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Anisotropy of two-photon absorption in cubic direct-band-gap semiconductors
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The two-photon absorption (TPA) cross section in zinc-blende-structure semiconductors has been ana-
lyzed, both analytically and numerically. The warping of the valence band is shown to result in a depen-
dence of the TPA on the orientation of the polarization plane of the light with respect to the crystal

- axes, i.e., in a linear dichroism. In InSb and GaAs, the relative differences in the TPA cross sections for
light polarized along {100) and {111) axes, depending on the light wavelength, are 0.02-0.05 and
0.13-0.20, respectively. The linear-circular dichroism of TPA, even in narrow-band-gap semiconduc-
tors, is noticeably influenced by the presence of a split-off valence subband.

I. INTRODUCTION

The two-photon absorption (TPA) cross section in
semiconductors has been investigated in a number of pa-
pers, both theoretically and experimentally. It is the
main mechanism of absorption of sufficiently intense light
in the frequency range %o <g; <2#iw (o is the light fre-
quency; €, is the energy gap). For zinc-blende-structure
semiconductors, the most detailed theoretical results on
TPA were obtained in the isotropic-band approximation
for some sufficiently simple models of the band structure
(see, e.g., Refs. 1-4 and references therein). The main
characteristics investigated were the frequency depen-
dence of the absorption cross section and the linear-
circular dichroism, i.e., the difference in the cross sec-
tions for linearly and circularly polarized light.

In the present paper we investigate, both analytically
and numerically, the dependence of TPA on light polar-
ization in direct-band-gap cubic semiconductors for real-
istic models of the band structure. The emphasis is on
the dependence of the TPA cross section on the orienta-
tion of the polarization plane of the light with respect to
the crystal-symmetry axes. Such a dependence is a
specifically nonlinear effect. In linear optics, cubic crys-
tals are well known to be isotropic (apart from the effects
of spatial dispersion) and, in particular, one-photon ab-
sorption is independent of light polarization. For TPA
the situation is absolutely different. It follows from the
symmetry arguments that in the general case the decrease
of the light intensity I=(cn /27)|E|? [the electric field

J

strength &(z,1)=E(z)exp( —iwt) +E*(z)expliwt), n is the
refractive index] due to TPA is given by the equation

—(dI /dz)rpp= A, |E|*+ 4,E*B*?
+A32iEKI4’ (K=x,y,2) s (1)

where E, are the projections of E on the fourfold-
rotation-symmetry axes (the ( 100) axes).

The first two terms in Eq. (1) are not specifically “crys-
talline”’; they refer to TPA in isotropic media as well (cf.
Ref. 5 where similar terms in the free energy of radiation
in a transparent isotropic medium were demonstrated to
give rise to self-induced rotation of the ellipse of light po-
larization). In the case of TPA these terms result in a
difference in the absorption cross sections Ky, and K .
for linearly (E*||E) and circularly (E>=0) polarized light
beams, 1'espectively.1 This difference is called linear-
circular dichroism. It is obvious from (1) that

Klin/Kcirc=1+A2/A1 s (A3=0) . (2)

The last term in (1) is “pinned” to crystal-symmetry
axes and contains a dependence of TPA on the orienta-
tion of the electric field E with respect to these axes, i.e.,
a linear dichroism (although somewhat different from
linear dichroism in linear optics, cf. Ref. 6). In particu-
lar, the ratio K ;g9:K;19:K1; of the absorption cross sec-
tions for light polarized linearly along the (100), {110),
and {111) axes is obvious from (1) to be

KIOO:KIIO:KII].:(AI+A2+A3):(A1+A2+%A3):(Al+A2+%'A3) . (3)

Such dichroism gives rise to a specific rotation of the po-
larization plane of light; this is also a general symmetry
feature of nonlinear optics of cubic crystals that was pre-
dicted and observed for various mechanisms of optical
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nonlinearity.’

We note that, in contrast to the case of a one-beam
TPA considered in the present paper, in the case of ab-
sorption of photons with different frequencies from two
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polarized beams the TPA cross section depends on the re-
lationship between their polarizations and even in an iso-
tropic medium® for fixed polarization of one of the
beams, the absorption of the other beam displays a linear
dichroism.

