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Abstract

A many-electron theory of magnetotransport of a nondegenerate 2D electron system is presented along with
experimental data in classically strong and quantising magnetic fields. Due to the electron—electron interaction each
individual electron is driven by a fluctuating electric field E which converts the discrete Landau levels for
non-interacting electrons, spacing fiw,, into a continuous spectrum. Hence the classical magnetoresistance is very
small (compared to the single-electron theory) until eER_ <fw, where R, is the classical Larmor radius. At high
magnetic fields, Aw, > kT > eEl (I = (h/mw,)"'?) for eEl/% less than the electron momentum scattering rate, the
single-electron theory becomes valid. The onset field B, for magnetoresistance lies in the range 0.3-1.0T for
electrons on liquid helium. These many-electron effects have been observed experimentally near 1K where the
electron mobility is high and limited by *He vapor atoms and below 1K in the ripplon scattering regime.

1. Introduction

Electrons above the surface of liquid helium
provide an example of a nearly ideal nondegen-
erate two-dimensional electron system (2DES):
for temperatures 0.1 K<T <2K and electron
densities n=10""m™ as used in many experi-
ments the characteristic kinetic energy kT ex-
ceeds the Fermi energy Eg =kT,=mh’n/m by
two orders of magnitude, whereas the mobility in
zero magnetic field, u,, can be greater than
10> m*/V's. Therefore the 2DES on helium has
been recognized as a good candidate for the
investigation of the many-electron effects in 2D
systems that are not related to overlapping
electron wave functions. Two basic ‘traditional’
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types of such effects have been indeed observed
experimentally and described theoretically (see
Ref. [1] for a review): mean-field effects (plasma
vibrations, including edge magnetoplasmons [2])
and the liquid—solid phase transition in a classi-
cal many-electron system (Wigner crystallization
[3]). At the same time, data on the conductivity
in zero magnetic field, in the range where there
is no electron solid, has been interpreted in
terms of the single-electron picture of scattering
of individual electrons by helium vapor atoms
and by capillary waves on the helium surface
(ripplons). The matrix elements of coupling are
well known in both cases [4]. The electron—
ripplon coupling increases with the vertical elec-
tric field E, pressing the electrons to the helium
surface. The rate of scattering by the vapor
atoms can be varied with the temperature, since
the vapor pressure depends exponentially on T
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near 1 K. Theory and experiment are in good
agreement over a wide range of electron den-
sities and mobilities in zero field.

In fact, the agreement between the single-
clectron theory and experimental data on the
mobility is rather surprising, since the data have
been obtained in the range

e’n'?leg> kT (T>Tg) (1)

where the electron—electron interaction is strong
and would be expected to influence the electron
kinetics.

In a magnetic field B transverse to the 2D
layer the electron energy spectrum in the single-
electron approximation consists of discrete Lan-
dau levels, energy separation Aw, where o, = eB/
m is the cyclotron frequency. For such a discrete
spectrum the concept of elastic/quasielastic scat-
tering for individual electrons implied in the
theory of electron transport for B = 0 is inapplic-
able. Many-electron effects should be particu-
larly important in transport phenomena in classi-
cally strong (u,B > 1) and quantising (fw /kT =
1) magnetic fields. The many-electron magneto-
transport for fiw_ > kT was previously considered
in Ref. [5]. The theory explained [6] the ex-
perimental decrease of the cyclotron resonance
halfwidth with increasing pressing field E, [7]
despite the associated increase of the electron—
ripplon coupling.

In this paper we report the results of theoret-
ical and experimental studies of the magneto-
resistance of a 2DES on superfluid helium for a
broad range of electron densities, temperatures
and magpetic fields. The experimental and theo-
retical results are in good agreement, the data
indicate the many-electron character of the
kinetics and the theory resolves the controversy
about the applicability of the single-electron
picture to transport phenomena in this system
and shows where the crossover from many-elec-
tron to single-electron kinetics occurs.

