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The Brownian motion of the Duffing oscillator is analyzed in the case when the oscillator
damping is small compared with its frequency, whereas the nonlinearity may be arbitrary. The
expressions for the time-correlation functions of coordinates are obtained in an explicit form. If
the nonlinearity is small, the dynamics of the system is shown to be determined by a relation
between the frequency straggling due to fluctuations of the amplitude and damping. At large
nonlinearity the correlators do not depend on the damping. The frequency dependences of the
spectral representations of the correlators of coordinates are investigated for various ratios
between the oscillator parameters.

1. Introduction

The investigation of the fluctuations of dynamical variables for nonlinear
oscillating systems is an essentially more difficult problem than that for linear
ones. The difficulties are connected with the fact that the presence of
nonlinear terms in the equations of motion of the system subject to a field of
the random force does not allow us to carry out an averaging over the
realizations of an external force in a general case. Therefore a number of
approximate methods allowing to investigate spectral characteristics of the
random oscillations was developed. One of the most widely used methods is
that of equivalent linearization in which a nonlinear oscillating system is
replaced by an effective linear one (see, for example, ref. 1). The methods
based on the decoupling of the chains of equations of motion for averaged
dynamical variables are used also>). A number of results was obtained by
numerical methods, in particular for van der Pol’) and Duffing oscillators®’).

Obviously it is interesting to estimate the accuracy of the various ap-
proximate methods. From this point of view it is essential to study relatively
simple and at the same time nontrivial models of the nonlinear systems. The
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Duffing oscillator in the field of a random Gaussian 8-correlated force is one
such model. Its motion is described by the well-known Langevin equation:

4+ wiq +2I'q + vq* = f(t);
(f(Of(t")y =2BIs(t—t). 4}

Here, B characterizes the intensity of the white noise f(¢) (the case of the
two-well potential corresponding to w3 < 0% is eliminated in the present paper
although some results obtained in section 3 for the case of strong nonlinearity
are also applicable at w3 <0).

~ The approximate methods mentioned above were used to investigate this
problem in refs.!*%). However, the analysis carried out in refs.>) is actually
valid provided the criterion stated in ref.?):

/B <wil 0)

is fulfilled.

Meanwhile, an analysis of the random motion of the Duffing oscillator may
be carried out in a substantially wider range of the parameters where the
value of the nonlinearity constant vy is arbitrary and the only restriction is the
inequality for the damping parameter I":

I' < w,. 3)

Then it appears to be possible to obtain the explicit expressions for various
time-correlation functions.

The physical picture and the mathematical consideration are essentially
different depending on the value of the parameter

a =3yB/16w}r. @)

This parameter is determined by a relation between the typical frequency
straggling o = |y[(qDws' ~|y|Bl/wj due to the dependence of the nonlinear
oscillator frequency on the amplitude of random oscillations and the un-
certainty I" of the oscillator frequency, connected with damping. Depending
on the value of a the main contribution into a broadening of the spectral
distributions of the time-correlation functions is due either to the oscillator
damping or to its frequency modulation by the fluctuations of the amplitude
(modulational broadening). The first mechanism prevails in the case |a| <1,
i.e. when condition (2) is satisfied. In this case the nonlinear effects may be
considered as small perturbations.
In the range

a>1 &)

on the contrary, the damping weakly influences the spectral distributions of
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the time-correlation functions of the coordinates or velocities. In the limit
I' >0 the motion may be considered as a quasiconservative one. An averaging
over the realizations of the random force is reduced simply to the averaging
of the correlator obtained at I'=0, f =0 over the oscillator energy. Cor-
responding calculations are performed below for the case y >0 (when the
oscillator motion is finite).

The most complicated case for investigation is

Joe| ~ 1

when both mechanisms of the broadening play an essential role. However, in
this case the results of ref.®) may be used where the solution of a similar
problem concerning the vibrations of the nonlinear oscillator interacting with
a medium was obtained in the explicit form*. The solution obtained in ref.9)
allows us to describe the whole range of parameter « (but at |y|B < ).