In Sec. II below we give an analytic theory of TPA
near the absorption threshold (27w —eg, <<gg) for large
spin-orbit splitting of the valence band and for small but
finite warping of the hole constant-energy surfaces. In
Sec. III the numerical results for two semiconductors,
InSb and GaAs (opposite in relative magnitude of the
spin-orbit splitting of the valence band), are given; they
have been obtained using the (8X8) anisotropic Kane
model. Section IV contains concluding remarks.

Agre*

A, |Bl*+ 4,B’B*2+ 4, I |E, |*= e >
P Lf

MAKE)=3 (f|E-B|))IE-§))/[e,(k)+Ho—e (k)] .

7

Here, m is the free-electron mass, and i and f denote the
initial and final states of a light-absorbing electron in the
valence and conduction bands, respectively; the states |i),
| /) refer to one and the same value of the electron wave
vector k. We note that virtual transitions to both occu-
pied and empty electron states |j) are permitted (such
transitions correspond simply to mixing of the electron
states by the electric field of light). The states |i) and ¥2)
can be interpreted also as the hole and electron states.’

To gain insight into the anisotropy of TPA it is impor-
tant to obtain analytic expressions for the parameters
A, ;3. This can be done for

2% — €, <<g, (5)

where the energies of the electrons and holes involved are
small compared to the energy gap, and thus the effects of
nonparabolicity of the dispersion law can be neglected
and the dipole matrix element of the valence- to
conduction-band iransition can be assumed independent
of the electron wave vector k. The analytic results in
what follows refer to semiconductors with large spin-
orbit splitting A. For such semiconductors only two
valence subbands, those of heavy and light holes, come
into play. For #iow <<A the virtual transitions via the
split-off subband can be ignored and the denominators in
(4) can be replaced by either —#w [if |j) is a conduction-
band state] or #iw {in the opposite case). The latter means
that we neglect |g,(k)—¢g,(k)| compared to #w, where
g,(k), g,(k) are the energies of heavy and light holes, re-
spectively.
The Hamiltonian of holes is of the form
ﬁZ

H(k)=-— Ly +3y)k —y5(k-T)?

4'(73_72)Ekyi ’ (6)

where J,, J,, J, are the (4X4) matrices of the angular

momentum 2, and ¥, ¥, ¥; are the Luttinger parame-
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II. ABSORPTION CROSS SECTION
IN THE PARABOLIC-BAND APPROXIMATION

In the zinc-blende-structure semiconductors for
fio <gg <2fiw TPA is due mainly to the valence-band to
conduction-band transitions accompanied by light-
induced intra-conduction-band or intra- or inter-valence-
subband virtual transitions.! ™3 A direct way of calculat-
ing the TPA cross section, i.e., the coefficients A4, 3, is
based on numerical evaluation of the matrix elements of
the transitions and of the electron-dispersion law using
the standard for narrow-gap semiconductors formula-
tion® of the k-p method,

dk
f g |M Ak, B)[?8(e (k) —e, (k) —2F0) ,

4)

ters. It is the last term in (6) that is anisotropic and is
“pinned” to the crystal-symmetry axes, and it is this term
that is thus responsible for the linear dichroism of TPA.

For many actual semiconductors the anisotropy is
weak,

lys—7val <<y . )

If (7) is fulfilled, the linear dichroism of TPA is small,
| A3] << A{. To lowest order in (y3—7¥)/7; there are
two additive contributions to the 4, term in (4). The
first comes from the anisotropy of the energy of holes in
the & function in (4), i.e., from the anisotropy of the den-
sity of states. It can be found by calculating the transi-
tion matrix elements M ,-f(k,E) to zeroth order in
(y3—7v¥2)/v3. The second contribution comes from the
anisotropic term in M (k, E) itself and can be calculated
in the neglect of warping of the hole constant-energy sur-
faces.

To find the coefficients 4, , 3 it is convenient first to
sum the squared absolute values of the matrix elements
M (k,E) over the degenerate initial and final states, i.e.,
over orientations of the electron spin in the conduction
band and over two degenerate heavy- and light-hole
states. To first order in (y3—7;) /¥ the corresponding
sum over the states with the same ¢;(k), €,(k) can be
written as

S IMAK EN?=2(mPk /fiw)’u,(n,E) ,

e,.,f(k)=const

(8
pe(n,B) = (n,B)+pui (0, B) , n=k/k .

