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The interaction between nondegenerate two-dimensional electrons in a quantizing transverse
magnetic field and volume phonons is shown to be weak for the majority of systems. The coupling
to surface phonons often appears to be strong. To separate the contribution of the interaction with
volume phonons the diagram technique is developed. The influence of strong and weak interaction
with surface phonons on the shape of the absorption peaks near the cyclotron frequency and its
overtones and on the dc conductivity is analysed. The dependence of parameters on temperature
and magnetic field strength is considered. The transverse electric field is shown to affect the elec-
tron—phonon coupling in the case of two-dimensional electrons near semiconductor surfaces.

ITorasamo, 4TO B3aMMOJEHCTBUE HEBEIPOMHIEHHEIX JIBYMEDHBIX DJIEKTPOHOB B KBAH-
TYWOIINX MArHATHEIX NOJAX ¢ 00'heMHBIMI JOHOHAMY I GOJbIIMECTBA CUCTEM ABJIAETCH
caabpiM. BaanmonelicTBrue ¢ TOBEPXHOCTHBIME (POHOHAME YACTO MOHKET OKA3aThCA CHIb-
ueiM. Britag B3auMopeiicTBUsA ¢ 00beMHBIMEI (POHOHAMH YIaeTCA TOYHO BBIIEJIUTH B Psije
ciy4yaeB C IIOMONIILIO IIPEAJIOYKEHHON B paGoTe AuMarpaMMHOW TexXHUKU. [TpoaHaausupo-
BaHO BIUAHUE CUJILHOIO B3aMMOLEHCTBHA ¢ II0BEPXHOCTHHIME (JOHOHAMU HA OPMY CIIeK-
Tpa IOIVIOMEeHHs HA IUKJIOTPOHHOI yacToTe U ee 00ePTOHAX ¥ HA CTATHYECKYIO IIPOBOII-
MOCTDh B KBAHTYIOIIMX MATHHUTHEIX TI0JIAX. PaccMoTpeHo Takme ciiaboe OmHO- W JBYX-
donoHHOE B3ammoneiicTBue. licciaemoBaHBl TOJIEBBIE M TeMIEPATYPHBIE 3aBHCUMOCTHU
napamerpoB. IToxasaHo, 4YTO Ha KOHCTAHTY JIEKTPOH—(OHOHHOU CBA3U B Cay4ae AByMep-
HBIX BJECKTPOHOB Y IIOBEDPXHOCTH IIOJIYIIPOBOJHHKOB MOJKHO BJIHATH BICKTPUUYECKUM
TOJIEM. :

1. Introduction

At least three types of systems are known where the gas of electrons (holes) is
effectively two-dimensional at sufficiently low temperature and concentration: thin
films [1, 2], semiconductor surface layers at strong inversion [3], and the liquid He—
gaseous He interface [4]. The strong magnetic field parallel to the axis of size quanti-
zation turns an energy spectrum of two-dimensional carriers into a discrete one. This
results in the change of the character of electron scattering by phonons and impurities
which is manifested in cyclotron resonance (CR) and de conductivity. For example,
an intensive absorption near overtones of the cyclotron frequency w, by electrons at
the Si surface was observed in [5], while in [6] there were observed the strong broaden-
ing and shift of the CR peak with the increase in electric field attracting electrons to
the liquid helium surface.

In the present paper the isotropic two-dimensional non-degenerate electron gas is
considered. The scattering by impurities is neglected. Magnetic fields are supposed
to be strong, so that w, > I, where I" denotes the halfwidth of the CR peak. In quan-
tizing fields the scattering by surface and volume phonons is qualitatively different.
The electron interacts effectively only with those phonons, whose two-dimensional

(parallel to the surface) momentum ¢ is relatively small, ¢ =5 I~* where [ = l/ﬁ%z;;
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(in the experiments on quantum CR [ = 1078 cm). Simultaneously the transverse
component of the volume phonon momentum may be much greater because it is
limited by the reciprocal thickness of the electron layer d;t. The inequality d, <!
coincides with the condition of two-dimensionality of electrons in case of isotropic
electron mass and is supposed to be fulfilled. Hence the wave vectors of the volume
phonons coupled to an electron lie in a narrow cylinder in k-space. The phonon charac-
teristic frequency wpy, = w, is determined by the height of the cylinder d;! and is
high. Therefore, if the interaction parameters are not too large, the coupling to volume
phonons is weak: w, > Q, I', where £ is the shift of the electron energy levels due to
coupling. The shape of the CR peak for weakly coupled electrons was considered in
[7, 8]. The broadening of the peak was shown to be due to the electron transitions
between Landau levels with emission of phonons. It is small because the number of
phonon states at frequency w, (or nwg, » > 1) is sm allif ¢ 5 I7*. Thisis why it seems to
be important to investigate the contribution of low-frequency (w(q = 0) = 0) surface
phonons to the width of the absorption peak (the decay broadening due to the high-
frequency surface modes, w(g = 0) =~ w,, was considered in [8]).

