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CORRESPONDING TO THE APPEARANCE OF NEW STABLE STATES

M.I. DYKMAN
Institute of Semiconductors, Academy of Sciences of the Ukrainian SSR, Kiev, USSR

and

M.A. KRIVOGLAZ
Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR, Kiev, USSR

Received 2 January 1980
Revised 27 June 1980

Fluctuations in nonlinear multidimensional dynamical systems caused by outer 8-correlated
random forces are considered. The slowness of one of the motions at parameter values within the
bifurcation region allows us to use the adiabatic approximation and hence to reduce the
multidimensional problem to a one-dimensional problem. The exponent and the pre-exponential
factor in the expression for the probability of the transition from the metastable equilibrium state
of the system are calculated. The kinetics of fluctuations in the systems that are near the
bifurcation point where two stable states coincide is considered. The results are illustrated with
an example of the Duffing nonlinear oscillator in an external resonance field.

1. Introduction

For some problems of radiophysics, laser physics and nonlinear mechanics
it is of interest to investigate the fluctuations in essentially nonlinear sub-
systems that interact with a medium and may be subjected to the action of
regular external forces. These fluctuations have specific features near bifur-
cation points where, e.g., new stable states or limit cycles appear or disap-
pear. The problem of fluctuations near bifurcation points in nonlinear systems
was first considered for the example of the systems with a limit cycle. A
series of papers (see e.g. ') was devoted to a detailed analysis of the case
of the Van der Pol oscillator. The solution of such problem is essentially
facilitated by the fact that in the Einstein—-Fokker-Planck (EFP) equation for
the relevant Markov process the variables (amplitude and phase) may be
separated and that the equation is reduced to a one-dimensional equation.
Under these circumstances it becomes possible, in particular, to investigate in
detail the fluctuations in the neighbourhood of the bifurcation corresponding
to a soft excitation of the limit cycle (see especially ?)). For some concrete
systems the fluctuations near the bifurcation points of another kind were also
considered (see e.g. >%)).
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Along with the bifurcation points, where the roots A, of the characteristic
equation cross the imaginary axis and a limit cycle appears, those bifurcation
points where A; =0 (X;#0 for i# 1) are also of general type. In the latter
points there appear or disappear two singular points in the phase space, e.g. a
node and a saddle coincide with each other (see 7).

In the range of parameter values where A, <€A, A3,. .., one of the motions
in the system becomes slow (a soft mode appears®)). This results in the
increase of fluctuations. The smallness of A, permits the use of the adiabatic
approximation for the description of the fluctuations and, in the case of weak
random forces, the reduction (in the bifurcation region) of the, generally
speaking, multi-dimensional problem to one-dimensional one.

Using this approach fluctuations are considered in section 2 in Markov
systems for the case where one of the singular points appearing at the
bifurcation is stable (a node or a focus) and corresponds to the equilibrium
metastable state, while the second point is the saddle. In particular, the
probability, W, of the escape from a metastable state over the saddle point to
some other stable state of the system is calculated. Such problem is naturally
reduced to the well known problem of the first moment of reaching the
boundary by a Brownian particle®). It should be noted that not only the
exponent in the expression for W (which depends strongly on the distance to
the bifurcation point) may be determined in this way but also the pre-
exponential factor. In this respect the analysis of the transition probability in
multidimensional systems under study (which are within the bifurcation
region) turns out to be more complete than that carried out in refs. 10 and 11
for a general case of multidimensional systems where W was determined only
with logarithmic accuracy.

For systems with two parameters the bifurcations of a general type are
described by the curves in the plane of the parameters a,, a,. These curves
may have singular points — the spinode points. The shape of the curve near the
spinode point K (a; = aix, a, = ax) is shown in fig. 1. In the parameter range
bounded by solid lines in fig. 1 the system has two stable states and one
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Fig. 1. The bifurcation curves in the two-dimensional parameter space near-the spinode point K.
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unstable equilibrium state (the saddle). With the approach to the point K (in
the parameter space) these states come closer to each other (in the space of
dynamical variables). Hence the probabilities of transitions between them
grow rapidly, the system rigidity becomes weaker, and the fluctuations near
the point K increase strongly. In a certain sense the point K is analogous to
the critical point on the curve of the gas-liquid phase transition.