2. Many-electron theory

The ‘conventional’ approach to the theoretical
analysis of magnetotransport of a many-electron

system would be to find the spectrum of elemen-
tary excitations, and then to analyze their scat-
tering by ripplons and vapor atoms. Such a
program can be performed for the electron solid
[3,6,8]. Here we shall use an alternative ap-
proach based on a simple physical picture of
electron motion. If the characteristic duration 7,
of electron collisions with short-range scatterers
(atoms, ripplons) is small compared with the
momentum relaxation time (due to the colli-
sions) 75, the collisions occur consecutively in
time and are nearly independent of each other.
To describe the electron transport it then suffices
to find the scattering probability for an electron
allowing for the fact that it is coupled to other
electrons. The effect of this in the strong-cou-
pling range, Eq. (1), is that an electron is driven
by a fluctudtional (and fluctuating) electric field
E from the other electrons. For B =0, if the
fluctuational field is weak enough, the charac-
teristic quantum uncertainty of the electron
kinetic energy due to the finite thermal wave-
length X,, e =eEX, <kT (X,=Hh/(2mkT)""?
E = (E*)""?). The electron motion is then semi-
classical, and a quasielastic electron collision
with a short-range scatterer is not influenced by
many-electron effects: this is why the single-
electron theory often works for B = 0 for strong-
coupling, Eq. (1). But for o7, =p,B>1 (a
classically strong field) the fluctuational field E
can dramatically change the magnetotransport,
compared to the single-electron approximation,
as the energy spectrum of an electron in crossed
E and B fields is continuous (not discrete, as for
E =0) and an electron can be therefore scattered
quasielastically.

Since, for short-range scatterers, only one
electron is immediately involved in a collision
(neglecting momentum transfer of order #n''?),
the expression for magnetoconductivity in the
Born approximation to the lowest order in w75
is of the same form as in the Drude theory, with
the important difference that the electron—elec-
tron interaction influences the motion of an
electron in the course of a collision and is treated
in a nonperturbative way. The resistivity p* =
p..(B)/p, normalised to the zero-field value p, is
then given by
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Here |V,|> is the mean squared Fourier com-
ponent of the random quasistationary field that
scatters electrons (that of ripplons or helium-
vapor atoms), r; is the position vector of the jth
electron (the correlator £(gq, t) is independent of
Jj) and X is the characteristic wavelength of an
electron: X =X, for fiw, <kT and X=1=(#/
eB)”z, the magnetic length, for Aw, > kT. The
electron—electron coupling determines the dy-
namics of an individual electron and thus the
value of £(q,t). In other words, the ‘electron
community’ transfers the momentum to the
scatterers via the scattering of individual elec-
trons. It is this transfer that gives rise to the
magnetoconductivity.

In the single-electron approximation at B =0,
&(q) = 2wm/kTq*)'* exp(—#*q*/8mkT), where-
as for finite B the integral over time in Eq. (2)
diverges as an electron moves along a closed
loop in classical terms (when evaluated in terms
of quantum statistics, the correlator £(g, t) is the
sum of harmonics exp(inw.t)). This is no longer
true if the electron is also driven by an electric
field from the other electrons. The value of ¢(q)
and the physics of the scattering depend [9] on
the values of the parameters

n=w,mkT)"*/eE, ¢(=nhw/2kT 3)

and on %, /kT. The parameter 7 gives the ratio
of the inter-Landau-level spacing #w. to the
uncertainty eEX; in the kinetic energy of a
classical electron.

The simplest, and most unexpected, results on
magnetoconductivity occur in the range of classi-
cally strong magnetic fields where fiw, <<kT. It
follows from Eq. (2) that, for { <n <1, the
value of &(q) differs from that for B=0 by an
extra factor (1+ F)exp(Fh’q*/8mkT), F=(1/

co.

