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The correlation function @,,(¢) of the normal coordinates of singled out nonlinear vibrations
interacting with the vibrations of the continuous spectrum of a medium (e.g. of local or
quasi-local vibrations in crystals) as well as its spectral representation @, (w) were investigat-
ed. The calculations have been carried out for the case of high temperatures when the classi-
cal approach is applicable. The use of asymptotic methods of nonlinear mechanics and some
results of the theory of random processes allowed to consider the case of an arbitrary ratio
between the constants characterizing the non-linearity of singled out oscillators and their
energy of interaction with the medium (but with the assumption that both these constants
are small). In this general case asymptotic explicit expressions were derived for Q,(¢) and
Q.(w). Using the Fokker-Planck equation for this problem we have also derived the
difference equations which determine @,(c).

PaccMorpeHa KoppedAlMOHHAA QYHRIUA §,(!) HODMAJLHBIX KOOPAMHAT BEHI-
TeJeHHBIX HeJHHeHHBIX KojeGaHuit, B3auMoecTBYOIIHX ¢ KoJle0aHNAMH Hempe-
PHIBHOIO CHeKTPAa cPefibl (HAlpuMeD, JOKAJIBHBX HJIM KBA3WIOKAJILHBIX Kojeba-
HUI B KpuCTalljle), I ee CIIeKTpaJbHOe IpefcTaBieHne Q,(w). Pacuer nposeneH B
nipeHeOperkeHUH TOHKOI CTPYKTYPO# cIleKTpa OJA clIydas BHCOKUX TeMIleparyp,
KOorjla NpHUMeHHMO KJjaccuyeckoe npubaukenue. IHcrolibzoBanne acuMIToTH-
YeCKHX METOI0B HeJMHeHHOW MeXaHUKW M HEKOTOPHIX pe3y:abTaroB TEOPHH CiIy-
YafiHEIX [IPONECCOB MMO3BOJINIIO0 PACCMOTPETh CJay4ail NPON3BOJILHON0 COOTHOIIEHNA
MEy KOHCTAHTAMH, XapaKTePU3YIOIINMI HeJHHEHHOCTh BHIIEIEHHBIX OCHMIIA-
TOPOB M OHeprui0 X B3aUMONeUCTBHA cO CPeNloil (HO B MPEINMOII0:KEeHNe, YTO ITH
KOHCTAHTH HeBeauku). B aToM ofuiem ciydae NoJy4eHB acHMITOTHYECKHE ABHBIE
BHIpa:KeHUA OIA Q) 4 ¢, (w). B npusioxkeHnu npu NoMOMM paccMOTPEHNsA ypas-
Heuna Dorkepa-Ilnmanka 1A 2Tofl 3a7a49M NMOJYYEeHH DA3HOCTHbie YPaBHeHHHA,
orpegeAmue @y (w).

1. Introduction

The interaction of singled out linear oscillators with a medium was the subject
of a number of papers. This problem was considered in connection with both the
general problem of investigating the process of approaching the equilibrium state
in a sub-system (see, for example, [1] to [3]) and some special problems in the
theory of lasers (see, e.g., [4] and [5]) and in the theory of local (LV) and quasi-
local vibrations (QV) near impurity centres in crystals (see, for example, [6]).
In the latter case, the spectral distribution @, (w) of the time correlation func-
tion Q,(t) of the coordinates of LV or QV which determines the spectral distribu-
tion of the infrared absorption coefficient or the inelastic neutron scattering
cross-section was investigated in detail.

However, some results are significantly changed if the non-linearity of the
singled out oscillators is taken into account. In particular, the width and shape
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of the distribution @,(e) should be strongly affected by the non-equidistance of
the energy levels of the nonlinear oscillator. As it is shown in the papers [7] and
[8], such a non-equidistance depending on the ratio between its value Aw and
the reciprocal lifetime of the localized modes, 1/7, may lead to the appearance of
a fine structure in the spectral distribution in the frequency range near the fre-
quency of LV or QV, or to the formation of a single broadened distribution. Its
width is not connected with a finite lifetime of the localized state and may greatly
predominate over 1/z.

Calculations of the spectral distribution with all these effects being taken into
account were carried out in the works [7] and [8] by the method of the Green's
temperature function, but expressions for the Green’s function and for the corre-
lation function had been found only in the extreme cases Aw > 7-tand Aw < 771,
while in the general case the expression for @,(w) has not been derived. .

The problem apparently becomes simpler at high temperatures when 7' >
> h w, and the occupation number of QV (or LV) n, > 1. If here the fine struc-
ture of the spectral distribution is smeared or if only the distribution averaged
over the fine structure is of interest, the calculation may be carried out by the
classical theory (the fine structure which is defined by the level discreteness may
be investigated only by the quantum theory). This allows to use the developed
asymptotic methods of nonlinear mechanics [9] and some results of the theory
of random processes. Hence, as will be shown below, it seems to be possible to
determine the time correlation functions and their spectral representations for
any ratios between Aw and 1ft.