The results of paper®) will be generalized below (section 2) for the problem
of a Duffing oscillator in a field of arbitrary white noise. Besides, the
time-correlation functions for various powers of coordinates and velocities
will be obtained by the generating function method for arbitrary a but
|v|B < w§. In section 3 the case a > 1 will be investigated, supposing the ratio
of yB and w{ to be arbitrary. In section 4 a comparison of the present results
with the results of papers'™) will be carried out.

2. Time-correlation functions at small frequency straggling due to nonlinearity

When the condition
B =|y|BRwi<1 (6)

is fulfilled, the frequency straggling due to the amplitude dependence of the
frequency of nonlinear oscillator 8w ~ Bwy < w,. Taking into account that the
values 6w and I' are small compared with w,, it is convenient to use a
standard method of the asymptotic theory of nonlinear oscillations") and to
go from fast oscillating functions q(t) and dq/dt to smooth complex functions
ui(1), ux(t). These functions may be defined as the coefficients which slowly vary
in time of the fast oscillating terms with exp(xiwyt):
dg

q(t) = uy e +u, e70'; qr = lwolu; € —up e );

uy(t) = u(t). )

* A solution of this problem was also obtained in the quantum theory for both equilibrium!®)
and nonequilibrium'") oscillators. In ref.'?) a case of a quantum nonlinear oscillator with nonlinear
friction was investigated.
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Then eq. (1) may be rewritten as

~i wgt

C'i + w(z)q =2i (()()u] eloot = —2j 0)0122 €
= =2 iwol (u; €Y — u, €790y — y(u; e + u, e 790ty + f(1). ®)
Multiplying these equalities by exp(+iwet) and neglecting fast oscillating

terms in the right-hand parts we obtain the system of stochastic Langevin
equations for the functions u,, u,:

duy _3iy I P .

at " 2a Fu1+2i woexp( 1wot)f(1);

duy _ 3y o 1 : .

TR L T'u, T, exp(iwot)f(1); )
y = Uy

To solve the nonlinear stochastic equations (9) we may use an artificial
method®). For this purpose the differential equations (9) are formally trans-
formed into integral ones:

ui(t) = ui(0) exp[F(t) — I't] + exp[F (1)]x(1);
X(6) = g exp(-TY) [ dt; expl-iont, = F(t) + THIF(1);
0

t

F(t)=g—la~)y-ofy(t1)dt1; u(t) = u(t). (10
0

The equations of motion in the form of (10) are substantially more convenient
for carrying out the averaging over realizations of the random force f(¢t) in the
asymptotic time range > w;'. This is connected with the fact that asymp-
totically the random process x(¢) turns out to be normal and the probability
distribution of the values of x(t) = x'(¢) +ix"(t) at various times t, t,, ..., I
is Gaussian:

w(. .., x'(t), x"(t,),...)=Qa) ™A,

X exp _1 i (Aﬁl)nn’[xl(tn)xl(tn’) + x”(tn)x”(tn’)] ) (1 1)
2

nn'=1
where
A=Al t,) = %(x(t,.)x*(tn'»- (12)

If one put F(t) =0 in eq. (10), the Gaussian shape of the distribution of the
random function x(¢t) would be the direct consequence of the Gaussian
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distribution of f(¢). However, due to the §-correlation of f(t), the presence of
the multiplier exp[—F(t,)] in the integrand in the expression for x(f) at t > w;'
does not change any moments of the distribution or, therefore, the
distribution itself. Really, as far as

e Fy=0 at #=t, (13)

then e.g. under the double integral over ¢, t, that determines the second
moment (x(¢)x*(t')) according to eq. (10), the §-function 8(¢, — t,) appears and
hence the factors exp[—~F(¢,)] and exp[F(t,)] are cancelled. As a result, at
t>0,t'>0

(()x*(t)) = 4%3 exp[—T(¢ + 1]
X [exp(2ltmin) — 1],  tmin = min(t, t'). (14)

Similarly, the multipliers exp[+F(t,)] are also cancelled in the expressions for
correlators of higher order.

In the case of the correlators (x(¢)x(¢')) and (x*(¢)x*(t')) the fast oscillating
multiplier exp(=2i wot) remains under the integral after an averaging. There-
fore, such correlators at |t — t'|> w;' are proportional to the small parameter
I'lwy and may be neglected in the approximation adopted here.