Here, P is the Kane parameter, P=—i(#/m) (s|P,|x)
[|s) and |x) are the orbital conduction- and valence-band
wave functions for k=0]. The subscript § takes on two
values, # and [, for the transitions giving rise to the
creation of heavy or light hole, respectively. The term
p'® in (8) corresponds to the isotropic-band approxima-
tion, and ') gives the anisotropy-induced correction.
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A. The “isotropic” matrix elements
for two-photon-induced transitions

The calculation of p{’)(n,E) is quite straightforward.

It is convenient to choose the z axis parallel to n=k/k
(cf. Ref. 9) and to take the wave functions of the heavy
J;==3) and light (J, ==1) holes in the form

Iu,%>=*%2|x+fyn ,

1 .
|v,-%)=ﬁlx—zy)l )
1 (9a)
lv,%)=76[2|Z)T_lx+iy)” ’

[v,_%)=%,6[2[zn+ lx—iy)t].
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The wave functions of the conduction band |c,a), atl,-
are of the form

le, D=ils)t, le,—L)=tls)l . (9b)

The matrix element of the operator E-p/m for a
conduction-band to conduction-band transition is diago-
nal in spin projection and equals #k-E/m, where m, is
the conduction-band effective mass. The interband ma-
trix elements of E-B/m on the functions (9a) and (9b) are
expressed in the standard way in terms of the Kane pa-
rameter P [actually, their proportionality to P has been
used in (8)]. For the valence-band to valence-band transi-
tions with a given k the operator E-p/m takes on the
form

(E-p/m),=—#""E-dH /dk=—(#k/m) [(y,+7,)(n-E)—y;[(n-T)E-T)+ (B-T)(n-T)]+2(y;3~7,) Sn EJE] (10)

[the minus sign in front of (10) reflects the fact that the electric charge of a hole is positive or, in other terms, the veloci-
ty of an electron in the valence band is —# ! dH /dk; this fact was not taken into account in Ref. 3)1.

One can show using Egs. (4) and (8)—{10) that

£, E) =2y, |[E-n|*(|E[*—|n-E[*)+ 3y X |E[*~ |n-E[*—1|E2—(n-B)?]) ,

Ye=Y1—2y3tm/m,, y,;=y,+4y,,

(11)

#%%n,B)=1y}|n-BIX(|E|*+3|n-E[")+ £¢3|E>— (0-E)*|>+ 6y 37 Re{(n-E* [ E2— (n-E)?]} .

B. General formalism. The “anisotropic” part of the matrix elements

A rather general expression for the matrix elements of two-{photon transitions that allows for the anisotropy of holes

can be obtained by applying the projection-operator technique

0 and by making use of symmetry arguments. Because of

the last term in the Hamiltonian of holes (6) the “true” wave functions of heavy and light holes are superpositions of the
function (9a). The projection operators for heavy and light holes, A,(n) and A,(n), respectively, are given by the ex-

pressions

Ay(n)=[H(k)—¢e/(k)]/[e,(k)—g/(k)], A;(n)=1—A,(n).

To zeroth order in (y3—¥,)/¥3, Ah,,(n)=A§,?}(-n) with

AP(m)=Ln-TP—1, A®n)=2—~L(n-J)?.

(12a)

(12b)

With the aid of the projection operators the combinations of the matrix elements (0, E) of Eq. (8) can be written

as

pen,B)=3(mPk)"* 3, | 3 [(c,a|B-Blo,8)(v,8 |E-PALn)0,8) —8gs(c,al DAL 0, B)c,alEle,a)] [P (13)

aB | B

(§=h,1). In obtaining (13) we have used the complete-
ness of the set (9a) in the limit of strong spin-orbit split-
ting where virtual transitions to the split-off subband can
be neglected. This completeness makes it possible also to
rewrite the sum over ' in (13) as

—m#i~ 'S (¢, | E-Bv,8) (v, B [B-dFH /dKk)An)|v,B) ,
B

with

72k 2
c
It is quite straightforward then to sum over the

conduction-band states, i.e., over a, in (13). The result is
of the invariant form

pedn,BY=(m /#k )?
XTr[Ada)(E*-d # /dk)L(E)E-d#/dk)] ,
(15)

H +H(k) . (14)
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where the trace is taken over the valence-band states [it is
simply the trace of the corresponding (4 X4) matrix] and

L(BE)=3(#/mP? 3, |v,8)
BB

X 3 (v,B|E*plc,a)c,alE-D[v,8)

X (,81 .