When the scattering is due to surface phonons the inequality wpy = w, = w(g = ™)
< £ may be fulfilled at rather small interaction parameters. The theory of CR of
two-dimensional electrons in the case of strong coupling is analogous to some extent
to the theory of light absorption by strongly bound impurities [9]. There is, however,
an essential difference connected with the degeneracy of the Landau levels due to
translational symmetry. The calculation of the CR spectrum is facilitated in the range
of relatively high temperatures, 7' > 7#£. This range is very important from the
experimental viewpoint and corresponds to helium or hydrogen temperatures because
w, is small (e.g., in [6] T'/Aw, = 200 for T = 0.4 K). The two-phonon interaction and
the phonon anharmonicity are also taken into account in the present paper. They are
essential in the case of weak coupling to surface phonons.

2. The Shape of the Absorption Peak near the Cyclotron Frequency

When the effective mass approximation is valid the Hamiltonian of the electron—
phonon system in quantizing transverse magnetic field may be presented as follows:

{ . x
H = Hy+ Hy+ Hg; Hy=wpp_4, I’a:‘—[ m-‘w‘(Pv'“lT)}, (1)

V2

«a=Zxl, [p—l’pl]:1’ h=1,
H =3 wqibabei + 2 (Vgjexp (iq - 1) bgj + c.c.), (2)
q; q)
HS = Hg’) + Hsli ’ H(SO) = 2 wqb;bq + E U‘Il‘h‘lsclhcthcqu > Cq = bq + b+—‘1 ’
q a0 1+q:+q;=0

HY = Hgexp (iq-71), Hy = Vyeq + 2 Vaalala-a >
q

@

‘ (3)
Here the vector potential A is chosen in the form A = (0, Ha); r = (2, y), 0w, =
= |e,H|/me (e, denotes the electron charge). The Hamiltonian H, describes volume
and high-frequency surface (we; % 0) phonons and their interaction with the two-
dimensional electron. Index ¢ determines the two-dimensional wave vector of a
phonon. Other phonon quantum numbers are specified by j. The anharmonicity for
high-frequency modes is not taken into account. For low-frequency surface modes
it is supposed to be weak so that y4 <€ wg, Where pq is the phonon damping (the
anharmonic interaction between surface and volume phonons is discussed later).



Theory of Cyclotron Resonance of Two-Dimensional Electrons 465

The phonon bandwidths are assumed to exceed £, I'. Parameters V in H,, H, are
obtained as a result of averaging of the electron—phonon interaction over the width
of the electron layer.

Let us consider at first the CR peak shape neglecting anharmonicity and two-
phonon interaction. The two-dimensional conductivity of the non-degenerate electrons
near the CR peak equals

Nejw, _ B oo .
Oppl) = 3 Q) ; Q(w) = [n(w) + 117 Re [ dt exp (dowt) Q(¢) ,
mew 0 (4)
) = PO n0)>, oo, W) =[exp o) — 10, A=,

where IV is the electron concentration. The shape of the CR peak is determined by
Q(w). To calculate Q(w) at w, > I it is necessary to determine the time correlation
function Q(¢) in the large time range ¢ > w; 1. It is shown in the Appendix that if the
condition exp (w,/7") > 1 holds, i.e. CR absorption corresponds to the electron transi-
tion from the ground to the first excited Landau level, the coupling to volume phonons
causes the exponential factor in @(f). Then Q(w) may be presented as

1 , , r

Qw) = - fdw Qu(@ w)m,
where I', and P, denote the decay width and shift of the n-th level, respectively,
(see (A7)). Q,(w) is the spectral distribution of the time correlation function calculated
in the adiabatic approximation with regard to the coupling to surface phonons, i.e.
neglecting the phonon-induced transitions between Landau levels. Formula (4a) is
valid for arbitrary I'fw, An representation analogous to (4a) may be used also to
investigate the shape of the CR spectrum fine-structure lines.!) As the shape of a
separate line and the shape of Q(w) at e®</T > 1 are similar [7], we shall suppose for
a while the excited levels to be empty.