Thus, the problem of Brownian motion of the Duffing oscillator is reduced
to the averaging of the expressions of the type exp[F(f)] and x(t)exp[F(t)]
over the random process x(t), which is normal but not 8-correlated according
to eq. (11). The analogous problem for the nonlinear oscillator interacting with
a medium was solved in ref.?). There the property of F(¢) to be a quadratic
functional of x(¢) was used and the calculation of the averages mentioned
above was reduced to solving a certain integral equation. This allowed us to
express the time-correlation functions of the coordinates in the explicit form
(by elementary functions). The formulae obtained in ref.®) may be used in the
case considered here if one substitutes 1B for the characteristic of thermal
noise kT. :

Then we get for the time dependence of the coordinate (u,(1)), at a given
initial u,(0):

{(u ()Y = u,(0)a® exp(I't)[a ch(at) + I sh(at)]?2

3iy|u, ()P sh(at)
Xe"p[ 2010 ach(at)+Fsh(at)]’ (15)

where

a = (I"-3iyBIl4w})"*=T'(1 - 4ia)"?, Rea>0. (16)
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Formula (15) at small nonlinearity takes the form
(uy(1)) = u;(0) exp(~Tt + 4ialt)

X [1—2ia<1—3ﬁw>(1—e-m)], lae| <1. 17

It is seen from eq. (17), that already to the first order of the perturbation
theory in y/I" the nonlinearity results in a renormalization 4al’ of the
oscillator frequency and nonexponential decay of (u(¢)). At |a|=1 the
deviations from the exponential decay law exp(—It) become even more
essential in accordance with eq. (15).

The expression (15) allows us to determine easily the time-correlation
functions of the oscillator coordinates and momenta. The initial distribution
of u,(0) for the Brownian oscillator is Gibbsian. If the condition (6) of the
smallness of the frequency straggling due to nonlinearity is satisfied then this
distribution is normal

2 2
W) = 228 expl 208, 0pp | (18)

The calculation of the correlator {(u,()u%(0)) is reduced to an averaging of
expression (15) multiplied by «*(0) with the statistical weight w(u,(0)). We
obtain as a result:

O(t) = (u(HuHO)) = 4%3 My 1),

(1) = ch(ar)+ T1=210)

sh(at), B<1. 19)
It is seen from eq. (19) that the correlator Q(¢) is expressed by elementary
functions. Its dependence on a dimensionless time I't is determined by the .
single parameter «. This dependence was analyzed in ref.’).

Parallel with the function Q(¢) the spectral distribution of the time-cor-
relation function of the coordinates

QW) =5 [ de™(aqa) (20)

is of interest for a number of applications. In the case under consideration
(B <1) the expression for Q(w) near its maximum is reduced to a spectral
representation of Q(t): '

Q)= 0@ QD =LRe [dre ™G, 0= 0w [2]<an @D
0
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Expressions (19) and (21) allow us to obtain Q(2) in the explicit form at
|| <1 or |a|> 1. In the range |a| <1, to the first order in a, the distribution

~

Q(£2) remains Lorentzian and is only shifted by the value
0, =4al’ (22)

relative to the corresponding distribution for the harmonic oscillator. The
terms quadratic in « distort the shape of the distribution although it remains
symmetrical. As |a| increases, the distribution peak is shifted more (see fig. 2
in ref.%)). It becomes essentially asymmetrical and in the range of large |a] it is
described by the formula

0W) =1—67?I—Q(? 0| exp<— Ef—r)@(am at wy> [Q|> 'Va, 23)

where @(x)=1 at x >0 and @(x) =0 at x <O0. In this case the position of the
distribution maximum is

0, =2al. 24

The dynamics of the Duffing oscillator may also be investigated by another
method based on the solution of the corresponding Fokker-Planck equation.
It is shown in the appendix that such a solution at 8 <1 may be obtained
using the method of generating functions. In particular, it allows one to
determine the time-correlation functions for arbitrary powers of the coor-
dinates and momenta.

3. Time-correlation functions for a nonlinear oscillator
when the damping is neglected

The method used in the previous section is essentially based on assumption
(6), that the frequency straggling w caused by the oscillator nonlinearity is
small compared with the frequency wo. A consideration valid for an arbitrary
ratio of 8w and w, will be made below. However, the damping will be assumed to
be small not only compared with w, but also compared with 8w, i.¢., the condition
a > 1 will be used. In this case the broadening of the spectral distribution of the
time-correlation function of the coordinates is mainly due to the frequency
straggling éw, while the damping I" causes only insignificant corrections, which
may be neglected in zeroth order approximation (at 8 <1 this is seen, for
example, from eq. (23), reckoning that aI" does not depend on I').