The solution of the problem may be quite different depending on the fact
whether the frequencies w, of different LV (or QV) are coincident (close) or
strongly different. Below we shall consider the simpler case of centres of low
symmetry where the degeneracy is absent and the w, are highly different. We
shall restrict ourselves to the case when the w, are not close to some combination
of the frequencies w,y + w,.

Consideration will be made with the help of the model of a weakly bound
impurity atom already used for the investigation of the spectral distribution QV
(see, e.g., [8]). It is supposed in this model that the force constants of interac-
tion of the impurity atom with the crystal atoms are much smaller than that of
the interaction of the crystal atoms with each other.

If the impurity atom mass is comparable with that of the crystal atoms, then
the frequencies w,, lie in the low-frequency range of vibrations of the continuous
spectrum, and if the state density is sufficiently low, then QV appears. Butin the
case of very light impurity atoms, when w, does not coincide with the frequen-
cies of the continuous spectrum, LV appears. It is noteworthy that some results
obtained in the model under consideration are qualitatively applicable to more
general models of vibrations of impurity atoms and molecules. It will as well be
supposed that the anharmonicity is sufficiently low and hence the anharmonic
corrections to the frequencies w, are much smaller than these frequencies.

2. Exclusion of the Vibrations of the Continuous Spectrum

The oscillation amplitude of a weakly bound impurity atom greatly predom-
inates over that of the crystal atoms and in a zero approximation the latter
may be regarded as immovable. In this approximation even QV of the impurity
may be considered as LV of nonlinear oscillators, and the interaction of these
oscillations with that of the continuous spectrum (harmonic and anharmonic)
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may be treated as a small perturbation which turns LV into QV. The vibration
of the continuous spectrum at the frequencies e, corresponds in the zeroth
approximation to the oscillation of, generally speaking, an imperfect crystai
from which the impurity atom is taken away (the index k characterizes the
branch number and the wave vector of a plane wave distorted by the defect).
For simplicity we shall assume that LV or QV of another type do not appear in
the vicinity of the impurity.

It is convenient to choose the normal coordinates and momenta of LV, ¢, and
x> and of the vibration of the continuous spectrum, ¢, and p,, in such a way
that with neglect of the above mentioned interaction they may diagonalize the
harmonic part of the Hamiltonian. Then for the impurity atom located in the
position which has an inversion centre, the Hamiltonian of the system may be
written as

1
H=Ho+ZHka+§2HM'Qka';
3 k&
H::Z lpg—l-_l_w?q?_f_i q"‘.{_
Q <~ \2 % g Wxdx 4}’xx x
3 ’ 2 2 1 2 2 2
+g2 ym'qnqx'JrEkZ(karwqu),

-Hk = Z Exk Gy + Zan'k Qe 9’ »

xxn

chk’ = ZEukk’ ' + Z’l"]xx’kk’ Qo Qx -

Here and below the prime at the sum over x »° (or over x’) means that in the
summation one should omit the term with »* = ». The factors y, ¢, &, 5, and {,
according to our assumption, include small parameters. In equation (1) the
terms are omitted connected with the anharmonicity of higher order as well as
terms (of the type ¥, . ¢x ¢« ¢») which lead to corrections of higher order of
smallness as compared to the terms taken into account.

In the following for the system with the Hamiltonian (1) we shall determine
the time correlation function Q,(f) = {¢.(t) ¢.(0)) ({...) denotes statistical
averaging) and its spectral representation @, (w). The function @,(w) with the
accuracy to factors weakly dependent on frequency determines the spectral
distribution for the peak of the infrared absorption by LV or QV in the range
@ = , or for the neutron inelastic scattering in the range of transmitted energy
= % w,.

From equation (1) it follows that the equations of motion are of the form

ék+w%Qk=~Hk_%Hkk'q37 (2)
Qx“f‘Q)QQn‘{‘Vquz‘f““z*Z;‘)’xn’%eq;c’:—%Hka“EI%Hkt'QI:Qk'§ ()
o0H . SH, .

P=5" Hiv= b B
q# CQx

It is convenient to exclude from these equations the vibrations of the contin-
uous spectrum and to derive the equation dependent only on the coordinates of
LV or QV and some random function (Bogolubov was the first who made this
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exclusion when solving the problem of the relaxation of the harmonic oscillator
[17). We shall begin with the consideration of those QV for which the interac-
tion with two modes of the continuous spectrum (the last term in (1)) is of much
less importance than that with a single mode. Accordingly let us set &, = 0,
Nwx k= 0. Then the general solution of (2) may be written as

¢
%W=Aw%@u+¢ﬁ~ifHMHmmU~ﬂh- @)
0

Here the amplitude and phase, 4, and ¢, are determined from initial conditions
and have the meaning of random values. Substituting equation (4) into (3) we
get the integro-differential equation containing only normal coordinates of QV
under consideration:

. 3 o 9
qx-i-wqu"f-qui—!‘ Z View qxq;'zfx+Lu- (5)
27

Here g, = ¢,(t) and
fo= — %' H(t) Ay cos (wy t + @) »
, .
mzmm=f§$mmmmmmu—nw.
k

0

(6)