The theory of fluctuations near such a spinode point is given in section 3.
The long-time asymptotics is found for the correlation function damping. Far
from the point K where the stationary probability distribution function has
two distinct maxima, this asymptotics is determined by the probability of the
transition between them. In the immediate vicinity of K the asymptotics of
the critical fluctuation damping is investigated numerically as a function of
two parameters.

In section 4 the results obtained in sections 2 and 3 are used for the analysis
of a concrete problem - the fluctuations near bifurcation points of a Duffing
nonlinear oscillator interacting with a medium and subjected to a resonant
force. The procedure of the reduction of the multidimensional problem to the
one-dimensional one is given in the appendix.

Fluctuations in dynamical systems in the critical region have been con-
sidered recently by M. Manggl'?). However, the methods and the problems in
ref. 12 differ from those considered in the present paper.

2. Fluctuations near the metastable equilibrium state

Let us consider a multidimensional dynamical system subjected to the
action of small random forces, fi(t), that are 8-correlated in time and dis-
tributed according to the stationary normal law. The equations of motion for
dimensionless dynamical variables of the system, x;, are of the form

% = Pi(a, x)+ fi(x, t),
(filx, Ofi(x', t)) = 20(x, x)8(t — t').

Here a = {a)} denotes the set of parameters of the system. Near the bifur-
cation points, a = ag, corresponding to the appearance of a stable stationary
state and the saddle point, the transformation of variables in eq. (1) may be
performed in such a way that the functions P; will be written as

P(a, x) = e(a) - 2 byxx;+ - - +;
b

(1)

Pi(a,x)=—Axi — 2 buxixi+-++; (i=2); (2
]

Ajl=Re A, A>0; |e|<A} oyl <A
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(cf. 1), where similar equations are given in the absence of random forces).
Here the parameter € equals to zero in bifurcation points, and the variable x;
describes the slow motion of the system in the bifurcation region (the |x;| are
assumed to be small). With the accuracy up to small corrections ~¢, o the
values of the parameters A;, b;, a; may be determined from eq. (1) at € =0,
x; =0, x;=0. In what follows the time scale is chosen in such a way that
min A}~ 1.

Eqgs. (1) and (2) describe multidimensional Langevin random process. The
EFP equation corresponding to this process is analysed in the appendix. The
separation of variables x; into the fast and slow ones and the use of adiabatic
approximation allow to reduce the EFP equation to the one-dimensional eq.
(A.9) in the region of long times t >ty (to, = max(A})™'). The adiabatic ap-
proximation is valid with the accuracy to corrections ~a' in the most
favourable case, € = 0. Eq. (A.9) corresponds to the Langevin process

dy__dU_ U

dT = dy +f(’T)a U()’) - 3 y gy, (3)
where

y=ax; r=a: g=aPe; f(r)=a B

b=bu>0, a=an; (f()f(r)=28(r—1).

In the absence of a random force at g >0 (if b>0) eq. (3) has a stable
stationary point y = y, and a saddle point y = y;,

yo=Veglb, y,=-Vglb, )

4

that are associated with the local minimum and maximum of the potential
U(y) (see fig. 2). The state y, is apparently metastable if ¢ is small enough.

The one-dimensional Markov process (3) may be investigated in a standard
way. In particular, it is of interest to find the probability of the escape from
the metastable state at g > 1. This probability may be characterized by the
average time 7(y, y») needed for the system (that was initially in some point y
in the attraction range of the metastable state) to reach (for the first time) the
boundary point y,. This point is arbitrary to some extent but it must be far
enough to the left from y (see fig. 2) in order that 7(y, y,) weakly (nonex-
ponentially) depends on ys.

The function 7(y, y,) satisfies the equation (see, e.g. *))

ay? dy ay :

This equation follows from the equation®®) for the probability W(ys; y, 1) of
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Fig. 2. The potential U(y) near the metastable equilibrium state.

the reaching of the boundary y, over the time ,

OW(yo; y,7) _ _dU aW(ye; y,7)  9*W(pe3 ¥, 7)
ot dy 3y >

that coincides with the first Kolmogorov’s equation for the transition prob-
ability density w(ys, 0;y,—~7). Eq. (6) may be easily obtained from this
equation if the definition

7(¥; yb) =f T —-—L—aw()‘;:; +7) dr
0

is taken into account.