48)(fiw,/kT)*. This factor is close to unity for
realistic values of ¢° < 8mkT/#> and gives a very
small magnetoresistance, quadratic in B: p* —
1= (hw,/kT)?. The magnetoresistance, although
it arises from the strong effect of the fluctuation-
al field E that ‘blows away’ electrons from the
scatterers and thus prevents multiple scattering,
is independent of E itself. The fluctuational field
produces a separate term «(eEXx.)?/(kT)* in
&(q); 2it contains an additional small factor
(~107%).

A different situation arises for ‘intermediate’
classically strong magnetic fields where n>1
(still Aw./kT <1). Here, an electron performs
several rotations about a scatterer before the
fluctuational field drives it away. Therefore, the
probability of scattering increases compared to
the case B=0. The correlator &(q) was
evaluated for classical statistics by the steepest
descent method, with saddle points lying at 2mws/
w, —ik/2kT (for n<1 the only saddle point is
s=0),

do=(27) "
PREDNCEE

The values of s that contribute to this sum are
limited to |s| =¢ (larger s values can be signifi-
cant for ripplon scattering). The parameter ¢
increases rapidly with increasing B, as does the
magnetoresistance, above B = B;, where {=1.
The onset field B, is the field above which the
electron drift over a time ~w_ ' is less than the
thermal wavelength X,. For a Gaussian many-
electron field and scattering by vapor atoms Eqgs.
(2)—(4) give the following classical magneto-
resistance:

Pme= 2 (1+4n's°(Bo/B)) ™" )

The fluctuational electric field which determines
B, can be estimated by assuming short-range
order in the electron system (which seems
reasonable for e’n'’*/e, > kT) and equating kT
to the energy e’E*/mw, of electron vibrations in
the field of other electrons at a characteristic 2D
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plasma frequency o, = (e’n>*/2¢,m)'’?; this
gives E=0.84(kTn’"*/e,)"'* [6], n=w,/w, and
B, =1.66 x 10™°n®8T7"2,

Quantum mechanically, the motion of an
clectron in the crossed E and B fields is a
superposition of quantised cyclotron motion and
drift of the center of the cyclotron orbit. This
picture is valid and the drift is semiclassical if the
field E is uniform over the wavelength X =1/
(A+1)'"?, i=[exp(hw,/kT)—1]"" and eEX <
hiw,. Under these conditions the correlator £(gq)
is

6(9) = 2(a) "7, exp(~I'g* (27 + 1)/2)
x 2 [P 2P A+ D" (6)

where 7, =IB(|E|™'). The parameter 7, is the
‘time of flight’ for a cyclotron orbit in a field E to
drift over a distance / equal to the radius of the
electron wave function and corresponds to the
duration of a collision with a short-range scat-
terer 7, in the limit w, > k7. For large Planck
numbers, n=kT/hw ,>1, Eq. (6) reproduces
Eq. (4) for { > 1: in this range the quantum and
classical many-electron theories match and give
identical results. The reduced resistivity for E
given by the estimate above is

Py =0.15 (0 /0,) (hw /kT)*E (7

where Z =1 in the extreme quantum limit Aw_ >
kT and Eq. (7) agrees with Dykman and Khazan
[5].
Equations (2)-(6) show that for B > B, (i.e.
{ > 1) the scattering rate 7' and the magneto-
resistance increase rapidly with magnetic field, as
does 7.,. In strong fields the condition for the
Born approximation, 7, <75, no longer holds,
many-electron effects become less important,

col

and a crossover to single-electron magneto-

resistance should occur.

3. The experiments

The magnetoresistance of the 2DES on super-
fluid helium was measured using the Sommer-
Tanner technique [10] with co-planar electrodes

I——>

(2]
e ®

Vo [-—>I

Fig. 1. The electrode geometry used.