In the case of LV the relaxation processes are due to their interaction with two
modes of the continuous spectrum, and hence it is necessary to take into account
the last terms in equations (1), (2), and (3). When doing this care must be taken
of the smallness of the values ¢, &, , and £, while the higher terms (higher than
the second order) with respect to these values must be neglected. We shall solve
equation (2) by the iteration method. Taking last term in (2) into account,
the term H,(r) in (4) should be substituted by H.(z) + 3 Hiw(z) qu(z). We
=

then put the generalized equation (4) into (3) fulfilling the decoupling (see [10])
that is taking instead of gy (f) gx~(z) their average value obtained in the zeroth
approximation, {qx(f) g (7)) = O 1 £T wi” cos wy (t — 1), and eliminating those
terms which will not contribute (in the approximation under study) to damping
and shift. It will be found that ¢,(¢) is determined by equation (5) if we sub-

stitute f, and L, for f,, L,. Here
~ 1 x
fe=Fu— ggﬂw Ay Ay cos (wp t + @) cos (o t 4 @) ,

1 ! (7)

L~,, =L, + kT 3 Hip(t) j Hy p(r)sinwy (—1) cos wi (t—7)dr.
. .

2
kk Wy W

3. Determination of the Time Correlation Funetions

Of the utmost interest are the functions Q,(¢) in the large time range ¢ > ¢,
where ) is the highest of the values w; !, wg! (wy is the maximum frequency of
phonons). To determine @, (¢) in this range it is useful to seek the solution of
equation (5) with the aid of asymptotic methods of perturbation theory which
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give approximate solutions slightly different from the exact solution in the whole
time interval. We shall illustrate the use of these methods at first on the example
of QV where we can neglect the anharmonic interaction with the vibrations of the
continuous spectrum and set & =% = { == 0 (later the results will also be
formulated for the more general case). In this case f, and L, in equation (5)
have the form

fe = —Zk'snkAkCOS (wr t + @i)

11
Ligl=[ 3 Kow (t =) ge() dz; )

1 .
Kxx'(T) = Z = Ef Sk SIN W T .
£ W

For determining the asymptotic (on small parameters ¢,;) solution of equa-
tion (5) with the right-hand side (8) we use the method analogous to that of
averaging in nonlinear mechanics [9]. For this we shall go from the unknown
functions g, and ¢, to the new unknown functions u,; and u,s:

= 2 Uus €XP(L W 8) , G = 0 3 W Uy €XP (3 Wy t) . (9

3 [
Here a == 1, 2; ,] = ,; Wyz = — Wy; U1 = k2. From equation (9) it follows
that 3 e, eXp(t 0y £) = 0 and g, + ©F g = 1 3 Wy Uy, €XP(Z W,y ). Having

in mind these equalities by substitution of the values (9) into (5) (with the right-
hand side (8)) we get

1
. . —lwxat .
> Vux' Y Una + Yo € fx + Ana[u]’ (10)

Uy == — =
@ 290ny v

% &
t
1 . .
Ax(x[u]Z 27{;(;_ Z e'L(w,,,“,——w,m)lfox,(t) e~tonwwt g, (t — ’L') dr R
o 1§
0
Y = U1 U2 -

In equation (10) according to the idea of the averaging method all terms of the
tyPe (3 Yun/2 & ) U1 Unz €Xp (— 21 @, t), proportional both to the small
parameter y and to the fast oscillating factor exp (4 2 ¢ w, ), are neglected (as
well as the terms ~ exp [+ ¢ (wy £ wy) t]). They are of importance only for the
investigation of the spectral distribution in the range of multiple and combina-
tion frequencies. Since in the present work we are concerned only with the range
of main frequencies w = w,, the small terms pointed out must not be taken into
account. For the same reason we may preserve only the term with x»’ = s,
a’ = « in the sum over %’ ' in the expression A,,[«] in equation (10). All these
terms having been neglected, the function u,, contains only the smooth slowly
varying (at times = #,) and the random parts. In this respect it is more conve-
nient that the initial unknown function g, also includes fast oscillating factors
exp (4 s w, t), -+ -.
Introducing the function

&2
plo)do = 3 z;f (11)
o< wpl w+dw

33 physica (b) 48/2
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we may go from the sum over & in K,..-(7) to an integral over o and after ele-
mentary transformation we may write the term ,,[«] in (10) in the form

¢

(5.
1 : .
A ful= — Lo fdw w g,,(w)fdr [e-iloxa—w)T _e=iloxxto)T] 4, (t—7) .
0. (12)
In the range of large times |t} > f,, neglecting the terms ~ &2 or {y/|t|, we may
substitute u,,(t) for u,, (¢ —7) in (12) and take this quantity before the integral

sign (one can become sure in this when considering the next expansion term of
Uy (¢ — 7) in powers of 7). Then

As[u] = (= Iysignt + @ Po) ey |8 >4y (13)
7 1 00oozg,,(m)
Px-zgn(wu)7 an'—2wx“wa:_w2dw

0
(“P’’ denotes principal value).