Obviously W(ys; yu, 7) = 1 and therefore 7(ys, y») = 0. On physical grounds
(taking into account the strong increase of the potential U(y) (3) at large y) it
is evident that in the problem under study 47/dy must not grow at y->.
Solving the first order linear equation (6) for 37/dy and integrating the solution

over y with allowance for the boundary conditions mentioned above one
obtains

7, 9= [ dy'exlUO] [ dy” expl-U(NL M

Yo

For the particular potential U(y) (3) the integral (7) may be asymptotically
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calculated at g*?> b'2, The main exponential term is of the form:

_ 3 T 403 4 €3/2
= W= Q=inates ®

In this approximation ¥ does not depend on y, y, and is connected with the
probability W of the escape from the metastable state by the relation
W=7

The exponent Q in the expression for W depends on the distance to the
bifurcation point (along the straight line €) as €*? and on the fluctuation
intensity as 1/a.

The parameters ¢, b in eq. (2) may be expressed simply through the set of
parameters a = {a} in the functions P;(a, x) of the initial eq. (1) (not yet in the
standard form). Bifurcation values, a; = aq;, are found from the condition
det|P;| =0, where P; = (3P;/3x;)1=x,, and xo are the coordinates of a stationary
point. The quantities —A; in eq. (2) are the eigenvalues of the matrix [Py,
Ai(ap) being equal to zero (some A, may be complex). Let S be the matrix
that transforms ||Py|| into a diagonal form at a = as:

(SPS™Y); = — Ay,

Expanding the functions P; in eq. (1) in powers of a — ag, xo — X8 (Xs is the
value of x, at a =ap) and going from the variables x to new variables
S(x — xo5) (Which with an accuracy to € coincide with the variables in eq. (2))
one obtains

€=(a—ap) 2, S1i(8P;(a, x)/38) x=xpp.a=ags

)
b=- 2 SIJ(S_l)nl(S—!)ml(azpj/axnaxm)xsxoaﬂﬁan-

mn
Formulae (8) and (9) contain a simple expression for the probability of the
escape from the metastable state in the general case of a multidimensional
and multiparametrical system (which is near the bifurcation curve however).
An example of how to apply these formulae to a particular case (the Duffing
nonlinear oscillator) is given below in section 4.

3. Fluctuations near the point of the coincidence of two stable states

Near the spinode point on the bifurcation curve where stable states coin-
cide (the point K in fig. 1) the coefficient by, in eq. (2) tends to zero.
Accordingly, the right-hand sides of the equations of motion (1) at @ = ak (the
values of the components of ax correspond to the point K) and at the
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stationary values of variables x (they are assumed to be zero in the point K)
after certain transformation of variables satisfy the conditions

(P)x=0; (3P/ox)x=—Ad;; Ai=0, ReAi>>0; (3°Pi/axDk=0.
(10)

The probability distribution w of the slow motion x, is shown in the appendix
to be described by a one-dimensional EFP equation. According to (A.10) this
equation has the form

w_ 9 dU N W oy e g o

ar 3y (dy W)+ ay?’ U=4cy’—281y" — 82Y; a

y=a "y, r=a't

The error caused by the use of adiabatic approximation in the point K is of
the order o'

For long enough time the probability distribution w tends to a stationary
solution of eq. (11) wy(y):

wa(») =27 expl-UL Z= [ dy expl-UWI (12)
In the range of a encompassed by the curves in fig. 1 where
g>0, JAl<1, A= 3\2/3,62 2 (13)
g1

the function we(y) has two maxima, that correspond to two stable
solutions of eq. (1) in the absence of random forces while outside this range
there is only one maximum.

The character of fluctuations in the system depends essentially on the
distance to the point K. At g, > c¢"? the function wy(y) has sharp maxima. In
this case (provided the conditions (13) are satisfied) the system remains for a
rather long time near one of the stationary states, fluctuating around it and
only occasionally goes into another state. The ratio of the state populations
here is (with a logarithmic accuracy) equal to

wOlw@ = exp(8U), 8U = Uuo—-yw;

(14)
Utd= U(y(l'z)); (aU/aY)y=y“'2’ =0.