The damping and random force at I’ < w,, 8w provide the forming of the
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distribution of the oscillator over the energy

w(E)=Z"'exp(-2EIB); Z= jdq dp exp(—2E/B);
E=3p’+i0iq’+ivq". (25)

Since the oscillator motion for the time ~(8w)™' at I'<<dw is quasicon-
servative, to calculate the time-correlation functions one may first solve the
problem of the free motion of the nonlinear undamped oscillator with a given
energy and then average over the energy (and phase) with the weight (25).
This procedure may be based strictly mathematically on the grounds of the
Fokker-Planck equation.

The solution of the equation of motion for the Duffing oscillator

G+oig+ye’=0 (y=0) (26)

with a given energy E is (see, for example, ref.")

q(t) = 7\/192 cn( ); ¢=—21TK-bw0t+(p0, 27

k2=m— 2b2’ \/1+47E

Here, cnu =cn(u \ m) is the Jacobian elliptic cosine, k is the module, (m is
the parameter), K = K(k) is the complete elliptic integral of the first kind, ¢,
is the initial phase. The function cnu has a period 4K. Therefore, the
nonlinear oscillator frequency according to (27) is:

w(E)= —2—K— (28)
The time-correlation function of the coordinates
Q) =(q(t)q(0)) = qu(O) dp(0)q(t)q(0)w(E) (29)

is determined by formulae (25) and (27). To calculate the integral (29) it is
convenient to transform to new canonical variables: the action I and phase ¢
and then to the energy E and phase ¢, taking into account the relations

dgdp =dIde; dI=w (E)dE (30)

(the action depends only on the energy). Thus the averaging in eq. (29) over
the initial coordinates and momenta reduces to an integration over E and the
initial phase ¢, entering formula (27) for q(t). The averaging over ¢, may be
easily performed using a series expansion of the elliptic cosine in eq. (27) in the
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Jacobi parameter (see, for example, ref. 14)

cn(% (p) = i—;— E: a5 1+ g3 cos(2n + g
ar = q;(k) = exp[-7K'(k)/|K(k)]; K'(k)=K(V1-k%. 3D

Substituting expressions (27) and (31) for ¢q(¢) and q(0) into eq. (29),
transforming to the integration over E and ¢,, and taking eqs. (30), (25) and
(28) into account, we obtain as a result of integration over ¢q:

3 2 ¢ - 2n+l
o =4z [ 4B o ((ZE) el S 0 cosin + Du(BITI,
Z=2n d(g) exp( %) b=b(E), k=k(E). (32)

It is seen from eq. (27) that k> < 1/2, i.e., g7 <e " ~2x 107%. Therefore, series
(32) converges very fast and it is practically sufficient to retain only the first
term in it (if the spectrum in the range w/w(B) > 1 is not of interest). Thus the
expression for Q(w) is reduced to a quadrature.

The spectral distribution of the time-correlation function according to eq.
(32) is:

Q) =2 60~ 09 3, ¢u(0) = 252 00— wohgu(w);

2En b2(En)_] da)(E,,) 2n+l(k)
) b*(E,)k?2 ( ) [1+q3"“(k )]2, (33)

en(w)=C2n+ 172 exp(—
where k, = k(E,), and E, is determined by the equation

w(E,) = (34)

2n +1

The function Q(w) according to eq. (33) is expressed by well-known special
functions. The explicit form of Q(w) may be rather easily obtained in the
limiting cases for small and large values of the parameter B, eq. (6). The case
B <1 corresponds to the oscillator with the anharmonic part of the potential
energy ;vq* being small compared with the harmonic one in the actual energy
range, whereas in the case 8 > 1 the harmonic part is negligibly small compared
with {yq*.