The operator of adiabatic coupling M(q) is the part of the operator exp (iqr)
diagonal in the Landau level number (cf. (A3)). As [My(q), My(q')] & O the two-
particle Green’s function Gy(t) and its spectral distribution Q,(w) cannot be calculated
in closed form for arbitrary interaction strength. To analyse the shape of Q,(w) at
strong coupling one may apply the method of moments. In the important case of
relatively high temperatures 7 >, w, the calculation of moments may be carried
out using perturbation theory (in fact only the inequality 7'> Q is needed). The
first moment determines the “centre of gravity” of @,(w) and to the first order in
QT equals

'Ql = (0 — wc) = (]1)—1.[ ((U '—wc) Qa(w) dw, 11 :_J?oQa(w) do =n <[p—1s 191]> =,
|V gl?

1 . 1
R L R N ]

I'=n+r,, P=P —P,, (4a)

(8)
where j, is the Bessel function. It appears as a result of averaging exp [20(q201y — 91294)]
over the directions of q, g, (|V4/? is assumed to be independent of the direction of ¢).
The term containing this exponential factor corresponds to a diagram with crossing
phonon lines.

1) The fine structure may appear in the certain temperature range 7'~ w, [7] if the non-equi-
distance of Landau levels exceeds their width substantially. The non-equidistance is connected
with both the phonon-induced level shift and the non-parabolicity of the electron energy dispersion
law.

30*
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The second moment determines the width of @,(w) and equals
=@ — o — Q) =
~gT Z ugllg)* — 5 3 ugug,l*qq)* [1 — jo(lPqqr)] - (6)
9,49,

The fourth-order terms in (5), (6) contain the typical factor 1 — j,(I2gq,) proportional
to the average value of the suitably weighted commutator [M(q), My(q,)]. 1t is
obvious from (6) that the Landau level degeneracy causes a narrowing of the CR
absorption peak as compared with the absorption by an impurity with the same
strength of coupling to phonons (in the latter case the terms ~ (1 — j,) are absent
in the expression for y?). Probably this narrowing is connected with the following:
after the light-induced electron transition not only the phonons adapt to new equilib-
rium positions but the z-projection of the centre of the cyclotron orbit changes

correspondingly.
The third moment of @,(w) determines the asymmetry of the distribution
= (0 — 0, — ) = — T 3 uqual'gi [¢* — o (1 — -+ 1%¢%)] +
9.9
E ugog(le) + 3 (uququqe)* A(Q, ¢, o) (7
9,91, 9

{the expression for A is cumbersome and will not be presented here). It is clear from
(B) to (7) that at 7> 0, the asymmetry is small, oy/y? ~ Qyfy ~ VO[T < 1.

When the moments are known one may find @,(w) using the method of Grame-
Sharlier series similar to the theory of Jahn-Teller impurity centres [10]. Even for
T > 2, Q,(») appears to be a Gaussian curve with the halfwidth y J2 only in a narrow
interval |0 — w, — 2, < y¥/2 near the Q,(w) maximum. The narrowness of the
frequency range is due to the absence of a parameter that provides fast convergence
of the Grame-Sharlier series. For example, the first correction to Gaussian distribution
is proportional [10] to the parameter

% a3 gt — gt G| 01— i)
Y 7 da

of the order of unity (0‘4 denotes the fourth moment of Q,(w)). Due to complexity of
the expressions for moments and slow convergence of the series it is worth to obtain
Q,(») in this way for the concrete law of the electron—phonon interaction. 1t should
be noticed that the strong coupling y > w, may take place at high temperatures even
for small Stokes shift, Q < wy (the theory of strongly coupled impurities is developed
for the case 2, >y, )

It 7T >0, 0, and T > w,, then for arbitrary y/I', yjw, the CR peak maximum,
according to (5), (A7) lies at the frequency

Om = 0, + 2 + P (8)

and Q(w) is symmetrical. If the decay damping is small, I' <€ o, and y < o, @Q(w)
presents a smooth and broad distribution centred at wpy (when T > wg, y) with a
singlet out narrow Lorentzian peak at frequency

o =we+ 3+ P O~ ) ul(lg)? (1 — L 12g?) (9)

