[9(g_3)_Vz]2+r:(g_§)z. ( )

P=T;+ Ty;.

The distribution (14) is identical with Eq. (8) of ref. 5
for G; = 0. For V = 0, it describes a Lorentzian curve

P! I
3 -2 <1 0 1 2

3 Q/mr

Fig. 1. Spectral distribution of local (quasilocal) vibrations which are in
resonance with an electron transition for T = 0, §/T'= 1, V/T"= 0,5,
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with a half-width 2T'. For V # 0, the curve (14) exhibits

two maxima of equal height(7r1‘)"1 which are separated by
5 21 A2/4

a distance 2v V% + §%/4. For |6], |V} « T, the dependence

in the minimum between the two maxima is described by

il
T

i.e., the minimum is Lorentzian with a half-width 2V¥/T.
The width of the minimum is an increasing function of

| 61/V and, for | s| » |V, T, the spectrum exhibits two
nearly Lorentzian peaks with very different half-widths
and intensities (see ref. 5). For intermediate values of
the parameters, the line profile Q{(w) is shown in Fig. 1.
For |V|>|6s|, T, Eq. (14) represents two nearly symmet-
ric (with the accuracy up to terms 6/V) Lorentzian curves
of half-width T.

) (14)

VAT (@ —aF

When the separation of the levels of a doublet is much
greater than the width of the levels,

(15)

[VHVR +1—Vals s, (n41) @ 41Ty, Ty,

the system (12) has an analytic solution at arbitrary tem-
peratures. The solution is given by

©

Q== > D wuln W+ (—0iF ATl

n=0 7, k=1,2
X exp (—hwyn) [4 (278, + D]
' Q Tt}k ")
b s @) = [ T T D ()

Qi (n) =0 —uw; (n+ 1)+ wy (n)
; — - (16)
=+ (—)7 |V Va1 —(=D)*]V I\
3
I'f}k(n)=2[n(2ﬁ1—{—1)—i—lil]I'l—{——Z—I‘”l, n2>1;
by (0, Q) =1¢2 (0, Q) =0;

1 1
=75 (62 + 1) T1 + 5 Ly

Tge (0) = IY, (0)

It follows from Eq. (16) that, in addition to a doublet

05

1T T T

ool 3] 50 77

ool % W 50 60

0.2t

T3 40 50 60
0.4}

0.2f

Y1720 25 30
aor,

Fig. 2. Spectral distribution of Q(w) for ij(n) =8 =Ty = 0. a=c) [VI/L=
40, wy/T = =, 2, 1; d) |VI/T3 = 20, ws/T = 2. Cnly halves of the lines, which
are symmetric with respect to @ = 0, are shown,
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with frequencies w;+|V|, which occurs for i, = 0, addi-
tional quadruplets of lines occur at finite temperatures.

The frequencies of such lines (,.:J(n +1)—w (n) correspond
to the transitions |n)k —|n+ 1)] Their intensity is propor-
tional to exp(—Awn). The lines in question are Lorentzian
with half-widths 2T} (n). When the modulation broadening
is neglected, these widths are identical with the widths
evaluated from the Weisskopf-—Wigner theory.

The terms proportional to the dipole moment of the
electron transition may also make an important contribu~
tion to the absorption cross section and the scattering of
light by the system consisting of an electron and an oscil-
lator. Such a contribution is described by the correlation
function

Qu )= Re | o~ (1) * () efwrar. a7

o

Using the wave functions defined by Eq. (8), we can
write Qg (w) in the following form:

' @
O.(w)=?ﬂe2 2 °kj(")?;‘k("v Q,}, Q'=m—m3;| (18)

n=Q f§, k=i, 2
oj (R)=g(n|o7|n 1) ;=84 (n)ay (n+1).
The functions cpe-k(n, Q) satisfy Eq. (12),in which the
term Ag;j(n) which appears on the right-hand side should
be replaced by Okj (n).

