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A study is made of the self-induced rotation of the radiation polarization under saturation conditions of
the impurity absorption in a system with two-level impurities exhibiting three degenerate excited levels.
The rotation is large when the width of the absorption line is much greater than the reciprocal of the
impurity energy relaxation time. When the ratio of the line width to the reciprocal of the relaxation time
is very large, the rotation of the polarization is described by a simple expression which holds in a wide
range of radiation intensities. The magnitude and direction of the rotation are sensitive to the relative
magnitudes of the relaxation parameters. When the broadening of the absorption line is mainly due to a
random field, the nature of the random forces can be deduced from the behavior of the polarization

rotation.

PACS numbers: 78.20.Ek

Several mechanisms of the broadening of the absorp-
tion line of light by weakly bound impurities in crystals
have been discussed. For two-level impurities, the decay
and modulation mechanisms are the most important,!

The decay broadening is due to the energy relaxation
(transitions between levels accompanied by the emission
of photons, phonons, or magnons), and the modulation
broadening is due to the relaxation of the phase caused
by the quasielastic scattering of phonons (magnons by
impurities. The number of the relevant parameters de-
scribing the relaxation depends on the multiplicity of the
level degeneracy. For nondegenerate levels, the relaxa-
tion is characterized by two parameters, i.e., I and I'y,
(the decay and modulation broadening), These two param-
eters can be determined from the absorption line profile
and from the saturation of the absorption which occurs
when the intensity of the resonance radiation is increased,’
For degenerate levels, additional methods are required
to determine all the relevant relaxation parameters,

It was shown in Ref, 3 that the relaxation parameters
for degenerate two-level impurities in cubic crystals can
be determined from the measurements of the self-induced
rotation of the polarization plane of strong resonance ra-
diation. It follows from the estimates of Ref. 3 that the
angle of rotation is sensitive to the relative magnitude
of the relaxation parameters and can be quite large (~10°)
in fields ~ 10%10° V/cm, in which the nonlinearity of the
crystal under study does not manifest itself, Impurities
with a single threshold degenerate excited level are con-
sidered in Ref. 3. The wave functions of the excited level
transform under a vector representation of the cubic
group ([x), |y) |2)). For saturated absorption, the
rotation of the plane of polarization is governed by the
specific impurity relaxation mechanism, The rotation
can be explained qualitatively as follows, Let us assume
that the radiation travels in the z direction, E, = 0, and
also that the relaxation of degenerate state is independent
("decoupled" in phase). The occupancy of the states | x)
and |yy is governed, respectively, by the components of
the field Ex and Ey. Since the weaker component is ab-

sorbed more strongly, the electric field vector of a linear-

ly polarized wave traveling in a crystal rotates toward
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the nearest of the axes x, y. However, when phonons are
quasielastically scattered from impurities, not only the
phases of degenerate states are decoupled but also an
excitation transfer between states takes place. If this
transfer is the fastest effect, the stronger field compo-
nent is absorbed more strongly (it can even transform
into the weaker component), In that case, the field vector
rotates toward the nearest bisector of the angle between
the axes x, y.

The rotation of the polarization of linearly polarized
radiation is studied in Ref. 3 under exact resonance con-
ditions when the field frequency satisfies w = wy, where
liw, is the separation between the impurity levels, It is
of interest to study the rotation of the polarization for
Jw— wy| ~ Ty, where Ty, representing the half-width of
the weak field absorptionline, satisfied I'y < w, and the
degree of polarization is arbitrary, It is also of interest
to clarify the dependence of the angle of rotation of the
degree of bleaching, We shall also consider inhomoge~
neous broadening of the absorption line and we shall show
that such a broadening can lead to new effects, in partic-
ular, to the rotation of the polarization ellipse, which is
typical of isotropic systems.*

1. ROTATION OF THE POLARIZATION IN THE
ABSENCE OF INHOMOGENEOUS BROADENING

In a2 monochromatic field E(f) = Ee-iwt + E+eltt at
low temperatures T « Hw, the quantum transport equa-
tion under steady-state conditions reduces (see Ref. 3)
to the following system of linear equations for the ma-
trix elements of the impurity density matrix p:

(To 4 12) pox — & 2 Ax:,PO:, =1id 2 E:,Px,x - tdE:Poov
* *

26“1 (r+ srmﬂ) P“x + 2 (i - Bnl) I‘,?u. + 2T, (Pxx‘ - P:x,)
—1i 2 (Ax,x,P:x, - Ax:,Px,z,) = idE:Po:, - idE:‘E’:O + 2[".23“‘ (1 — poo)s ]
x3