(see Fig. 1) in a rectangular geometry situated
below the helium surface and the electron sheet.
The electrons were produced by a glow discharge
and held in place by DC voltages on the elec-
trodes, a surrounding guard ring and a top plate
above the helium surface. A small AC voltage V
at audio frequencies f(=w/2w) was applied to
electrode A and the AC current I to electrode D
was measured with a lock-in amplifier. For a
perfectly conducting electron sheet at B =0 the
phase of the capacitively coupled current [ is /2
with respect to V. The phase shift ¢(B) away
from w/2 was measured as a function of B for a
range of .electron densities and temperatures
0.5K<T<1.3K. The data cover a wide range
of u,B values and extend into the quantum limit
fiw,/kT > 1. The electron density was deter-
mined from the linear Hall voltage V), < B/ne as
measured between electrodes B and C and
calibrated using the transition to the 2D electron
solid phase at T, =0.216 X 10~°2'/* K [1,11]..
The combination of electrodes and electrons
acts as a two-dimensional transmission line
where the electrical response of the electron
sheet is determined by the magnetoresistivity
tensor components p,, and p,, and the capaci-
tance per unit area, C,, between the electrons
and the electrodes. Numerical analysis of this
system in the fully screened limit has shown that
the phase shift ¢(B) in a magnetic field for
rectangular electrodes is given [12] by

®(B) = Kwp,, (1 + (ap,,/p,,)")
= ¢op*(1+ (apyBlp*)?) (8)

for ¢ <0.3rad where K and « (=0.225 in this
case) depend on the electrode geometry. The
second expression, for the normalized resistivity
p*(B) =p,(B)/p,, is obtained by using the Hall
resistance p,, = B/ne as confirmed experimental-
ly [13] in agreement with theoretical arguments
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[14] and ¢, is the phase shift in zero field. Hence
we can obtain p(B, T') from the measured ¢(B).
Equation (8) is only valid if the characteristic
decay lengths of a damped voltage wave on the
transmission line parallel and perpendicular to
the local current flow direction, & =(2/
wC,p, )" and §, = (p../p,, )8, are both greater
than the sheet dimensions, and hence low fre-
quencies are required. At higher frequencies in a
partly screened system, 2D edge magneto-
plasmons will propagate round the finite electron
sheet [2].

4. Results

The electron scattering rate is strongly tem-
perature dependent. Measurements have been
made in both the low-temperature regime below
1K [15] where the scattering is by thermal
ripplons (and also depends on the vertical elec-
tric pressing field) and above 1K [9] where the
dominant scattering is by ‘He vapor atoms,
which act as short-range scattering centers, ideal
for comparison with theory. Positive magneto-
resistance was observed for all densities and
temperatures investigated as shown in the low-
field region in Fig. 2. This data was taken at a
density n=1.7x10%m™* at 0.924, 1.02, 1.13
and 1.24 K using a frequency of 3940 Hz. The
low-field mobility values at these temperatures

200 T T T T

D= (k2)

B(T)

Fig. 2. The resistivity p,_(B) versus B for n=1.7x10% m™
at 1.24 (a), 1.13 (b), 1.02 (c) and 0.924K (d).

were found to be 145, 90, 48 and 30 m*/V s from
the initial slope of ¢(B)/¢, which is proportional
to (u,B)” in Eq. (8). These values agree with
the zero-field values from other experiments [16]
and single-electron calculations [17] and hence
confirm that p* =1 in low fields. The zero-field
resistivity values p, are shown by solid lines for
B<0.1T. Up to B=1T,p,, increases slowly
and guadratically with field. We will now concen-
trate on the region above 1K where the scatter-
ing by ‘He vapor atoms is dominant but the
mobility u, is still high.