Once the substitution of equation (13) is made the integro-differential equa-
tion (10) is turned into a stochastic differential equation. Markov’s random
process corresponds to its solution and therefore this solution may be found by the
consideration of the Fokker-Planck equation. This method is explained in the
Appendix. Here we shall use another method allowing to find the time correla-
tion functions in the explicit form.

The term containing ¥, %,,=u.1 Uy Uy, transforms the differential equa-
tion under study into a nonlinear one. But formally we may consider it as a line-
ar one assuming ¥,  to be a known function. Then its solution may be written as

o (£) 7IPH3t = g €i9%x eFxaO= Tl 4o oFxal® g, (1) (14)

xuo‘(t) = 2 Lk :xx(t) ei Prx s
koy

¢

e A ) ) ‘
Tprexay (b)) = Zﬁue“""“"/e”“’“l"“’" Vaexp [L 4] — Fy.(t)]dt
4 Wy,
0
. 31
T 2wy,

t
Fxx fZ" )’xx' yu’(tl) dtl .
0

Here u,; and ¢, are the initial amplitude and the phase of vibration x, ¢, = ¢,,
P2 = — Qus Qi1 = Py P2 = — Qi Oy = Wy + P.. xxl(t) = .’L‘,fg(t).

In fact equation (14)isan integral equation which defines u,, but hasa con-
venient form for the averaging necessary for the calculation of the correlation
functions. Such a calculation is reduced to the determination of the averages
exp F,.(t)> and (Re z,,(t) exp [F,.(t) — ¢..x]> over the random phases @i, @xs
and the amplitudes 4, (averaging over u,, will be carried out separately). The
corresponding averaging may be performed because the random process . ,(f),
as will be shown below, turns to be normal (if neglecting the corrections ~ ¢2).
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Such a process is characterized by the correlation function
<.E,”‘(t) (l't' a'(t’)> =

1 . P . -
= S 2 ek bww Ay A e DAl T bl [ [ exp [1 (g, — Wns) b —
16 Mex Wi ' \kEK x5, 00

—1 ((UL" xg_(fax’(x’)tz-*" ) (‘Pkal_“(plc'un)_*‘lwxltll +Px'llzl _Fx\x(tl)—'f“Fx'a'(tz)] dtl dt2>z

kT , 3 4
gl e P =Txl1 [dt [tyexp[Lulty|+ Tt —Fraa(t)+ Fralts) )X
0 0

= (Sx x'(sx X'

w3

KBty —ty) = 2 A V) b s (15)

kT
:‘l(t? tl) = mexp [— Fx (Itl + lt’l)] [QXP (2 Fx”min.') - 1] .
Here |ty is the smallest of the values [¢], [¢|, and account is taken of the fact
that (42> = 2 kT w; 2 and that g,(w,) is related with I, by equation (13). When
calculating (15) we preserve only the terms £ = %', a; = a, = &, while the integral
[>o]

over the frequencies, [ g,(w) exp [ (0 — @,) () — &,)] dw, is reduced to the

3-function 2 x g,(w,) 80 (t,—t,). In the range of time significant for further study
[t — '] >> t,, this leads to a small correction ~ &2 or {y/|t — ¢’|. Of the same order
is the expression under consideration at x == %’ or & == a’ when in the integrand
a fast oscillating function occurs. Since, as it is evident from equation
(14), the expansion exp[— F,,(¢)] includes terms with random quantities
eXxp [¢ (Prsy — Pra,)], One should also take into account the terms with & == &
in the sum (15). However, the integration over the frequencies w; and wy will
lead to the appearance of the §-functions 3 (¢, — 4) 3 (¢, — ¢,) in the integrand
where #; and ¢, are always less than one of the variables ¢, or ¢,. Hence the terms
with £ == &’ lead only to the corrections ~ &2 and may be neglected. Important
is the fact that the average (x,.(f) 2¥ . (¢'))was obtained asymptotically in such
a form as if the value z,, had not comprised the random function exp [—F,,(t)].

In the same way, neglecting small corrections and taking into account the
appearance of a d-function with argument differences in the integrand (these
arguments are always different in the integration interval under study), it is
possible to show that the F,, are omitted in the expression for the averages
{Zyu(ly) . . . ¥ »(t,)> which define the fourth moment of the distribution, and for
the averages of the larger number of factors determining the highest moments.!)
Therefore asymptotically the presence of F,, in (14) does not affect all the mo-
ments and hence the distribution of the random quantity z,,(f) which may be
considered as the sum of independent random terms of the type A, exp (i gr.)
(with fixed coefficients).

1) If in the 2 p-multiple sum over k; some of the k; = k; coincide, the summation over
these k; (as it was in equation (15)) causes the appearance of the 3-functions § (¢; — ¢;) and
cancellation of the factors exp [Fy4(f;) — Fxa(t;)]; hence this part of the expression is reduced
to a 2 p — 2-multiple sum and may be considered by the induction method. But when all
&; are different, then, as may be seen from the integral form of (14) for F, .(¢), the largest
from the arguments of the functions z.,(¢) always predominates over all the other times
which may enter into the arguments of the 3-functions.