The quantity g = 8Ucgi? is a function of the single parameter A and

.

3A
=A, at|A|<1; ==—[1-5(1-14D]1,
1=373 at|A| q [1-51-14D]

4]4|
at 1-|A|<1. (15)
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Here we have put y" > y® 1t is seen from (A.11) that A does not depend on
a, and U ~a” .

The probability W,., of a transition between the states 1 and 2 may be
estimated in the same way as in section 2 calculating the integral (7) with the
corresponding potential U (y) (11) asymptotically. The boundary point y, must
be placed between the saddle point y® and the point y®. Then with the
logarithmic accuracy:

2
Wi2=constexp(—Q)); Qi=U®-U®= ‘qn(A),

16
U®= Uy®). (16)

Here the position of the saddle point y® is found as a mean root of the
equation dU/dy = 0. The function q,(4) in the limiting cases takes the form

2
A)=3+—"=A, at|A|<1; A)=3[1-501~4)),
qi(d)=1 N3 at|A| qi(A) =3[1-5( )
atl—A<1; an
A)=—-=(1+4)" atl+A<1l.

It is evident that W _.,/W,., = wP/w{. Because of the fact that the problem
has been reduced to a one-dimensional one, expression (16) for W,_; (and also
eq. (8)) has a form similar to that of the expression obtained in Kramers’
well-known work") for the probability of the escape of a Brownian particle
from the potential well.

In the range of parameter values g, < ¢, the maxima of the function w(y)
are smeared and the concept of the probability of a transition between stable
states loses its sense. In this case the dynamics of the system in the long-time
range t >t is characterized by the decay of the time correlation function
(y(t)y(0)) for the .slow variable y = a "x,. Such correlators may be deter-
mined conveniently using eq. (11). After a standard separation of variables in
eq. (11) (see, e.g. 2'41%)

w(y, 1) =23 Cne ™™ exp[~U(y)/2]¢n(y) (18)
we get the eigenvalue problem:

__‘L [l.dil_f_-_ du ) ] -

itlagr i () et am=o. (19)

This equation corresponds to the Schrédinger equation with a potential of the
form of a polynomial of the sixth degree in y according to eq. (11) (cf. *)).
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Fig. 3. The dependence of the lowest eigenvalue Aic™"? on the parameter g;c "% The curves 1-4
correspond to the parameter values goc™' = 0; 2; 5; 10.

The lowest eigenvalue in (19) is Ao=0. The corresponding eigenfunction
Yo~ exp[—U(y)/2] has no nodes (the’stationary distribution wy ~ Yi(y)). The
behaviour of the time correlation function at large 7 is determined by the
lowest nonzero eigenvalue A,

(Y(®)y(0)) — (y(0))* ~ exp(— A7) = exp(— hia't), 7> 1.

The dependence of A;c™"2 on the parameters g;c~* and g,c ™' was found by a
numerical evaluation of eq. (19). The results are shown in fig. 3. In particular
in the spinode point itself (g, =g.=0)

M= 1.37c2; (y(t)y(0)) ~ exp[—1.37(ca)?t], Vcat> 1. (20)

Note that at large g,c ' the dependence of A,c™'? on gc™"? has a rather
sharp maximum.

4. Fluctuations near bifurcation points of the Duffing nonlinear oscillator in a
resonance field

It is interesting to consider as an example the dynamics of such a well known
nonlinear system as the Duffing oscillator interacting with a medium (and in
the general case subjected to arbitrary white noise). The equation of the
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Brownian motion for the oscillator is of the form

d’q dq 2 3_ F
W+2Fa+woq+yq =hcoswt+f(t), t>0, 2D

where q(t) is the oscillator coordinate, I" is the damping coefficient, vy is the
nonlinearity parameter, h is the amplitude of the external field whose
frequency w is supposed to be close to w, f() is a random force.

It is convenient to go from q(t) and dq(t)/dt to smooth (in the time scale
wp!) complex dimensionless functions u(7), u*(%) (cf. )):

_ wdw )" . .
q(t) = (———3”, ) [u(7) expliot) + c.c.],
4@, ( 2§3T>'/2[u(;) expliot) —c.c., 2)

dw =|w—wl, T=1tdw.