(the terms of higher order in £,/w, are omltted in (9)) The halfwidth of this peak
equals I', while its intensity contains an exponential factor similar to the Debye-
W aller one, and hence it cannot be observed when coupling is strong. If coupling is
weak, y <€ w,, the CR absorption takes place preferentially in the range of the Lorent-
zian peak; the adiabatic part of the interaction (3) causes weak phonon sidebands.
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For a number of systems (e.g., for thin films) the direct coupling of two-dimensional
electrons to volume phonons (2) may be weak and hence it is of interest to analyse
Q(w) taking into account the coupling to surface phonons only in the case of weak
interaction, £,y < w, and arbitrary 7'/w,. In second order of the interaction (3)
Q(t)~ exp (— 1@mit) at t>w;?, ie. Qw) contains a 3-shaped peak at @m. To
obtain a finite width of the CR peak it is sufficient to take into account the single-
phonon adiabatic interaction in the fourth order (in the case of impurities with non-
degenerate energy levels such an interaction does not give a finite width of the zero-
phonon line). The broadening is due to non-commutativity of the operators My(q)
and corresponds to elastic scattering of phonons by electron. This scattering causes
a damping of the phase of the electron wave function, while the electron energy is
conserved. Analogous to the theory of the impurity absorption where such scattering
is connected with a direct two-phonon interaction, in what follows this type of the
CR peak broadening is called modulational broadening I';. To calculate I'}, it is
convenient to make the canonical transformation in (4)

U = exp [— h Vq—]c‘f“@(bq — btq)].
q a

In the transformed Hamiltonian there appears in particular the term quadratic in
V4 that describes the scattering of phonons:

. VeV
UHU* = ¥ 5" (g + wq,) bLgbg, [My(q) s Mo(q)] + - - -

a4, q, “WqWq,
To second order in this term at w, > T and ¢ > w1,

Qt) = exp [— 10mit — I'yt], p, I'm < wq, 10
L= 20 3wty ) () 11300 — 0) (1= § B¢ ()" (1= o020, } (19)

It is clear from (10) that I')y ~ T2 at 7 = o, At T <€ w,modulational broadening is
small.

In the absence of decay broadening the CR spectrum represents the superposition
of different (but not distinct, generally speaking) lines corresponding to the light-
induced transitions between adjacent Landau levels, for arbitrary ratio between the
n-th line modulational broadening I",,(n) and the level non-equidistance. The non-
adiabatic interaction in fourth order of the perturbation theory also makes a contri-
bution to ", but it appears to be ~ (wg/w,)? I'y <€ 'y An important contribution
to I';y(n) may be connected with the phonon anharmonicity and the direct two-phonon
interaction (3). To second order in H, and v in (3) the modulational broadening
I (n) equals

1. 1 1 2
Ty =42 S % exp ( — thZ) [Ln (—2— W) T (; quz)J x
q 9:+4q,=4q
6V 2

X Blwg,) [#lwg,) + 1] ’ qul——aT—v_qqlqz S{wq, -~ wq,) (10a)
q

(Ln(x) is Laguerre polynomial). In general all phonons with frequencies wq, < 1" make
contributions to 1", (n) in (10a). If the characteristic frequency @, of the most essential
phonons is high, @ > wg, I, then ¢15 > qand |wg, — weq,] < wq, , =~ &5 due to the
momentum conservation law. However, the 3-function in (10a) (the energy conser-
vation at phonon scattering) is important if I, € w, If I', = w, the two-phonon
coupling is not weak. For intermediate single-phonon coupling, y 5 w, the shape
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of the peak centered at wy; appears to be non-Lorentzian even when @, > w, because
the modulational broadening contains the contribution of vertical phonon lines that
cannot be carried through the lines corresponding to the single-phonon interaction.
The anharmonicity and direct two-phonon interaction cause decay damping of the
electron states also, because the inequality ¢! 5 1 restricts only the total momentum
of the phonons participating in a decay process. To second order in v and Hg the
decay damping may be described by diagrams similar to those for volume phonons,

but now
_ k k
rya) = 2a i 0) + 5 ]

6 Wq 2
Vag, — 6V gV —qaia.—
2
W

b

q.+9,=¢q

X {[(e0g,) -+ Wog) + 11 31| 0, — g, — wq) + 2i(g,) — Warg)] (k] @, + 0gq,— 0g)}
(11)

should be substituted into (A5), (A7). It is clear from (10a), (11) that the processes
due to the direct two-phonon coupling and to the single-phonon one with the an-
harmonicity being taken into account, interfere. Since w,> w,, in (11) ¢1,2 > q and
therefore wgq, = wq, = |k|lw,/2 in the first term in curly brackets, while the second
term ig exponentially small. As far as the range of allowed values of gqy,2 is narrow
{~ [71) the decay probability (11) is small. Furthermore, in contrast to the modula-
tional broadening, (11) does not contain the large (in the actual temperature range)
factor (T)wg)? and hence makes a small contribution to the CR peak broadening.
However, the value of decay damping determines the limits where the theory linear
in resonant electric field may be used. If the anharmonicity mixes surface and volume
modes the decay of electron energy into energy of volume phonons takes place even
in the absence of direct coupling. The damping is described by an expression analog-
ous to (11), but with summation over .