When the condition of existence of a fine structure
[Eq. (15)] is satisfied, the distribution Qe(w) is similar to
that defined by Eq. (16). However, for |V]£ Ty, T'p, the
line profiles of the electron Qe(w) and of the vibrational
Q4 (w) transitions and also their widths can differ consid-
erably (see ref. 5).

3. RESONANCE OF A SYSTEM OF THREE
LOCAL VIBRATIONS

We shall consider a system of three local vibrations,
two of which (« = 1, 2) are high-frequency vibrations and
the third (» = 3) is a low-frequency vibration: & » » ws,
where w ~wy = w3+ 3, and |5 | < w3 The resonance in-
teraction in such a system is described by the Hamiltonian
{4). We shall consider low temperatures T « w; 5, when
the occupation numbers of the vibrations 1 and 2 are ef-
fectively equal to zero (the occupation numbers of the vi-
bration 3 are unbounded) and we shall study the absorption
cross section corresponding to the scattering of light at
frequencies « ~ wy,,. In this case, the calculation of the
averages in Eqs. (1) and (6) requires only the knowledge
of the wave functions and eigenvalues of the Hamiltonian
H, corresponding to the excitation of only one of the high-
frequency vibrations

[n)e=10, 0, )i wy(n)=wsm; n==ny;
In);=13;(m)|1, 0, n—1DLP; ()]0, 1, m, j=1. 2
wi(n)=wm <+ E2— (=178, nz21 w;0)=w,

(19)

where |n;, n,, nz) is the wave function of noninteracting

oscillators 1, 2, and 3 in the second quantization repre-
sentation. The parameters &;(n), B (n), and A, are de-

fined by Egs. (7) and (8), inwhich V and & should be re-
placed by {7 and &'and &;(0) = §1(0) = 0, §,(0) = —1.

In the state |n),, neither of the high-frequency vibra-
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tions is excited and only one of them is excited in the state
In)l 5 . Using the representation defined by Eq. (6), we can
wrlte the spectral distribution of the correlation function
Gt on— Ql(u) at frequencies w = « in the following
form:

-]

~ i ~
G@=zRe X X Ax(mp(n, 8 G=o—u+H2
nm( k=], 2

~ (20)
i, @)= [ de4ln 141Gy () )y 05 (118 + (—1)* Byl
o
Ap(n)=<C1, 0, n|n +1)p==8 (n+1).
It follows from Egs. (A.1)~(A.4) and (19) that the sys-
tem of equations for the functions ¢y (n, Q) is given by

3 (B (0¥ B ) B+ Dy (n)) 3 (n, §)

J=1,2
+ X 3 Fejn Dyj(n+ 1, )= (2 +1)7 exp (—hugn) & (n+ 1),
=31 j=1, 2 (21)
where
Dy j ()= (203 1) Ty [byyn -+ Wy (n + 1)} + 2Tsgdy
+ T VB 1 (28 + 1) (G (n+ 1) By (n
1) +3; (n 4 1) B (n + )] + T () @2)
Fij(n, 1)=—2(23+ 1) Vn + 1 [[3dy; (n
+ 1)+ T (0 + 1) & (n + 2]
Fiy(n, —1) =—23,Vn [D4d g (n) + Tyaadg (n -+ 1) B, (0)];

Nk (n) and Ak (n) are defined by Eq (9),inwhich o; and g
should be rep{aced by @; and B Fk (n) describes the moé
ulation broadening of al{ the local v1brat10n branches con-
sidered and also the broadening of the vibrations 1 and 2
related to their finite lifetimes.

As in the case of Eqs. (12) and (13) for the spectrum
of a resonance electron vibrational system, the diagonal
terms Dgk(n) govern the intrinsic broadening of the line
ok (n, Q) corresponding to the transition |n); —|n+ 1);.. The
nondiagonal terms Dy;(n) describe the interference of the
lines with identical n and ij(n, +1) couple the lines with
different n.