33*
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The distribution of such random function may be determined with the aid of
the Bogolubov theorem [1]. According to this theorem, if in the sum of N terms,
2, (t)=23 Tura(t) exp (¢ @i,) the quantities x, . , are independent random variables,

ko

@i« are random phases uniformly distributed from 0 up to 2z, and at N —
24 )= 2 3 x,pa(t) (') tends to coefficients of positively determined form
£

while 3 2,;4(t,). . . #xa(ty) —0, then the distribution of the random function in
3

the limit NV — 2o appears to be normal. This means that the probability of
the values z,(¢,) (x, = =, + % ) at times £, &y, . . . , &, has the form

w (ol ) =w (. 2(t). ) =

= (27)"™2 |4 Y2 exp [.__;_ 3 Agh .y xlty) x;(tn;)]; (16)

n,n =1
1 ; 1 . , 1 .
Ainw = El {y{tn) Th(tw)) = 5 (@ultn) ultn)) + 3 $@(tn) b))
where |4,.,,| is the determinant of the matrix 4,,,.
In equation (14) for F, = F,, it is convenient to go from the integral over ¢,
to the sum over the close equidistant points ¢,. Then, taking into account that
Y = Uy Uy 2 18 also determined by (14), we get

Fx(tm) = F:(tm) + Z Fv(tn);
Flltn) = 3 Foulta)

3@' 'yxx’ 2
4wk _Eu”/o [l — exp (—" 2 Fn’]tl)] ’

Foot) =

Frn(tn) = A 3 [t (ta) Re (€572 @ 1 (82)) + Vs |21 (£0)]2]5
n=1

31

t
Vi = myxx’ s ,uxu’(f'n) =2 Vi Ux' 0 e~ Lwrltnl ) 4= ;7’:—. (17)

Let us write the results of averaging exp [F,,(t)] as exp h,, (). Then it is
evident that

Cexp Fiult)y = exp [Fy(t) + 3 hux(8)]; (18)

hnu’(t) - qu,((t) R'e eXP (Z fo') I:’T(tj + yun’lxn’ l(t)[2 ’

where the bar denotes averaging with the statistical weight, w(. . . zu(t). . .) X
X eXp Fyu(ty). Calculating the average value with such a normal distribution
which is determined by formulae (16) and (17), we have

kn%'(tM) = ‘u’tk'(tm) Ekx' + 2 Vier' ﬁ;’lmm + Voex E:x'; (19)
Emc’ =4 Z ,uuu'(tn) ﬂ;'lmn 3 ﬂx’nn’ = A;’lnn’ —24 Vst Onn' -
n=1

Here the relation is valid
(@ (tn) e i0% eFx )y = B, exp [Fultn) -+ 5 buw(tn)] (20)

which is used below for the determination of @,(¢).



Classical Theory of Nonlinear Oscillators Interacting with a Medium 505

The matrix B7' satisfies the matrix equation B (A7' —2dv,,I) =1
(I is the identity matrix) or 87 (I — 2 Aw,,» 4./} = A,,. Replacing in this ma-
trix equation the sum over » again by the integral and introducing the notation

e = Xulty) (m is fixed) we get an integral equation which determines the

function X, (¢) that is the S’y » comprised in (19):
¢
Xoll') — 20w [ Xolt”) A, ) e = Ayt 1) . 1)
0

Taking into account equation (15) for 4,.(t', t'’) we shall rewrite this equation in
the form of
) ¢

7
X () — %vw e~ Tt fsinh (I ¢7) Xppo(t7) At —
0

t

kT
——Iigv,m/ sinh Iy & | e=7%®" X (¢') dt”’ = s—5~e~Iwisinh [, ¢ . (22)
Wi 2w

% %’
¢
After this equation was differentiated twice with respect to ¢ and the initial equa-

tion multiplied by [ was subtracted from the result, we may reduce it to the
differential equation

X () — adw X(t') = 0; (23)

azx' = I’S’ _lc’g‘ru'vxn’ = F:’ _zm
w? 2 w, wi

The constants of the solution of this equation depend on t. They may be defined
from the requirement that the solution should also satisfy the initial equation
(22). Then

X, () = k?Ta«f;’i [@y cosh @,y t 4 Iy sinh a,, t] 1sinh @, t'; £>0. (24)
Substituting the obtained quantities X,.(t,) into (19) instead of 87%;, and
replacing the sum over # by an integral we may find %,,/(f) and then P (t):

33 tanh a,., ¢
hux’t Fg’t =5 Vax :' = -
(&) + F.(t) 2w“7”u°a“,+]’n,tanha,m't

—In (cosh Ay b+ Ly sinh @, t) +Tet; t>0. (25)

% 3"