For the strongly coupled electrons, y > w,, the influence of weak anharmonicity
and two-phonon interaction on @Q(w) is inessential. For example, these terms do not
cause temperature-dependent shift of the CR peak (such a shift appears in the
theory of impurity absorption).

3. The CR Overtones and DC Conduectivity

To investigate the shape of CR peaks near overtones it is necessary to substitute
the complete spectral distribution Q(w) into (4) instead of @(w):

Qo) =T 5 Qo) Q) = Fare om0 (12)

Integrating (12) twice by parts and taking into account (1), (3), and (A3) one obtains
@sp(w) in a convenient form:

Qup(@) = — (0 + awe)™ (@ — o)™ Y X PPqugp X
ky by =0, +1,... a,q"
X [ dt et (M (q, t) Hy(t) Mz (q’, 0) He(0)) (13)
1 )
lo| =F o, , 9o = Vé‘(qcv — 104y), My(q, t) ~ exp (thwt) .

It is obvious from (4), (12), (13) that the shape of the conductivity peak near new, is
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determined by the term with k;, = — &k = » in (13):
5 27 1]- ,
G) ~ Q) omnw, Qo) = — DI 5 0 i) ings — i)
(n? — 12 w2 aa
x f At et (M _ o, 1) Holt) (', 0) Hg(0)) . (14)

‘When considering overtones (n = 2) we shall confine ourselves to the most inter-
esting case of single-phonon interaction with surface modes in the harmonic ap-
proximation. The shape of the distribution (14) is qualitatively different for strong
and weak coupling. If y <€ w,, @, (w) is a two-humped curve with the gap in the middle
and at n{w,) < 1

4 2 +1
Qulw) ~ ,M S wdo q(~ g ) ([i(wq) - 1] 3( — new, — wq) +
nl(n? — 12
+ ”(wq) 8((9 — Mg + w'l)} 2 Y < Wy . (15)

At T > w, the distribution (15) is symmetrical.
In the case of strong coupling @,(w) is a single peak whose shape may be investigated
at T > w,, £2, using the method of moments. The n-th overtone intensity equals

I, = an ~ SnT(n2 + 1) Eu?; (—1—l2_q2)n+1. (16)

nln? — 12 w? q 2

According to (16) I, ~ 72/w% < 1. In the deformation potential approximation (cf.
(21)) I, varies with n slowly, I, ~ (n® 4+ 1)/[(n — 1)2 (n + )] and at n > 1, I, ~ 1/n,
thus the sum of the overtone intensities calculated using (16) diverges. In fact this
divergence is unessential, because (14) to (16) are valid only in the case when the
overtone peak stands out distinctly from a non-resonance absorption background and
hence these expressions cannot be applied to overtones with large n.

The position of the n-th absorption peak centre, nw, + £, is determined by the
first normalized moment of @,(w). It is approximately independent of temperature
at T > 0Q,, w, Although 0, and O, are of the same order of magnitude, there is no
simple relation between them valid for arbitrary interaction law. The halfwidth of
_the n-th overtone peak y, ~ y ~ J7T and in the range of relatively high temperatures
the peaks near overtones are symmetrical.

The expressions (4), (12), (13) allow to investigate the dc¢ conductivity of two-
dimensional electrons as the CR overtone at zero frequency. It is obvious from (1
that the weak single-phonon coupling in second order of the perturbation theory

gives vanishing conductivity | 3 uaq? (wg) = 0. It is convenient to take account of

a
the higher-order terms by the canonical transformation used to obtain (10). Then to
the lowest non-vanishing order

_NEa g
o(0) = me ; Iy = 4n qqu uquq1 n(wg) [M(we) + 11 X
X Bg? [1 — jo(*qqy)] 3(wq — vq,) - (17)

The important contribution to de conduectivity of the weakly coupled electrons is
connected with the direct two-phonon coupling and the phonon anharmonicity.
This contribution is determined by (17) with [",(0) from (10a) having been inserted
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instead of I', (the squared difference of Laguerre polynomials in (10a) should be
replaced by + %9?). Generally speaking, the contributions made by the direct two-
phonon interaction and the phonon anharmonicity on the one hand, and by non-
commutativity of the operators of the single-phonon coupling on the other hand,
interfere. Experimentally these interactions may be distinguished only when the
frequencies of essential phonons @, and w, are different. If &, > w,, thenat o, > T <
< w4 the main contribution to ¢(0) is determined by the single-phonon coupling,
while at 7' ~ @, the additional contribution due t0 Vg, v¢qq, in (3) manifests itself.