At low temperatures (w,/T > 1), only the term

?k(n =0, Q) shouldbe consideredin Eq. (21). Therefore,
we obtain
" 1 o 1
G =7Re > i (g0 8 =+
k=1, 2
(8820 Ty 4 (B 4 82) 20Ty 4 Ty (T3l — Ty + 72

Ty — Ties — 0 L AP+ (B4 5/2) Ty + (@ — 5/2) Ty + 2V Epal?”
t‘1='P| + Dis -+ rxli

Tyy =1 3 Viiggrfig (g + 1) 8 (wg — wyr);
9’ :

f,=l‘, 4Ty 4 r12;

Typ =72, (Vasggr = Vasgq)? g (g - 1) & (g — wge)- (23)
[T

The necessary condition for the quantity al(w) to be .
positive is the inequality T T'3 = T'},;. The latter inequality
is always satisfied because of the Cauchy inequality, which
holds because Tjy3 corresponds to the interference of the
decays resulting in a broadening of T'y, and I'y (the equality
can occur only for Ty = Ty = FM1,2 = 0).

Equation (23) simplifies in the following limiting cases:
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a) for V = T35 = 0, Eq. (23) describes a Lorentzian curve

with a half-width 2T;; b) for I7y, Tyy3 « &;, T4, we obtain
vef, .

@ —App 3@ —52p"

Qi ()

I

Al

(24)

) 18] < | V] « 1“3, the distribution defined by Eq. (24) is a
Lorentzian curve with a half-width 2VYTy; d) for | V>3],
I‘i, I‘3, Eq (23) describes two Lorentz1an curves with max-
ima at & = 4| V] and of half-width T, + T522T 5,V/] V| it
should be noted that the terms Tyy3 result in different half-
widths of the two maxima).

If the following condition is satisfied for several
n=20,1, 2, ...

(25)

[PI(VRFT—Va)> ] D, (m], | Frjn, ), (81

the spectrum of @ (w) exhibits at T ~ Fiw not only the two
principal max1ma located at § = :!:IV] but also additional
lines and Q1 {(w) is described by the following asymptotic

equation:

~ 1
i) = :2 e (n, 8) oxp (—hogm)f2 (7 + 1)

#=0 k=1, 2

3 Tx () 5 A —
“"“"'Q’=ﬁrn) o B =8F T IVRET Lo
T (n) = [I‘l 4 Tp b Lyy -+ Tppp + Dy (225 4 1)]

v

1V

L[ 20 20y 4 1) 4 By | 4 (AP Ty, + VAT
1t follows from Eq. (26) that each state of the oscil-
lator © = 3 corresponds to two lines whose intensity is a
decreasing function of ng, the relevant dependence being
exp(—Awsns). The separation of the lines with a given k
decreases as vng + 1 —vng and it follows from Eq. (26)
that the half-widths of the lines 2y (ny) are proportional
to ng. Therefore, the condition (25) is not satisfied for
lines with large n; and the fine structure disappears in the
wings of Ql(w). Since yk(n) is a rapidly increasing function
of temperature, the condition (25) ceases to be satisfied at
high temperatures and, for T/ws > |V|/T;, the structure of
@(w) disappears.

Figure 2 shows the distribution @,(w) obtained as a
result of the numerical solution of the system (21) in the
case when the broadening is due only to the decay of the
vibration 3 and 3 = 0. The curves a-c show the temper-
ature dependence of @(u'). The additional lines (with
n = 1) are not resolved in curve d, where |V|/T; is half the
value for the first three curves. It follows from Fig. 2
that the additional lines have only a small amplitude. For
|1/ T3 ~~ =, the maximum amplitude of the line with n=1
is ~ 0.017/2T; and is obtained for /T ~ 1.4