The shape of the pormalised resistivity p* =
P. /P, as & function of B was found to depend on
both temperature and electron density as shown
in Fig. 3(a) where p* is plotted for the data in
Fig. 2 and in Fig. 3(b) for 1.00K. At higher
fields the resistivity increases rapidly as shown in
Figs. 4,5 and 6 for n=0.6x10"m™?, T=
1.003K; n=21x10"m™, T=1.003K and
n=21%x10"m™%, T=1215K respectively.
This data was measured at 956 Hz; p* was
independent of frequency below 5 kHz. In gener-
al, p* increases for a given field with decreasing
temperature and density.

A remarkable feature of the observed mag-
netoresistance is that it is relatively small for
classically strong magnetic fields: p* <1.1 even
for B=0.4T where pu,B>10 and hence the
Landau-level spacing is more than an order of

) B (T) 1

Fig. 3. (a) The normalised resistivity p*(B) versus B for the
data in Fig. 2 (n=1.7x 10" m™?) at 1.02, 1.13 and 1.24K;
(b) the normalised resistivity p*(B) versus B for n=0.6, 2.1
and 2.4 X 10 m ™ at 1.00K.
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2 3
B(T)
Fig. 4. The normalised resistivity p*(B) versus B for n=
0.6 %10 m™, T=1.003K. The lines show the theory for
independent electrons, p* (line a), the classical many-elec-
tron theory p* , Eq. (5) (line b), the quantum many-electron
theory p,’:q, Eq. (6) (line c) and the total resistivity p,* (line
d). The onset field B, and the quantum limit, Aw /kT =1 at
B, are marked.
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Fig. 6. Same as in Fig. 4 for n=2.1x10”m™, T=1.215K.

-

magnitude larger than the level width as given by
fi/r,. In the conventional single-electron theory
based on the SCBA the width of the levels #/7y
is due to electron collisions with ‘He vapor
atoms and, since the density of states increases
due to the ‘squeezing’ of the energy spectrum
into Landau levels, 7' = (2u,B/w)"*+;" for
B =1 and increases sharply with B [13,14}. In
the classical limit, Aw,/kT <1, this leads to p* =
(moB)"'* while in the quantum limit, Aw /kT >
1, p¥=(uyB)"*(hw,/kT). The full theoretical
expression for p) using the SCBA for a non-
degenerate 2DES has been given by van der
Heijden et al. [13] and is shown (line a) in Figs.
4-6. In each case p) lies above the data and
shows a stronger field dependence. It is this
striking observation which indicates the impor-
tance of many-electron effects and is the subject
of this paper. Moreover, p* displays a density
dependence that also indicates the influence of
many-electron effects.

We will now compare these results with: the
many-electron theories presented above. The
low-field classical theory for n <1 (which corre-
sponds to B <0.4T for n=2.1x10"> m™*) pre-
dicts a very small magnetoresistance and is
shown as line b in Figs. 4-6. The onset field B,
for magnetoresistance from the classical theory,
Eq. (5), is 0.44, 0.69 and 0.76 T for the data in
Figs. 4,5 and 6 respectively as shown. But
quantum effects are already important in this
region as fiw, = kT at 0.90T at 1 K. For B>2T
we can use the quantum magnetoresistance p:,q,
calculated from Eq. (7), and plotted as line ¢ in
each figure. However, for p*>5 (B>3T), the
results of the many-electron theory and of the
single-electron SCBA differ by less than a factor
of 2 and the combined total resistivity p, is then
calculated from the expression

1ip,=1lp, + p/p; 9)

which is derived from the Einstein diffusion
equation in which the scattering rate is propor-
tional to #w /I, where I is the energy uncertain-
ty of each Landau level, and allows for the
self-consistent nature of the SCBA. The normal-
ised total resistivity p; is plotted as line d in each
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figure and shows good agreement with the mea-
surements, particularly since there are no adjust-
able parameters in these calculations. At the
highest fields the magnetoresistance increasingly
approaches p; from the SCBA.

In conclusion, we have observed and ex-
plained the many-electron character of the mag-
netoresistance of a 2DES in classically strong
and in quantising magnetic fields.
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