In the case of strong coupling we have not succeeded to calculate ¢(0) directly,
but in the temperature range 7' >y > w, £, the conductivity ¢(0) may be estimated
by the method of moments. The function w™1Qy(w) has a peak at small (as compared
with w,, T') frequency {2, with typical halfwidth

Vo = [10—1_ f:(w — Q)2 0™ Qy(w) dw]m, L= f: 0™ 1Qy(w) do =4, jw?, (18)
vB~ 4T X uipulg® [1 — jo(PPgg))/ s
If y4 > 0,, then ¢(0) is close to o(£2,) and
G(O)Za?—ﬂmz@%%, a =~ 1, 0w, >T >y >0, &. (19)
MW, Vo

Thus ¢(0) ~ 7T for weak coupling and ¢(0) ~ T~ for strong coupling when w, > 7' >
> 9. .

>In the range of higher temperatures, 7' ~ w,, an essential contribution to ¢(0) may
be made by volume phonons. The conductivity is then due to the real phonon-
induced transitions between Landau levels. It may be calculated using (4), (12), (13),
Hg in (13) having been replaced by the interaction (2). To second order of the per-
turbation theory

— 47IN€% 1 227€+1 1 o
)= g + 11 550 () esw( =g ) x

X & § exp (— Awgn) _—n' [LI:L (l lzqzﬂz. (20)
0

(k* — 1) = (n + k)1 2

Since I'_z(q) ~ exp(— kw ) (cf. (AG)) the conductivity (20) is small at n{w,) < 1.
The essentially inelastic mechanism of the thermally activated conductivity (20) is
an attribute of the system under consideration.

4. Discussion of Results

The theory of the CR spectrum near the cyclotron frequency has much in common
with the theory of localized or resonant vibration absorption peak [11, 12] in the
case of interaction with volume phonons [7, 8] while in the case of coupling of the
electron to surface modes they differ substantially. At the same time the two-dimen-
sional electron dynamies differs from that for three-dimensional electrons strongly
coupled to volume acoustic modes in quantizing magnetic fields [13] (in particular
a two-dimensional electron is localized in space in a magnetic field even in the absence
of coupling to phonons). The conditions of strong coupling may be satisfied rather
easily for two-dimensional electrons. We shall estimate the ‘“polaronic” parameter
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o = /o, for electrons in semiconductors in the deformation potential approximation

qul — S—l/zo V2qu d B a)q f—] Usq . (21)
8

Here 8, p, d, and C are the area of the surface, the effective crystal density, the depth
of the surface wave penetration, and the “deformation potential”, respectively. In
general d and C depend on g (for a Rayleigh wave d ~ ¢™%), but to estimate « one
may substitute into (21) the values of d and C at ¢ = I-%. Having assumed v, =
=5 x 105 cm/fs, p = 2.3 gJem® (the density of Si), d =704, 1 =100A (H =
= 62k0e, w; = 3.6 K), € =TeV we obtain from (5) a =4 and a ~ VII/d, ie.
« grows with the increase in magnetic field and with phonons being stronger bound to
the surface. However, the strength of coupling in the temperature range 7' > £, w,
is determined by the parameter & = yjw, =~ JaT|w, ~ JT|dH=14, ie. the coupling
appears to become stronger with decreasing magnetic field. This is true if the
assumptions 1 <€ w.fy ~ H3* and 1 <€ w,Jws ~ H2 hold and hence at T > £, o,
there exists an optimal range of the field strength where the magneto-polaron effect
is manifested most distinctly.

If the charactersitic phonon penetration depth d(I=1) < d, (d, is the electron layer
thickness), the parameter C' decreases. For example, choosing the electron wave
function in the inversion surface layer in the form [3] z exp (— 2/2d,) and the phonon
one in the form exp [— 2/d(q)] (z denotes the distance from the surface) we obtain
the strong dependence of C(q) on d,/d(g): C(q) ~ [d(g)/(d.+ d(q)) 1. The strengthening
of the coupling to surface phonons with the increase in the electric field £ pressing
the inversion layer electrons to the surface may be one of the reasons causing the
increase in the CR overtone intensities observed in [5] because d, and d(I"*) are of
the same order of magnitude and d, ~ E~3 [3]. In fact the condition C(g) =~ C(0)
singles out those surface phonons which interact with electrons.

It is evident from the results of the present paper that the self-consistent field
approximation used sometimes [14] to consider the two-dimensional electron dy-
namics in quantizing magnetic fields is incorrect at least for the non-degenerate elec-
trons. In this method the diagrams with crossing lines causing the terms with Bessel
functions in (5) to (7), (17) are omitted. These terms are not small. For example, at
weak coupling and low temperature 7' <€ w, one obtains from (17), (21) ¢(0) ~ 7T%.
The neglect of j, in (17) leads to the incorrect dependence o(0) ~ 7. It should be
noted also that the CR peak width both for weak and strong coupling differs sub-
stantially from the inverse two-dimensional electron momentum relaxation time in
the absence of the quantizing magnetic field. These quantities depend differently on
temperature and on the coupling parameter.