Poo +zp“=i; I‘,=I‘+I‘,,,,+I‘,,,,—I‘,,,,: Qe=w—wy; A==,
@
Here, d is the dipole moment of the transition between
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the ground and excited states, the index % =1, 2, 3 (x,

¥, 2z) labels the excited states, 0 istheindex ofthe ground
state; the intrinsic half-width of the absorption line is
given by To =T + T'yy + 2Ty,,. The parameters govern-
ing the decay T and modulation I'yy,, 3 broadening are
quoted explicitly in Ref. 3 (T4 = [T'mgs|). The terms in
Eq. (1) that are proportional to A, are due to a random
field. It is assumed that the random field is weak

(| Ay, | < wy) and the related modification of the inter-
action of impurities with phonons and the direct interac-
tion between the ground and excited states are neglected,

The contribution of impurities to the crystal polar-
ization is given by

P‘ =nd Pxor ) . (2)

where n is the impurity concentration. It can be easily
shown that, in the absence of inhomogeneous and modula-
tion broadening (' > Iy, | Ayt |), we obtain

Pg=in(1+%f':‘)3(E)Ex- °(E)=d$[1:'5+sz=+ gf_,g_z]-l.

T, BT
e - ®

where I'y & T' and g = 2, It follows from Eq. (3) that
saturation of the absorption occurs in strong fields and
the characteristic absorption cross sectiono(E) decreases.
However, the nonlinearity of o (E) defined by Eq. (3) does
not lead to any anisotropy of a crystal with impurities.

The limit Ty, >» T is more interesting, This in-
equality is satisfied for weakly bound *high-frequency”
impurities at moderately low temperatures (see, for
_ example, Ref. 5). For I'y, » T'> [A,.1], Eq. (1) can

be solved in fields E? « T2, /d® (the ratio d*E%/T'Ty, is
arbitrary). For I'm, > T, the density matrix in the
zeroth approximation in ?E¥ T, is pun, m 0, x (1—

" poo)/3, 1.e., the occupation numbers of all excited states
« are identical and their phases are independent, Inthis
approximation, Eq. (3) again holds for g = 4/3. There-
fore, the bleaching of a crystal is governed by the pa-
rameter d?E%/T'T, irrespective of the ratio T/I'y. An
anisotropy occurs only when the terms proportional to
d*EY/Ty, are considered. In the first order in *E*/I32,
lengthy calculations yield

P,=p) 4 PO PO 4E,;
P =[31ExE’ + BE,|E, [ ByEy D EL
. RyFEXR

]
SEGICILE LG

c
By = G (0% + 71Ty — T3);

C(ar;‘:'l‘rvrmz—ré) r
=T 3brm2 i Ba=._b—z C;
nd?: (E) ' @
¢=_t Lo—iQ ' b=[‘cp([‘9+2rmz); Fpa>T.

Formally, Eq. (4) represents an expansion of the
polarization of a cubic crystal up to third order in the
field. However, it should be noted that the components
of the susceptibility tensor of rank four (the parameters
B) depend on E? and the linear susceptibility (the param-
eter A) depends on E? and on the fourth-order invariants
in the field. The quantity PQ) and the first term in P.g)
determine the isotropic parzt of the susceptibility; the
second and third terms in Pg) govern its anisotropic
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part; clearly, PQ)/P@) ~ FEYrE, « 1. Substituting Eq.
(4) in Maxwell's equations, we can determine the rota-
tion of the radiation polarization in a crystal for arbitrary
d?E?/TTy and /T, It is convenient to express the angle
of rotation in terms of the increment of the complex dif-
ference between the phases of the field components ‘!'wrcf

Coy =Y, TV, =¥, — V¥, ; U, =In(E|Ey) ()

xx,

where E,,, is the component » (complex) of the strength
of the incident radiation field, For d’E%/I « 1, the an-
isotropy is weak and, therefore, [¥,,,, | < 1. Since the
anisotropy is weak, we can evaluate ¥y, explicitly but
the actual expressions for the field components (for ¥,)
calculated in the first order in d*E?/T%, cannot be obtained
for arbitrary d*E2/T'Ty,.

For example, for waves traveling in the direction z
and Ez = 0, a small change in the angle o between the
major axis of the polarization ellipse and the x axis is
given by

2~ 1 —e?