Allowing for the explicit form of the functions (9a), (9b)
one can easily show L (E) to be of the form

L(E)=1{$E*-E—(E*-J)(E-J)+2i[E*XE]-J} .

(16)

(17)

The single assumption made in obtaining (15) was, in
essence, the independence of the operator L as given by
(16) of the wave vector k. This is a consequence of the in-
terband matrix elements of the operator P being indepen-
dent of k for 24w —g, =(ﬁ2k2/2mc)+s§ (k) <<gg. We
note that Eq. (15) holds also for more general models of
the valence band, e.g., for arbitrary spin-orbit splitting;

1

G(n;n;,ny;E)==g(n;n;,n,;E)+g(n;ny,n;;E*)

g(n;n;,ny;B)=2{[1+(n;'n,)*+ 6(n-n;)?]|E|?—3[1—(n, n,)?]|E-n]—2[1+3(n-n)*][E-n,|?
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the explicit form of L(E) differs from (17) for such mod-
els, but L(E) is still isotropic by symmetry arguments.

The Hamiltonian 7 in (14) and (15) can be put into a
form of a linear combination of the zeroth-order projec-
tion operators Aﬁf}(n) [Eq. (12b)]:

2
7‘1‘:% Ly, k2A )+ Ly k2 AP (n)

+(y3—v2) S kA= AP (K)] | (18)

K are unit vectors along the fourth-order crystal axes. It
follows from (12), (15), and (18) that the evaluation of
gy, (0, B) is reduced to the calculation of
G(n;n,,n; E)=Tr[AL(n)A®(n,)L(E)AP(n,)] .

(19)

By making use of (12b) and (17) one obtains from (19)

20

—[3(n-n;)Xn-n,)—(n,-n;)][m, an]-[E*><E]——6[(n-n1)(nl-n2)+(n'n2)][n2><n]-[E* XEJ} .

Equations (15) and (18)—(20) make it possible to calculate the matrix elements u ;(n,E) for arbitrary warping of the
valence band. In the case of isotropic dispersion law (73=Y,) the result coincides with expression (11). The first-order
correction in y3—17, gives the anisotropic addition g{!)(n,E) in (8). It is rather clumsy, but the quantities of interest are
the values of ,uﬁ,l )(n,B) averaged over n (integrated over the orientations of n). It is substantial that, if we are not in-
terested in small corrections ~(y3;—¥,)/¥3 to A, 4,, then only the terms proportional to .| E,|* should be taken

into account in the averaged p{!). The final result for the corresponding dichroic contributions, B HB)) 4, is quite

compact:

(USINE)) y=(r3—7 ) =27, — 4y 18y 2,y +3r D/ 1 D IEY,
K

where the -+ and -— signs refer to heavy and light holes,
respectively. The same result for {u}}J(B)) was obtained
also directly from Eq. (13) by expanding A, ,(n) to first
order in (y;—7¥,)/7; and by taking into account the an-
isotropic term in (E-p/m ), in Eq. (10).

C. Explicit expressions for the absorption
coeflicients

It follows from Egs. (4), (8), (11), and (21) that the TPA
parameters A, A,, A; can be written as

A;=8e*P2(2m )V (2fiw—e, ) ?a; /3nH W’ ,

a;=a"+al’, i=1,2,3. (22)
where a/" and a/" describe the contributions from the
transitions resulting in the birth of heavy and light holes,
respectively. To zeroth order in (y3—v,)/¥ 3 the parame-

ters a{#!), a{?, that are responsible for the “isotropic”
part of TPA, take the form

@1
r
af' =3y, +8rDyi >, af=—1al" o
oD =(Lyt—tyyy, 3Dy,
aP =(&vI+Eyvay + 3P

The parameters a®!), that are responsible for linear di-
chroism of TPA, to lowest order in (y3;—¥,)/¥; are
given by the expression

a¥ =(y;—y vl — 27 EF Brarstivig

(24)

(the upper and lower signs refer to £=# and §=1, respec-
tively).