The nonlinear components of the polarizability of the
system!*%® may also make important contribution to the
absorption cross section or to the Raman scattering of light
at frequencies close to w;. In this case, it is necessaryto
evaluate the correlation function Qg (t) =(lay(t) +a,(t)a;it)g):
laf (©) + a5 (0)a7 (0)z]), where the parameterg governs the
relative contribution of the nonlinear polanzablhty The
equation for Qg () is identical with Eq. (20) for Ql(w) pro-
vided G (n + 1) in the expression for Ak(n) which appears
in Eq. (20) and on the right-hand side of the system (21) is
replaced by Gy (n+1) + £B(n+1)vA+1. It should be noted
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that, when the spectrum exhibits a fine structure, the in-
tensity of the additional lines contains a coefficient [1—
1K@V )¢ vn +112, which enhances the amplitude of some
of the lines.

At low temperatures, T < ('3, the spectrum of reso~
nance local vibrations contains a single Lorentzian peak
in the vicinity of the frequency w,;. When the temperature
is raised and the condition (25) is satisfied, additional
doublet lines can appear in the neighborhood of such apeak
at frequencies w,+| V| Vi It should be noted that, at T<<
Wy 2, the fine structure and modulation broadening due to
the resonance interaction with the vibrations 1, 2 do not
occur in the neighborhood of the frequency ws.

4. CONCLUSIONS

The systems of linear equations (12) and (21) describe
the spectrum of local vibrations in the case of a resonance

~of an oscillator with an electron transition and a resonance

of high-frequency local vibrations with a low-frequency
local vibration in a wide range of temperatures and
for an arbitrary relationship between the broadening
and resonance interaction parameters. In general, the
spectra obtained are rather complex and it is difficult
to deduce the theoretical parameters from the ex-
perimental curves. However, the problem simplifies
considerably when the resonance splitting of the levels
of the system under study is much greater than their
width. At low temperatures, the spectra then exhibit two
peaks (such peaks were reported, for example, in refs. 1
and 2). At higher temperatures, the spectra may exhibit
an additional fine structure consisting of lines whose sep-
aration (similarly to the separation of the principal lines)
is of the order of the resonance interaction constant. The
observation of such lines would be of interest, especially
since it would confirm the interpretation of low-temper-
ature spectra. It should be noted that a fine structure can
exist only in a limited temperature range since, at high
temperatures, the individual lines overlap and a single
broadened spectral distribution arises.

The thermal smearing can be avoided if the fine struc-
ture of the spectrum is studied at low temperatures and
the resonant subsystem is kept in a nonequilibrium state
(the spectrum can be calculated by the method of ref. 9
and from the results of the present paper).

An investigation of the absorption (scattering) of light
at higher harmonics of local vibrations could yield addi-
tional information about the energy spectrum of the sys-~
tem since the resonance splitting is proportional to vo
(ref. 10), i.e., it increases as a function of the number of
the harmonics.

Apart from the fine structure, the spectral distribu-
tion of resonant systems exhibits curves with a narrow
minimum {see ref. 5 and also Eq. (14)]. For example,
when the width of the electron levels is much smaller than
the width of the resonant local vibration levels, the mini-
mum in the spectrum of local vibrations can be studied ei-
ther by the inelastic neutron scattering method or by op-
tical methods (when the electron transition is forbidden).

We have studied above the spectral distribution for
systems whose energy spectrum in the absence of relax-
ation can be obtaiped analytically. However, the present
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method is applicable even to more complex oscillator sys-
tems. This is due to the fact that the free term in Eqs.
(12) and (21) and in similar equations describing other
systems decays exponentially as a function of the level n
[as exp (— wyn/T)], which makes it possible totruncate the
system of equations and consider only several excited
states whose energies can be obtained numerically. The
degenerate local and quasilocal vibrations of centers with
a high symmetry represent an example of such systems.
The anharmonicity of such systems may give rise to a
splitting of the excited levels.!! The system of three res-
onant local vibrations with frequencies of the same order
of magnitude represents another example.!

The authors are grateful to A. Yu. Tkhorik for his
help in numerical calculations.