Ba = 537 [‘I';/,, sin 2a - 2(—2-:.—27' ‘If;, cos 2a] , Ba)<€d, (6)

where ¢ is the eccentricity of the polarization ellipse of
the incident radiation. For & =1 (linear polarization),
we obtain

¥, (z) = —a cos 2a [dE3 (0) — d*E? (3)]/[4T (T, -- 19)],
be=—75 ‘;gg :‘_“ 1‘,‘; Fy 48 (0) — d*E* ()], )

2
=7 (Cony — 2043 — Cona) Tnae

Here, the spatial dependence of the field intensity is gov-
erned by the following equation, which is typical of satu-
rated absorption (neglecting the rotation of the polariza-
tion plane):

4 Tyd? . £2 ~)]}
E? (3) = E* (0) exp {——kz +3F EYd [E2 (0) — E2(2)]} » (®)

where k is the absorption coefficient of a weak field, given

by k ~ nd®ry/(r§ + Q3.

It follows from Eqs. (7) and (8) that the rotation of
the polarization is monotonic across the crystal. The
angle 6 decreases with the field strength and, even for
d’E? « T}, it can be of the order of 1°, For strong fields
(d2E2 > T'3), the quantities o and ¢ depend nonmonotini-
cally on the thickness of the crystal and on the field pro-
vided © » 0. This is due to the fact that the components
Ex and Ey acquire a large phase difference, All the pa-

. rameters characterizing the impurity center relaxation

can be deduced from the aforementioned dependences.

In fact, we can obtain I'y from the half-width of the ab-
sorption line, I' from the saturation of the absorption
defined by Eq. (8), and @ from the rotation of the polar-
ization of linearly polarized radiation defined by Eq. (7).
An additional relationship between the relaxation param-
eters can be obtained from the dependence of 6oz on ¢,
which can be easily calculated analytically from Egs.
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(4)-(6). In particular, it follows from Eq. (7) that the
rotation of the polarization is very sensitive to the rel-
ative magnitude of the modulation broadening param-
eters (it is sensitive to the sign of @). Infact,fora > 0,
the vector E rotates toward the nearest axis [100] and,
for @ < 0, it rotates to the axis [110], The type of rep-
resentation under which the phonons, whose interaction
results in the modulation broadening, transform deter-
mines the relationship between the parameters Iinys,s.

2, EFFECT OF INHOMOGENEOUS BROADENING ON
THE POLARIZATION ROTATION

We shall study the effect of inhomogeneous broaden-
ing on the nonlinear impurity absorption in the most im-
portant special case, when the modulation broadening is
large, i.e., Ty > T'y. We shall assume that the fields
involved are weak, d’E? < I' (A + Ty), where A is the inhomo~
geneous line broadening due to a shift of levels, The ef-
fect of a random field is to shift the levels and also re-
move the degeneracy. Therefore, the impurities have
three excited levels |ky (k=1,2,3) withenergies i (o,+4,);
lk> = 2 gy I x>' 2 Azx.aknak‘:, = Akskk‘v and I Alc I < o, , The
unitary matrix f@|| is a rotation matrix from the orien-
tations x, y, z to the orientations k = 1, 2, 3; without loss
of generality, we can assume that the unitary matrix in
question is real.

As already discussed, in the first approximation in
&E?/T (T + A and in the zeroth approximation in d?E?-
(T2 +A%71, Eq. (1) ylelds pyy = [(1 — Pw)/318x . Combin-
ing this result with Eq. (2), we obtain

R,

gl
P= 2 )""‘AE"A + 2 A“l‘z"lE’AE::E's; )‘“l =ind? \E Ly—iQ. /
x k

(XX

,
IR RN

——ind® 4T, <2 Do Prex, O, Py (F0 +:Qk)
30\l (1393 (F5+ Q&)

Q=0 —wy— Ay AT=((Ax — (A)D; d2E? LI}

@

Here, {(......) indicates averaging over the random
field. The averaging includes averaging over orienta-
tions that are defined by the functions |k) and averaging
over the magnitude of the shift Ay; in general, these two
types of averaging need not be independent. It is assumed
that the inhomogeneous broadening is due to the interac-
tion of resonant absorbing impurity centers with other
imperfections rather than due to their mutual interactions
and, therefore, we obtain P,, < n. For a uniform distri-
bution of imperfections over the crystal, i.e., when the
scale of microscopic inhomogeneity is small compared
with the wavelength of light, the polarizability tensor of
rank twois diagonal, Mu», =A0,,,, and the nonlinear
polarizability tensor has three independent components .
For an arbitrary ratio A/T, it is not possible to estimate
the relative magnitudes of these components, For weak
inhomogeneous broadening A « Ty, we obtain A<y, A=
2wy =2Ases Ao =0, and in the approximation de-
fined by Eq. (9), no self-induced anisotropy occurs,