Equations (1)-(3) and (22)-(24) give the absorption
cross section as a function of the polarization of the light
in an explicit form and describe both the linear-circular
dichroism of TPA that is inherent to the spherical-band
approximation, and the specific linear dichroism which is
a feature of cubic symmetry and is due to warping of the

constant-energy surfaces of holes. It is evident that both
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types of dichroism depend crucially on the band-
structure parameters of a semiconductor.

The ratios (2) and (3) that characterize the dichroisms
take on an extremely simple form when the reciprocal
heavy-hole mass vanishes and the light-hole and
conduction-band masses coincide:

v1=2y;, m/m.=4y;, (m;'=0, m=m,) . (25a)

The linear dichroism is seen from (1) and (3) to be deter-
mined by the ratio a,/(a; +a,). According to the expli-
cit expressions (23), (24), and (25a) at the threshold of
TPA,

a3/(a1+a2)2—0.4(7’3-"}’2)/73 . (25b)

It is seen from (25b) that for typical values
(¥3—72)/¥3~0.1 the absorption cross section should
differ by several percent for different orientations of the
light polarization plane with respect to crystal symmetry
axes.

Remarkably, the linear-circular dichroism is practical-
ly absent in the case (25a): K, /K. =0.98 with neglect
of terms ~(y3—¥,)/¥s This results from the heavy-
and light-hole contributions to Ky, /K, cancelling each
other. We note that it is not due to the symmetry and is
quite unusual, generally speaking. For example, for an
isotropic medium containing homogeneously distributed
over orientations two-photon-absorbing dipoles with a
matrix element of the transition proportional to (E-d),
where d is the dipole moment, one can easily show
Ko /K oire €qual to 3. It would be expected therefore that
the linear-circular dichroism will be highly sensitive to
the effects of virtual transitions to other bands (first of all,
to the split-off valence subband) and also to the deviations
from the approximation (25a).

III. NUMERICAL RESULTS

The analysis of the frequency dependence of the TPA
as a whole and of the TPA dichroism in particular has
been done for several zinc-blende-structure semiconduc-
tors numerically. A realistic model of the band structure
of such semiconductors is the (8 X 8) Kane model. In this
model not only the heavy- and light-hole subbands, but
also the split-off one are taken into account. We have
neglected in the (8 X 8) matrix Hamiltonian H the terms
arising because of the lack of the inversion symmetry and
ignored also the difference in the matrix elements of H
due to the difference in the bases of orbital wave func-
tions for I'g and 'y valence subbands.

The numerical evaluation of the matrix elements of
two-photon transitions in (4) was based on diagonaliza-
tion of H. For a given direction of k=kn the actual ab-
solute values k were found from the energy-conservation
law (we note that several transitions can happen in a mul-
tisubband system for a given n). The matrix elements of
p=(m /#)dH /dk on the eigenstates of H were then cal-
culated, weighted allowing for the light polarization and
averaged over n.

The TPA parameters a4, a,, @; versus relative energy
excess '
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8=(2f0—e,) /¢, (26)

for two actual semiconductors, InSb and GaAs, are plot-
ted in Figs. 1 and 2. The data for CdHgTe alloys are
qualitatively the same as those for InSb. The parameters
in the figure captions are given in the notations of Ref. 11
{in view of the above approximation the parameters with
and without primes in Ref. 11 were assumed coincident).
To avoid ambiguity we use for the intra-valence-band pa-
rameters of H the notations ¥ g, ¥,x, ¥k instead of ¥,
72 ¥3 in Ref. 11. The parameters ¥, ¥, ¥3 in Eq. (6)
and the conduction-band effective mass m, are related to
Yik» Y2k, Yax and the “bare” conduction-band mass
m /(2F +1) by the expressions

v1=vik T3, /8g)
vi=vx T e, /8,) (i=2,3),
ik T5\Ep /g @7

2 1
—+ =2mP?/# .
gg g TA e =2mP/

m
I —pF 4141
m, 6P

It is seen from Fig. 1 that, for InSb, the frequency
dependences of the “isotropic” dimensionless parameters
of TPA, a; and a,, are monotonous, while a; is nearly in-
dependent of frequency. The values of @, and a3 near the
absorption threshold (8 <<1) are close to those that re-
sult from the explicit expressions (23) and (24). The fre-
quency dependence of a; that characterizes the
polarization-independent TPA is in good agreement with
analytical results for the isotropic (6X6) Kane model
with the infinite heavy-hole mass [cf. (25a)] and with the
same values of €,, €, as those in Fig. 1. The analytical