Subsequent determination of {exp F,> and (z,,(t) exp [F,,(t) — ¢ ¢,]> from
equations (18), (20), and (25), the use of equation (9) and (14), and integration
over u, o with the statistical weight

2

X

4 wyy 2wy
w(U, ) = T Uy o €XP | — a u;'o)
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yields the time correlation function of the oscillation »:

Q"(t) = «qk(t) qn(O)» = e‘id)"t«uxl(t) O"ipxlurl(o)» T c.c. = 2 Re [ei“.’x!tl én(ltl)];
(26)
> kT
Qu(t) = 3o ()] f] [yak(t) eTx1],
Fx' (1 —2 iam,)

Yur(t) = cosh a,, ¢ +
429

sinh a,,, ¢

2

SET yuw
Qyyr == o537
8w, wi Iy

Here the a,, are determined by equation (23). Equation (26) defines the correla-
tion function @,(¢) in the explicit form. Due to the fact that above we have used
asymptotic methods which preserve the terms ~ ¢2|t| but neglect the corrections
~ g2 being not proportional to the large time |¢|, this expression is valid only in
the most interesting range of large times and is inapplicable for || < ¢,.

The results given above were obtained for the case QV for which only harmon-
ic interaction with the vibrations of the continuous spectrum is essential. But in
the same way one may consider LV and QV for which anharmonic interaction
proportional to g, ¢; qr is also of great importance. Performing the same cal-
culations as were done above (with the evident difference that now z,,(f) will
be a double sum of random functions exp [¢ (., + @rs,)] but not the sum of
exp (¢ (pka)), it is easy to see that if this interaction is taken into account, then
Q.(t) is again defined by equation (26) and only in I, and in P, new terms [, P,
will appear where

, T

IS 3
Wi — o'

STk g
P, =8£7_’_P [[gx(w) + gr@)]w?
W

2
+ ’ ’ fnkk’
i(w).dw = Bl
gele) kzk w} wf
o' <optop <o+ do’

(27)

Consideration of those terms in the Hamiltonian of anharmonicity which are
proportional to ¢, . ¢x Or ¢, ¢ ¢: qw, i.e. containing the product of two coordi-
nates of LV or QV, causes more significant change in the results and leads to both
renormalization of the quantities v, (proportional to {2, #%) and modification of
the form of the function Q,(t). But in the present case of weakly coupled impu-
rity atoms the corresponding corrections are usually not large and we shall not
congider them here. (In the case of high-frequency LV where g, (w,) =0,
g% (w,) = 0 and the main contribution into damping comes from the terms of the
type ¢; ¢ ¢& in the Hamiltonian, the joint consideration of these terms and the
terms with ¢; g5 have been already done in the quantum theory [7].)

Of greater importance is the renormalization of the 9, , when impurity atoms
are in sites which are not centres of inversion and H,, contains terms 3~ B, q, g%

xn
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which were not taken into account in (1). It is not difficult to see that they lead
to the correction

off. __ _ 3 Zﬁi ; 2« 3 ﬂ’z"t e — I_Oﬂ’:J
Vs = Vex Ty “ w3 T 40l — wy w:
Ly — 8B - R 4@‘1‘.511’..
Vo T Vx 4 @) — w¥) (o — o)) w2
4 ﬁufifﬁ_ _t 5 ﬁiﬁi‘i"_"_; D
Wy 3 7 Wy
(" x,%")

4. Investigation of the Spectral Representation

We may use equation (26) for @,(¢) for determining the spectral representation

‘ Ot () = L y ~iwt ~_1_ 5 i 2ut df -
Qo) = @) =g [ @0ttt = L Re [Quyesiotar 29
— o0 0
Q. =w— @, |Qn|<wm Wy

of the time correlation function. Since equation (26) is valid only in the range of
large times |¢| >> ¢,, the spectral distribution may be obtained by such an asymp-
totic method at small |2,| < f5*, i.e. in the region of the peak of the spectral
distribution, w = &,. On the far wings of the distribution at | Q2,| ~ Min {w,, o}
the deduced formulae ceased to be valid, but @,(w) in this region may be easily
obtained with the aid of common perturbation theory.

Equations (28) and (26) determine @,(w) as the integral of elementary func-
tions and may be used for numerical calculations by a computer. An alternative
way of numerical determination of @,(w) based on the solution of the difference
equation system is described in the Appendix. If we may ignore the interaction
of the singled out oscillations with each other, then @, (w), which is considered as
the function £2,/I,, depends only on the single parameter « = «,, where «,,, =
= 3 kT y.v/(8 w, 0y I'y). The curves of the dependences of Q. (w) on 2,/I, at
different values of «, calculated from (26) and (28), are shown in Fig. 1. Fig. 2

Fig. 1. The spectral distributions @ x(w) for different values of the dimensionless parameter x
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Fig. 2. The dependences of the position of the

n maximum Qx m and the integral width of the
spectral distribution Swi on the parameter «
(&
2
~
é\
-5
N
&E
QN
1
0 2 4
a———-

gives the position of the maximum £,,, and the integral width of the spectral
distribution, dw; = @;'(£2,m) (the integral intensity is normalized to 1),
expressed in units [, as a function of a.