It follows from eq. (22) that
d? . du(?)
a—tgz- + w?q = 2iw[20(8w)*/3|y[]"? —'(ll_(fﬂ et

The substitution of this equation and eq. (22) into (21) allows to go from the
second order differential equation for q(t) to the set of two first order
equations for the dynamical variables u'(7),u"(7) (u=u'+iu"). After
averaging over the time ~w;' they are reduced to a complex equation,

%= v+f; v=ou,u")
= — %-}- iul|ul? sign y — sign(w — wo)] —iV/B sign h;
ly|h? 3y - )
0=, B= 323103(;))3; f@=-i (2X§w)szf (1) e @3

FEOFGEN=0; (FOFKF)) = 4a8(7 ~ 7); a:b@_z_

Eq. (21) is valid when the characteristic frequency of the medium w.g > w,.
But it was shown in refs. 16 and 11 that eq. (23) is valid also at w.s ~ wy if the
interaction with a medium is small enough (and in some other cases).

Along with the appearance of a friction force and a random &-correlated
force in the equations of motion the interaction with a medium results here in
the renormalization of the oscillator frequency. In the case of an oscillator
interacting with the bath we have in eq. (23) 9 = 3|y|[kT/8w’I" while in the
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case of the Duffing oscillator in the white noise field & is determined by the
noise intensity.

The function v in (23) depends on two parameters: {2 and . In a certain
range of 2 and B the equations of a stationary point, v'=0,v"=0, at
v(w — wg) >0, have three solutions while outside this range there is only one
solution. The boundaries of this range are determined by the expressions

g = 39'2’(ﬂ)=%[1 +9072F(1-307)%), Q=V3. (24)

The dependences B§(27"), BP(N ') are given schematically by the curves
in fig. 1. The spinode point corresponds to 2k = V3, Bk =%.

The phase of the field h in eq. (21) is chosen in such a way that the terms
linear in u’, u" in eq. (23) for du"/d7 are eliminated at the bifurcation point i.e.
the variable u"” is slow. Therefore eqgs. (23) in the range under study may be
easily reduced to the standard form (1), (2) or (1), (10).

Near bifurcation points far from the point K such a reduction leads to the
expression (2) with the coefficients

BBy )= —E=(5p-3+32p - 1p — DOY;
©T2VB() (D=5, Bp =3+3Cp = VP = DA 5

p =p"AQ) =1£4(1-30)")
Substitution of (25) into (8) shows that the exponent Q in the expression for
the probability W of the escape from the metastable equilibrium state may be
determined for the nonlinear oscillator as
V2 (0%
3 [b(D)|"Bs(D)*

Q=Ws_p ) G@)- 26)
The factor G(£2) as a function of the frequency detuning (2 is shown in fig. 4
where the curves 1 and 2 refer to the dependences B#(2) and B{(2),
respectively. At large 0, G(2)=20°3, GP(2)=4.50 (asymptotically),
while with the approach to the point K, G(£2) decreases strongly. Eq. (26) for
Q" at ) >« coincides with the result obtained in ref. 11 for this particular
case by means of an essentially different method.

In order to consider the motion of a nonlinear oscillator at the parameter
values within the neighbourhood of the point K it is convenient to go from
u’', u" to the variables

1

X = u” u" x2 = ul u’ | l (u” u” 5 u, = 1 u" =
1 Ks K _\/—'3 K/, K \/ ;9 K 2

Then the equations of motion take the form of (1), (10), and the slow motion
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Fig. 4. The dependence of the coefficient G(£2) in the expression for the transition probability of the
Duffing oscillator on the frequency detuning 2. The growth of G(£2) in the immediate vicinity of the
point K is due to the vanishing of the coefficient b(£2) in eq. (26) at 2 = 1/V3.

is described by the EFP equation (11) with

_4 . _0-0k _ __9VI(B-B)tT4R -0
T3y 8T vEg o BT 233 1R g3k '

The formulae (15)-(17) and fig. 3 along with egs. (28), (23) describe the
oscillator behaviour near the point K as a function of a departure in the
external field amplitude and frequency from their critical values. It should be
noted that eqs. (16) and (28) coincide with eq. (23) of ref. 11 obtained in
another way.

c

(28)

Appendix
The EFP equation for a random process (1) is of the form
v _ v ¢ 9
E{_Z, aij—“‘"a 0x; ‘S'.: x; (Pw). (A1)

It is supposed here that «;(0,0)=a;#*0 and that simultaneously the
coefficients a; are small enough. This allows to neglect the terms proportional
to derivatives of a;(x, x) on x, x' in the range of small |x;].