APPENDIX

Using the chronological ordering, we can eliminate
the phonon operators from the expression for GQ(t) in

Eq. (6). Applying further the asymptotic method” att » .
w;(l(wn >» Ty, ), we obtain the following equation:

9Gy
5 = 2 I, =0 (A GQL — Za,Goaj’) + 0,]A,
x

+ 1, Gg), — 264G e} — PGy + LGy — iZP,[ﬁ,, Gol:

=1 (0) = lexp (ho) — 1 i, =afa,

(R, Ql,=RQ + QR,

where all the operators are taken at a time t.

(A.1)

The parameters of the damping due to a decay T,
and a shift of local vibrations P, are quadratic functions
of V.,(q, qu v; they are defined, for example, by Egs. (9)
and (20) of ref. 7. The term I‘MGQ in Eq. (A.1) is related
to the fourth-order anharmonic terms in Hij and describes
the modulation broadening of local vibrations!?:

PuGy =7 A (g + 1) blug —wge) {[83nr Gol, — 2ggsGelayr}s )
99"

A.2
Bger = 21“ Veget Aue (4.2)

The operator LGg, is due to terms containing Vyy1q
which appear in H; and describes the renormalization of
the frequencies of local vibrations and the broadening due
to the effects with the participation of several local vi-
brations:

LGQ =~ !Zx, Vear [fiufiar, Gg] — iPysa [a'f“:‘f: + ayatal, G,

—'n {(7s -+ 1) ([Ay (B + 1), Gg], — 2maiGgaia,)
+ A ([(R1 4- 1) s, Gp),

- Zafa,an,a',*)} — Tyas {(27 1 1) [afasas + a,aiaf, Gil,
— 2(fi3 - 1) (803G ga} + asGgatay) — 27, (afasGgay + a6 gazad)};

Tyy== 2 Viagh (w3 — wy);
g

2w,
iTyes + Plz:=§ ViggVsg Tm—,——il);“—-—w; . (A.3)
The parameters Vi, and the renormalization of Py
due to the terms Vi g aTe given by Eq. (26) of ref. 7. We
shall also assume that 2., does not lie in the continuous
spectrum. The resonance of local vibrations with an elec-
tron transition is described only by the first term in Eq.
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(A.3). In the derivation of Eq. (A.1), we have retained the
terms of the type I't, At and neglected the corrections pro-
portional to T/w,,, TAfy, A/wy, |dT/dwy,] « 1 (A is the
maximum gap between the levels belonging to a single
group). Moreover, we have neglected the decay broaden-
ing due to transitions between the levels within each mul-
tiplet. On the other hand, the ratio T/ A has been assumed
to be arbitrary.

It follows from Eq. (6) that, when Q is a unit operator,
GQ(t) represents the density matrix of a selected resonant
system. It should be noted that the first term on the right-
hand side of Eq. (A.1) has the same form as the right-hand
side of the transport equation for the density matrix of a
harmonic oscillator which was studied inref.13. However,
the time dependence of the operators a(t) in Eq. (A.1) is
rather complex [it is not given by exp(- iw,,t)]. Moreover,
our consistent quantum-statistical derivation of Eq. (A.1)
yields additional (compared with ref. 13) terms, which
describe the renormalization’ of the spectrum, the modu-
lation broadening, etc.

For nT' /T « 1, the initial condition to Eq. (A.1) has
the form

G (0) =Q exp (—AH,) (Tre )™, (A.4)

We can write formally Eq. (A.1) inthe following form:

G

-2 (A.5)
ot

=Gy —i[P ), Gy

where T and P are Hermitian operators, evaluated (similar-
ly to GQ) in the interaction representation with the Hamil-
tonian H;. The second term in Eq. (A.5) can be eliminated
by the transformation to the interaction representation \yith
the Hamiltonian Hy + P(0). Therefore, the shift terms P
in Eqs. (A.1) and (A.3) lead only to a renormalization of
the corresponding parameters in Hy, which has been as-
sumed to be carried out.
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