For a strong inhomogeneous broadening, we obtain
A>» Ty Itis natural to assume that the splitting of
levels in a random field is of the same order as the shift
and ((8x—Ap)> ~ AT, k&K' . In this limit, the sum-
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mation over k and k; of the quantity A.... in Eq. (9) can
be limited to the term k = k; because all the other terms
are proportional to higher powers of the small param-
eter T'y/A. As a result, we obtain

i 41‘0 akxakx,akx, Ppex, (ro + iQk)
Ay @ —indt 3T <§ VRN : (L0)

Axxx’u’ = 'A'u’u' = Axx’:’x; M~ <(Ak - Ak’)z>> Ps‘ l

In the limit {(Ak— Ag1)?) > T, only transitions to one

of the three split impurity levels can be regarded as res-
onance transitions and the contribution of all the other
states (and also the contributions of impurities which do
not exhibit a suitable resonance level) to the nonlinear
polarizability is small, Threfore, it follows from Eq,
(10) that a self-induced anisotropy appears in the impur-
ity absorption band even for d?E? « A2,

The type of anisotropy depends on the nature of the
inhomogeneous broadening. When the broadening is due
to imperfections that lie far from the absorbing center
(for example, the broadening due to long-range disloca-
tion fields), the angular distribution of the orientations
[ky is essentially uniform, Moreover, if the dependence
of Ay on the orientation |k) can be neglected, the averag-
ing over the orientations [k) and over the magnitude of
Ak are independent and Eq. (10) yields

Ay = 38 prar = A,y e = 3hgyrgres (¥ %), (11)

Equations (9) and (11) describe the nonlinear polarizability
of an isotropic medium.! It is well known? that self-in-
duced rotation of the polarization in such a medium can
occur only for elliptically polarized radiation. In con-
trast to Ref, 4, the angle of rotation of the polarization
plane in an absorbing medium reaches saturation as a

function of the crystal thickness da ~ l;;‘: BVI—&/2—¢)

Moreover, the rotation is accompanied by a change in

- the ellipticity.

For a short-range interaction of the absorbing im~
purity center with imperfections, considerable splitting
and shift of the levels occur when the impurities are
located in the same or neighboring unit cells. An im-
purity complex (see, for example, Ref, 6) elongated in
the direction of one of the crystallographic axes is formed
and exhibits several equivalent orientations. The aver-
aging over a random field reduces to the averaging over
the equivalent orientations |k) for fixed shifts A;. The
self-induced anisotropy occurs provided [Ag — Ap+| > Ty
k = k"), i.e., the absorption line exhibits a fine struc-
ture, In the zeroth approximation in Iy/|Ak — Ap1| « 1,
nonlinear effects were studied in Ref, 3 for arbitrary
&®E?/T'Ty. It was shown in Ref. 3 that the orientation of
complexes can be determined from the polarization rota-
tion,

3. CONCLUSIONS

We have demonstrated that study of the polarization
rotation under saturation conditions of the resonance im-
purity absorption can be used to clarify the nature of the
broadening and also to determine the impurity relaxa-
tion parameters. For homogeneous broadening, the po-
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larization rotation occurs in stronger fields [E? ~
1%(0w)Yd?, dw is the linewidth] than the saturation of
the absorption (E2 ~ H2I'Ty/d®. Therefore, in a wide
range of fields, the saturation of the absorption is de-
scribed by the dependence (8) neglecting the polariza~
tion rotation [the dependence (8) was observed in Ref. 7
for threefold degenerate anharmonic local vibrations
in CaF, doped with H™], For inhomogeneous broadening,
the saturation of the absorption and the polarization ro-
tation are governed by the same parameter AEY/A ~
d’E%/R?TT,, 6w > Ty > I'. In this case, the anisotropy
of the interaction resulting in inhomogeneous broadening
can be determined from the measured dependence of the
polarization rotation angle on the ellipticity of the inci-
dent radiation, The dependence of the self-induced an-
isotropy on the radiation frequency is also of interest
since, by varying the frequency, we could select an ef-
fective average distance between the absorbing center
and the imperfection resulting in the splitting of levels.

l)Equation (11) is approximately satisfied for transparent isotropic media
in the nonresonance region, However, Eq. (11) can be also obtained in
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the resonance absorption region in the speéial case when the absorption

is due to impurity molecules with nondegenerate levels and all the orfen~
tations of the transition dipole moment (the orientations of the molecule)
are equally probable,
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