It follows from eqs. (1), (2), (10) and (A.1) that the probability distribution
over fast variables with i > 1 is formed over short times ~ t, = max(A})™' and
has a characteristic width ~a "2 (it is supposed that |a;| do not exceed « in the
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order of magnitude). The distribution v has a maximum at quasistationary
values x; = Xi(a, x;), where X; corresponding to a given x, are determined by
the equations

P,~(a, X|,Xj)=0, |X,|<|x1|<1 (A2)

Here and below i, j take the values 2,3, ...
The distribution over x;

w(x, t)=f v(x, t)dxydx;. .. (A.3)

is formed essentially longer and appears to be much more broad. To find it in
the time range t > t, the method of moments may be used. Integrating eq.
(A.1) over x5, X3, ... one obtains
aw 9w
ot Y o [Pl(a, x, O)w + .2>| (3P1/ 0% 1) xy=xy=- - =0 Xi) + - '],

(A.4)
(x;) =f xiv(x, t) de dX3 veey A=Ayl

Multiplication of (A.1) by x; and integration lead to the equation for the
moments (x;):

ai [ 1(a,x|,0)(xz)+z (3P1/3%;) xymxy=- - -=ofXij) + - ] A-)

Here the expansion (2) of Pi(a, x) in x; has been used. The equations for
successive moments are of a similar form.

The chain of the equations for moments may be decoupled at times ¢ > o if
x; is small (|x,/<1) and the function w(x,,t) is smooth enough and varies
slowly with time:

x| <1; o«|d*wlox}<w; |ow/ot|<w;

(A.6)
ladX(xi) x| < [(x:)|, |a¢xi)ot] <[ x:), t>to.
In this case eq. (A.5) has an approximate,solution
(x)=A [P(a x1, O)w — 2a ] X)) w — 221 0% (A7)
i s Ay ll xl X1 Ai 3x1’

where eq. (A.2) is taken into account. Substituting eq. (A.7) into eq. (A.4) and
neglecting the term with ay; (it is small as compared with the first addend in
the right-hand side of eq. (A.4)), we get the EFP equation for the one-
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dimensional motion

w_ 3w 9
at = oxl " ax, WD

(A.8)
P = P(x;) = Pi(a, x1, Xi(x))).

Near the usual bifurcation point (of the codimension 1), according to egs.
(2) and (A.2), we may put X; = 0 neglecting in P the quantities of the higher
order of smallness. Then, going from x;, ¢t to new variables y, 7 and allowing
for eq. (2), we may write the EFP equation (A.8) as

w_3d'w 3 2 2T
aT—aszray[(bny ea Pywl;

(A9

y = a"mxl, r=a't

In the vicinity of a bifurcation point of the codimension 2 (the point K in fig.
1) the functions X;(x;) and P(x;) may be determined by expanding P(a, x)
and P;(a, x) in powers of x and a — ax with allowance for the relation (10) for
the expansion coefficients. Then it follows from eqs. (A.2), (A.8) and (10) that

ow _ 3w 3 3_ _ = -1l 12
ar = oy Tay LY may 8wl y=aTFx, m=a, (A.10)
where
19°P, _ )
=6 9x] -3 .Zl A7Y(8°Py/3x10x; )(8°Pi/ax7) > 0;

g1=a "(3’Py/dadox;)(a ~ ag) + a™"? 2. A7Y(3%P,/0x,0x,)(9P;/3a)(a — ax);
g2= a (9P /da)(a — ax). (A.11)

All the derivatives are taken here at a = ax and x = 0. The condition ¢ >0is a
condition of the stability of the equilibrium state.

From the adiabaticity criterion, |dw/dt| <w and eq. (A.8) it follows that
|[P| <1 and |dP/dx,| < 1. This means that for the adiabatic approximation to be
applicable the condition |a — ag| < 1 must be fulfilled.
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