Appendix

To calculate the correlation function @(f) in the large time range {> w; ! it is
convenient to go over to the interaction representation and to perform the averaging
over phonons. Then

Q) =Zzlexp (—iwgt) X Y(n + 1) (m + 1) exp (— Awym) X

m,n, X, Xy
n+1,X m+1,X
» G ’ 11,
. ( m, X, } © n, X )’
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X
— — Awen 7,
Z0 — Z € ( lG(O) m, X/

n, X n, X 0
’IL,X nJX n’X ’ m1,X’+X1_X
= 2 (n, X5 mgsl U, 0) ng, X;; ng;) X
...,mq]-,nqj,...

X (my, X'+ X; — X;ngs) UmYE, —24) |m, X' ;mg;) exp (— 2% wanqj) )
o

7y, X1)=

(AD)

Ui, t')y = Texp[w z'ftH,-(r) d'z].
b

Here 7' is the operator of the chronological ordering, |n,;) the eigenfunction of the
operator bgibg; |n, X) the eigenfunction of the Hamiltonian Hy, pejn, X) =

= 1/n+ (14 a)/2 |n+«a, X) (X defines the z-projection of the eyclotron orbit centre, n
is the number of the Landau level). We shall use the diagram technique resembling that
by Konstantinov and Perel [15]. Then the lowest-order terms of the expansion of
G(t) may be presented as

7 T 74
L+ 12 Loyl —d—s & .

7 7
im X! InX) . -
Sl P l [ =

ST

7 2 N 4

The first diagram (the empty contour) corresponds to the unit operator in the sub-
space of the electron wave functions. The phonon line connecting the points 7, and ©
in diagrams 2 and 3 contains the factor

Pg(T — 7)) = ; [V gjl? @it — 70); } (A2)
Pqi(T) = N(wg;) exXp (twg;T) + [M(wg;) + 1] eXp (— Twg,T) ,

while in diagram 4 the factor equals @q(7; — 7) (in the case of surface phonons the
summation over § in (A2) should be omitted). When obtaining (A2), the point 7, has
been supposed to be situated to the left of 7 in diagrams 2, 4 and in the upper part
of the contour in diagram 3. Each phonon line with momentum ¢ connects two points
with momenta ¢ and —gq. The point with coordinates 7, q corresponds to the electron
operator

W =14 3 Maq,7v);  (n+ m, X| Myq, 0) n, X) ~

k=0,41,..
~ Ok, mOx, 1 - 11gy €Xp (— 2 12¢%) 5 My(q, 7) = My(q, 0) exp (kw,);p  (A3)

My(q, 0) My(qy, 0) = exp [113(qsq1y — q1094)] Mi(q, 0) My(q, 0) ,

where & = 1 or —1 for the points at the upper or lower part of the contour, respec-
tively.

To obtain the contribution of a diagram to G(§) it is necessary to sum over ¢ in
each “arc” (two points with momenta opposite in sign and the phonon line connecting
them) and to integrate over coordinates z,, 7. The lower limit of the integral over the
time-dependent coordinate of a point equals 0 or —1A for points at the upper or lower
contour part, respectively, while the upper limit coincides with the time-dependent
coordinate of the next to the right point at the same part of the contour. If there is
no suitable point to the right, the upper limit of integration equals ¢. For example, the
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diagrams 2 and 3 are equal, respectively, to

- f dff d‘fl > X Miq,7) Mi(—q, 7)) 9ot — 71)

kb g (A4)
- f d"’:f dTl > X Miq,7) (— 4, 7)) po(T — 77)
%2 Bk q

(the indices u and d specify the operators standing at the upper or lower contour
parts). MY and M$ operate on the functions shown near corresponding parts of the
contour 1. The M}(t) operate one after the other on the “bra-vector” (n 4 1, X| (in
Dirac notations) accordmg to dlsposmon of their points from right to the left (ac-
cording to the decrease in 7). The MY(7) operate on the “ket-vector” |n, X) in the
same sequence. The higher-order diagrams for G(f) may be obtained by plotting the
corresponding quantity of arcs of types 2, 3, 4 on the contour 1, only topologically
inequivalent diagrams being taken into account.