For a,, = 0, Q. w) is described by a Lorentzian curve with maximum at
o = @&, and with integral width dw; =7z [,. As « grows the maximum is
shifted (to lower frequencies at v, , < 0), the spectral distribution becomes more
and more asymmetric, and the ratio 3w;/I, is increased tending to an asymptotic
value of 2 ¢ & &~ 5.44 «. In the case of QV, if I, does not depend on temperature,
a is proportional to 7, i.e., the asymmetry and the width of the distribution
should grow with increasing temperature. If in the case of LV we have I, ~ T,
then with increasing temperature the width of the distribution grows proportion-
ally to 7" but its form remains unchanged.

The expression for @,(w) may be reduced to elementary functions at low and
high a. When a is low, then,expanding (26) into powers of v,/ I, up to quadratic
terms inclusively, we find that

~ kT .
Q,,(t)—-—zw:exp[—l’,,t—{— 27'§axx’ I (1 +6xx’)t] X
X {1 + Z,a:%x’ (1 + 6:¢n’) (1 —e It 2 Fx' t)} 4 (29)
ie.
1 kT I,
Qu(w) 27Z 6(),‘ {TE’_}:D + 2 anu ( + axu’) X
,_,_]_v’i,,¥ — *!w" + 2 F",',,, | Jj, (I — 20) . (30)
Ii4-927 (D + 2710+ 27 (1’7—}—7!"2)2 T f
Q;=Qx_22axn x( +6xn)*9 “‘—ZkTV’”‘ +(s,¢,¢)

It may be seen from equation (30) that in this extreme case of small non-
linearity of singled out oscillations the spectral distribution is described by a sym-
metric (if we neglect higher terms with regard to y,./[) curve. Its maximum
is shifted with respect to the point £2, = 0 by a quantity proportional to tem-
perature and linearly dependent on y,, . The integral width of the curve (30) is
equal to w1+ 43 &t (1 + 0uw) I IV (I, + 2 7T)1]. These results

o

with an accuracy to terms of the higher order of smallness coincide with the
results obtained for the case of low y,../I", in the quantum theory [7, 8].
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In the opposite case of large a,, > 1 we may set in (26) according to (23)
Qe = 211 &}y [y. The width of the distribution @,(w) is dw; ~ a,, I,. For
the definition of @,(w) in the range £, ~ 3w, the region of low ¢ is essential when
Y (t) Xp (— L 8) =1 — 20,0 I t — 43 0l 13 3. But if 2, — 0 then the
general expression (26) for y,,(t) should be used.

In the limit of I, — 0 equations (26) and (28) determine in this case the
distribution obtained before [8] neglecting relaxation while at finite but small
I', they determine the correction for this distribution. If, for example, we can
neglect the interaction of a given singled out vibration with another one then
obtaing

T T19, Q) 1 (0)] e ‘
g 3¢ = e Y o 4 oy t Qu g l/_;
Oulw) = Zw,,Q[.Qo etp( 2, +6:za[ 2, at [0 > Ll l
e 2 3kT y,,

wx) = B3—3z+ x%) e * Pf—;,dx _;+ 2—x, =2« ]‘,,—:‘-_8‘;3;‘ ,

(31)
kT 1
= b e = 0;
Qu(w) = M ——- wl 2, JallE at £ (32)

M=1, 6(x)=1 at >0, 6Ox) =0 at 2<0.

The distribution (31) has the integral width Sew; = ¢ 2, [1 4 0.044 a] (2, n =~
~ 2« 4+ 0.17). In the wings of the distribution at |Q,|> |Q)l, @ w) =
= (kT/2 7 w}) ( /.Q2) decreases as £2;°.

It should be kept in mind that for sufﬁclently small I, when I, <€ Aw, the
fine structure of the distribution @, (w) must appear. Since Aw ~ dw; X
X (kT|% w,)~, the results of the classical theory are applicable only at % y,, <
< wy I, (this condition may be satisfied simultaneously with the criterion of
equations (31) and (32)), y., > (ws, I/kT)). But if # y,,, > w? I, then the classi-
cal theory determines only the average distribution @,(w). For investigating the
fine structure of the spectrum even at high temperatures the results of quantum
theory should be used.