At B <1 in the actual energy range E< B we have b2=1, k*<1. Then
expression (33) reduces to formula (23) obtained above by a different method.
At B> 1 and w*> w§, according to eq. (27) we have b?> 1, k?=1, and taking
into account eqs. (28) and (34), expression (33) in the range of its maximum
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(where the term with n =0 may only be retained in eq. (33)) is given by

Qlw) = %‘% <—‘-0—>4 exp[~é <wﬂo>4]@(w —wy), w'®wl, B>I1;

Y87 \wo B
16V2 1 o, _ 4 1)
=g h 2(%7T)K3<v§) ~0.60; &= K4<7§) = 0.49. (35)

The position of the maximum of this curve w, and its integral width dw; are
determined by the formulae:

Wy = (B/§2)1/4w0 = 1.231/4(1)(); 8(0,‘ = 0.7431/4(1)0. (36)

It is seen from eqs. (36) and (23), that the shift and broadening of the spectral
distribution due to the nonlinearity at |a|>1 are of the same order of
magnitude.
It is not difficult to determine the function Q(w) numerically at artibrary
values of B. The plots of this function for several values of 8 are givenin fig. 1. It
is seen that, as B8 increases the width of the distribution increases too, and its
maximum is shifted to larger frequencies.
It should be noted that one may neglect damping at the evaluation of the
spectral distribution if the frequency lies in the range where Q(w) is not

4
%ow)
2
1 L
3
05+ 4
o 2
—
0 1 2 W-4

Fig. 1. Plots of the dependence of Q(w) on w/w,. Curves 1-5 correspond to the values 8 =0.1;
0.5: 1; 3; 10. Curve 1 is scaled down by a factor 10 along the ordinate axis.
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negligibly small. The nonvanishing damping even being small causes the
distribution to fall off in the wings as I'B(w*— w?2)? at B <1 (|0 — w,|> dw;).
Therefore, the results obtained above are valid only in the range where this
value is small compared with expression (33).

4. Discussion of the results

The Brownian motion of the Duffing oscillator according to eq. (1) is
determined by four parameters: wo, I, ¥ and B. In fact the number of
parameters is reduced to two, namely: 8 sign y and I'Jwi(or B8 sign y and
@ =% Bwo/I") sign ) after a transition to the dimensionless time w,t and
dimensionless coordinate weq/VB. The results given above allow us to
describe the dynamics of the Duffing oscillator and to determine explicitly the
time-correlation functions of coordinates and their spectral representations in
a wide interval of the values of these parameters:

0sB<a<wo or 0sB<wo, I <uw, 37

In the range B <1 the results are valid not only for y >0 (i.e., a >0), when
the motion is finite for all the energies but for y <0 also (although here the
motion is infinite at high energies, the probability to achieve such energies is
exponentially small at small 8). It should be noticed that in the limiting case
B> 1 formula (35) describes in particular the spectral distribution of the
oscillator with w} <0, i.e. with the two-well potential, and also the oscillator
with a large damping Bw, > I' = w,. The range |a|~ B ~ 1 cannot be described
by the methods used in the present paper. Some results for this range were
obtained numerically and using the expansion of the spectral distributions in a
continued fraction®).

In the range |a| <1, where the results of papers®™®) are valid, the expres-
sions given in section 2 agree with these results. It is seen from eqgs. (15)-(19)
that the parameter used to carry out the expansion in this range is «. In the
range |a| <1 the equivalent linearization method') is also applicable, in which
the nonlinear oscillator is substituted by a linear one. The effective frequency
w, of the latter is determined as a square root of the normalized second
moment of the spectral distribution Q(w).

In the range B <1 but |a| = 1, the expansions in the nonlinearity parameter y
(or in @) become inapplicable. When |a|= 1, the broadening of the spectral
distribution due to nonlinearity is of the same order of magnitude as its shift and
hence the effective frequency . may substantially differ from the position of the
maximum of the distribution Q(w). For example, for 8 <1 and |a|> 1 we have
(w. — wo)/[(wm — w) = 2, whereas for 8> 1 we have w./w, = 1.4.
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Appendix
Solution of the Fokker-Planck equation for the Duffing oscillator