To find the contribution of the coupling to volume phonons to G(f) in the large
time range ¢ >w; !, w; ! the fast oscillating character of gg(r —7y) at 7 — 7,>> !
should be used. Thanks to such a character the main contribution to the integrals
(A4) is given by the time interval 7 — 7, = w; % The main term in the sum over £, &,
is that with & = —k, (the rest are fast oscillating ones). These terms being taken into
aceount the asymptotic expression for diagram 2 is of the form

- th [I'4(q) + Pu(@)] Mg, ) M2x(—q,t —0) ~ —It, > o7, (AD)
X
where I'4(q) and P(q) are, respectively, imaginary and real parts of the polarization
operator RB(kw, — 10, q):
lorg) + 1 J

n(wqs)
RBlw, q) = Vil @
(@ ) ,Z” ai [w—i—wqj W — Wgqj

(A6)

In (AB) I' denotes the CR peak decay broadening; the point ¢ — 0 touches the point
¢ from the left.

The time intervals w1, w; ! are the shortest ones in the problem under consider-
ation. It may be seen from (A4), (A5) that on a reduced time scale, where such inter-
vals are negligible, the points connected by the phonon line in diagrams 2, 4 fit
together while in diagram 3 the phonon line becomes practically vertical. Therefore
the diagrams with crossing phonon lines or those with one line inside another, arising
in higher-order terms of the expansion for G(t), may be neglected as compared with
the set of non-crossing dlagrams that has the same number of points. Indeed, the
contribution of the latter is determined by the integration over a large (~¢> w 1)
distance between the arcs. This integration gives a large factor of about ¢ which
compensates the weakness of coupling. In the case of crossing diagrams two (or more)
crossing arcs look like a single point on the reduced scale and the large factor due to
integration over the distance between the arcs drops. Hence the contribution of these
diagrams appears to be of the order of I'/w,, dI'/dw,<< 1. Analogous arguments may
be used to consider the non-adiabatic (Ic = —k; s=01in (A4)) interaction with low-
frequency surface modes. As w, > w,, in this case I'y(q) = 0 at ¢ < I7! and Py(q) =
— [ Vol? [20(0g) + 1]/(keo,).

Consequently if to neglect the adiabatic interaction with low-frequency phonons
the diagrams with non-crossing phonon lines only should be taken into account in
the perturbation series for G(¢). The summation of ‘this series may be easﬂy performed
using the obvious inequality 2/ (w,) < 1. Then the equation for G(t) (it is shown by
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the thick line) is

r f
t t
= + ;
I t l tod
Tt
T t
I3 O 4 t T t T t
—s « .
= + N + 7 + -
T [ t T t T t
r f

It is necessary to integrate over time here from the left edge up to the point next to
the right at any contour part; that is why the diagram 3 has split into two diagrams.
Ditferentiating this equation with respect to ¢ the kinetic equation considered in [8]
may be obtained. It contains the terms MM ; which do not appear usually in kinetic
equations for systems with discrete energy spectrum. These terms are due to the
interference of the decay processes at different Landau levels and are shown to be
inessential, if the non-equidistance of the levels exceeds their width substantially [7].
It is obvious from (A1) that they make an exponentially small contribution at 7' < W,

If the adiabatic (k = &k, = 0 in (A4)) coupling to surface modes is important and
g ~ 1, the corresponding diagrams with crossing lines appear to be of the same
order as those with non-crossing lines. Nevertheless the diagrams

are proportional to small parameters wg/w,, o /o, << L at t~ w1t (here crosses denote
operators My(q), while continuous lines correspond to low-frequency phonons). Thus
even the adiabatic coupling being taken into account, the points corresponding to
the beginning and the end of a high-frequency phonon line fit together. On the reduced
time scale these points coincide and give the operators M}(q, ) M™4(—q, 7 — 0) or
MYq,7) M4 (—q,7 — 0). These operators commute with each other and with the
adiabatic operator My(q, 7). This allows to single out immediately the contribution
of coupling to high-frequency phonons and non-adiabatic coupling to low-frequency
ones when the terms MEM% 4 (k = 0) may be neglected:

m+ 1, X

> n, X

X

(n+1,X

= ¢ G.(n, t) eI+ Toy1 4Pty — Pa)lt
m, X]_ ) n, m a( s ) »

G {
(A7)
I = 3 Ta) 0 — b X 4 P 3 _afa) n, 0.

Here I', and P, are broadening and shift of the n-th Landau level, respectively (the
expression for P, is analogous to that for I',). They are calculated in [7, 8]. The
terms with indices # and » + 1 correspond to operators MEM%, and MEM™,. The
function Gy(n, t) is determined by adiabatic coupling to surface modes and does not
depend on X. As [My(q, ), My(q,,7,)] + 0, we have not succeeded to calculate
G,(n, t) in closed form.
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