Appendix

When considering the stochastic differential equationsfor u,, we shall confine
ourselves here for brevity with the case of non-interacting (one with the other)
singled out vibrations, and hence we may investigate ony a single vibration s
omitting the indices x, %’. Then equations (10) and (13) for ' and w”’ (4 + i w”’ =
= u,; e~ Pxt) will be written as

W= —Tuw —Cw?*+uw?2)uw +f,
W= —Tu" +C W+ w?)uw +f;

37}’”‘ ’ S ofre
T 2w, Faer=

(A1)

—twxt . > 0.
22‘0)”6 fk(t)Y t=0
Taking into account the definition (8) for f,(f) and equations (11), (13) we shall
find that the correlators of the random functions, f’ and f”*, for markedly differ-
ent times |t — ¢'| > ¢, after integration over w, may be conditionally reduced to
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3-functions (strictly speaking, one should consider 3-shaped functions with the
width = t)):

@ Fu)y = (/‘" By =B3¢—1t);

F W) =0. (42)

Thus for time intervals large as eompared with ¢, the random process described
by equations (Al) may be regarded as a Markov process and may be characterized
by the transition probability v(u’, w”’, ¢; ug, ug, ). The Fokker-Planck equa-
tion (the second Kolmogorov equation) corresponding to equations (Al) has the
form ,

B_ 8
ot ow

" 2
s B( +ﬂ’~), (A3)

Ouw'? ' Ou’?

S[Mw v+ C (w24 w2y u” v + —[lu” v —C(w?+ uw'?)u v] +

where v(u’, ', ty; 4o, Uy, L) = & (' — wug) 8 (W’ — uy). Going from the varia-
bles %’ = r cos ¢, " = rsin g to the amplitude and phase r, ¢ (to the polar
coordinates) we shall rewrite the equation for V = r v [V(r, @, by; 7o, @pr ty) =
=3 (r — 1) 3 (p — go)] as
ov or vy
w- T
The desired correlation function (¢) may be expressed according to (26) by V
in the form of an integral:
Q(t — ty) = (r({t) roexp [ @(t) — 1 gg]> 9%  cc. =

27 2

=§Lffdrdroffd¢d¢o (7y)

X V{r, @, t; 1y, @g, b) T 7o €Xp [4 (p — )] €5%% + c.c.;

2r r kT B
wirg) = _BJ"e p( o rg); <2w =1‘)’ (A5)

eV 138V V 1 87V
e

ot r or 2 O¢? ) (Ad4)

It is seen from this formula that for determining @(¢) one should in fact know
not the function V¥ but only the integral

© 2n 2z
W(r, t) = é—l;tfdroffd¢ dey w(ry) V(r, @, t; 14, @g, 0) 1y 3= . (AB)
0 0
Going further from W(r, t) to its Laplace transform
W(r,s) = [ exp (— st) W(r, t) dt; (A7)
0

fexp(-—st) é:’t) At =s W(r,s) — W(r,t = 0) = s W(r,s) — rw(r),
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we get from (A4) an ordinary differential equation for W{r, s):

d2W(r,s) (2T dW(r, s) 2 2s 2¢C
'drz'"+(‘“ ) """" (T“’B‘Jr B rz)W(”s)z

B r
— -—%grz exp(—~% 72>. (A8)

Let us introduce instead of the function W(r,s) its moments W,(s) =
= f ™ Wi(r, s)dr (W(r, s) tends exponentially to zero with r - oo). Then (A8)

is reduced to the difference equation system
n+1

2 24 C 3\1 /B\—
(n? —1) Wn~z—§(5+rn) Wo+ —— : Whoie = —211(1})‘5(7) R
(49)
with n = 1,
where I" ((n 4 3)/2) is the I'-function, and it is kept in mind that W(0, s) = 0.

Here it is necessary to study the partial solution of (A9) which turns into zero
together with the right-hand part of these equations.

Equations (A5) to (A7) show that the spectral representation @(w) of the func-
tion Q(t) is expressed by the first moment W {(s) for the complex argument
s=180

Q) = 2—1; [ Q) e-ivt dt — % Ro (i 2) . (A10)

The quantity W, may be found by solving (A9). For example, at C = 0 from
the equation with » = 1 we obtain W, = B I'-1 (s ++ I")? from which, accord-
ing to (A10), the common Lorentzian distribution @(w) follows, with the width
2 I'. At small O, equations (A9) may be considered with n =1,3,5,...,n,
and the chain may be broken with the assumption W, 5 = 0 in the last equa-
tion. If we consider e.g. three equations with » = 1, 3, 5 and set W, = 0, then
after an expansion into C we get equation (30) for @, (w) which had already been
obtained by another method.

The complex equations (A9) for s == ¢ £ may be represented in the real form.
For example, assuming W, = I" ((» + 1)/2) (B/I")*-Di2 Y, we derive from (A9)
the equations for the real variables:

, , Q_., CB i 1 B
n+1)Y, »—mn Yn+—yn '—2—7?2("“{‘ 1) Yn+2=_'*(n+ l)ﬁ’

n+1)Y, s —nY, QY—{—

(All)

spam+ 1) Yoy =0.

At large n the Y, are smooth functions of n and may be determined approxi-
mately from the asymptotic formula

.. .. B B\ » _
nwn-m(l—z ; Fg) exp [— p()] fexp gla) do (A12)
1 -3 QIr CB

p(x) = Inx —

T 20 =i (CB2TY] I =i (0 BRTH”
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Defining ¥, .5 and ¥, ., for some large odd number %, from equation (A12)
we may break the chain of equations (A11) and use the obtained system of n; 41
equations for the numerical calculation of @(w) = Y; in a computer.
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