The Fokker-Planck equation in the complex variables uy, u, = u%*, cor-
responding to the Langevin equations (9) and describing the Brownian motion
of the Duffing oscillator, when condition (6) is satisfied, is of the form

w_ 4 3iy K2 3iy ) ] BI' 3%
ot ou [(F“‘ 2 0“‘“2> ]+3u [(F"2+2 2o 2]V |t e (A

Here v = v(uy, Uy, t U, Usg, ty) 1s the probability density for the oscillator
transition from the state with coordinates u,y, Uy at time t, to the state u,, u,
at time £. In (A.1) the fast oscillating terms exp(*2iwqt) that are inessential in
the interesting range f— > w;' are neglected. Eq. (A.1) should be solved
with the initial condition

v(uy, Uy, by Urg, Usg, L) = 8(u' — ud)S(u" —ug), w=us=u"+iu". (A2)
It is convenient to transform to the variables r, ¢, so that
u=Vre®, u=Vre™ (A3)
Then eq. (A.1) takes the form

BF( v | v 162v> oy 20 37 v

=2I'v + e ) :
=2lv+s orr " ar T 4r ag? ar 2w 90

(A4)
Obviously the function v is periodic in ¢. Therefore a solution of eq. (A.4)
may be developed into a series:

o

o(r, 0, )=0(r, ¢, t; 10, @0, ) = 2, valr, ) €™ (A.5)
As far as the coefficients in (A.4) do not depend on ¢, the equations for v,(r, t)
resulting from (A.4) (with various n) are separated. It is convenient to solve
the one-dimensional diffusion equations for the functions v,(r,t) by the
method of generating functions similar to that used in the quantum theory of
the nonlinear oscillator interacting with a medium!®"). Let us introduce the
generating function

W,(x, t)= J’ va(r, Or"? exp(—xr)dr, n=0. (A.6)

According to egs. (A.4)—(A.6) the function W, (x, t) satisfies the equation:

W, _ BFx[ oW, 3iyn oW,
ot Tox 2w, Ox

W] I'mW, —2I'x (A7)

ox
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with the initial condition

W,(x,0) = = ri2exp(—xr) €™, ry= |u,(0)f (A.8)

SR

following from eqgs. (A.2), (A.5) and (A.6).

The linear differential equation of the first order (A.7) may be solved by the
method of characteristics. Direct substitution allows one to verify that the
solution of eq. (A.7) is of the form

. —(n+1)
W,(x, t) = 1 ri? ginea gntt e”[a,, ch(a,t)+ F(l +—§£2) sh(a,,t)]
™ 2(1)0
_ xa,ch(a,t) = (I'x + 3iyn/2w) sh(a,,t)]
x exp[ T~ ch(a,t) + I'(1+ Bx202) sh(a,t) |’ (A.9)
where
a, = (I'* = 3iyBI'nf4w})"* = I'(1 — 4ian)"2. (A.10)

Expression (A.9) for the generating function permits the straightforward
determination of the average values for various powers of the dynamical
variables. For example, taking into account that according to egs. (A.3), (A.5)
and (A.6)

Wi =4 f dr der™ e u(r, o, 1) = 7W,(0, 1), (A1)

one may obtain immediately the value of (u](¢)), assuming in eq. (A.9) x =0
and ry = |u,(0)]’. Similarly, from the equality:

Uius)y = f drr=mizgmy o (n=m) (A.12)
it follows that
WO O) = w(=1)" (ﬁ%ﬁﬂ)o (A13)

It is seen from eqs. (A.13) and (A.9) in particular, that the nonlinearity does
not influence the decay of the values {uf(f)u%(t)) (for example the decay of
the energy).

The explicit expressions (A.11) for the average values of (uf(¢)) allow one
to determine easily the double-time-correlation functions of the type
(ut(t)us(0)) for arbitrary n, by integration over the initial coordinates u,(0)
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with the statistical weight (18):

<u'1'(t)u5'(())) = <%)" en[l//n(t)]“(nﬂ),

2
0
Un(t) = ch(a,t) + aﬂ (1—2ian) sh(a,t). (A.14)

The spectral representation of the correlator (A.14) describes, in particular, a
susceptibility of the nonlinear oscillator near the nth overtone. At n = 1 formula
(A.14) is transformed into eq. (19). Similarly, one may obtain the expressions for
the correlation functions of the type (ui(t)us(t)uT(0)u3(0)) that give the
correlators of the coordinates and momenta g(t), dq(?)/d¢ according to eq. (7).
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