D
expressions could be obtained, e.g., along the lines of Ref.

0.15 . ; 1 . .
0
= 0.10
B
=
=
&
< 0.05
Ay
<
& /

0.00

1
1033
~0.05 ' S '

00 02 04 068 08 10
(Rhw—¢,)/ ¢,

FIG. 1. Frequency dependence of the dimensioniess parame-
ters of two-photon absorption for the (8 X8) Kane model (Ref.
11) with the parameter values g,=0.2352 eV, g,=23.2 eV,
A=0.803 eV, ¥ =3.25, Y26 =—0.2, 3, =0.9, F=—0.2 that
correspond (Ref. 12) to InSb. The analytical results for the iso-
tropic (6X6) Kane model with infinite heavy-hole mass and
with the same ¢, /g, are shown as dashed lines.
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(2ho-c,)/ e,

FIG. 2. Frequency dependence of the dimensionless parame-
ters of two-photon absorption for the (8 X8) Kane model (Ref.
11) with the parameter values g,=1.5 eV, £, =23 eV, A=0.35
eV, ¥1x=2.54, y,x == —0.15, y35x =0.72, F=0 that correspond
approximately to GaAs.

1, and our analytical result for X, /K . coincided with
that in Ref. 1.

The difference in the numerical and analytical values of
the parameter a, is much more pronounced (for small §
they are of opposite signs). This is due to the fact that
the contributions to a, due to transitions from the light-
and heavy-hole subbands nearly compensate each other
for 8 <<1; therefore, virtual transitions to the split-off
subband contribute to a, noticeably although the split-
ting A is large. As a consequence, the ratio Ky, /K.
exceeds 1 for all frequencies, and it approaches 1.3 for
5§—1.

It follows from the data shown in Fig. 1 that the linear
dichroism parameter a; /(a;+a,) increases monotonous-
ly in absolute value with the light frequency (primarily
because of the decrease of a;). It is —0.03 for §-—»0 and
—0.07 for 8—1. This means that the TPA cross section,
depending on the frequency, should vary by 2-5 % with
the rotating light polarization plane for light propagating
along a (110) axis.

It would be expected that the linear-circular dichroism
will increase if the spin-orbit splitting A decreases, and
will be strongly changed if real transitions from the split-
off subband come into play. A plausible small-A semi-
conductor is GaAs. This semiconductor is interesting
also because of warping of the hole constant-energy sur-
faces being comparatively large: (y;—¥y,)/y3=~0.25.
The values of the parameters a,, a; that characterize the
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polarizati()n dependent” TPA are seen from Fig. 2 to
exceed, in the case of GaAs, those in InSb by nearly an
order of magmtude, while the values of al differ by a fac-
tor of 2. The lmear-cucular dlchrmsm as defined by (2)
varies in GaAs within the interval (1. 16, 1.59), while the
linear dichroism parameter a; /Na, +a2) changes mono-
tonously from —0.18 to —0.27 as & increases from O to 1.
The latter means that the ratio K,qy/K;; of the TPA
cross sections for light polarized along the {(100) and
(111) axes amounts to 0.80-0.87, depending on the light
frequency. ,

The feature obvious from F1g 2 is the nonmonotony of
the frequency dependence of the parameters a, a,, a;.
The bending occurs for 2%iw =g, + A, i.e., at the threshold
of two-photon transitions from the split-off subband; the
corresponding  contribution is  proportional to
(2fiw—g, —A)*/? near the threshold.

We note that the Kane model does not describe warp-
ing of the conduction band that is substantial in GaAs for
electron energies of order of the I' — L spacing. Although
the photon energies for direct two-photon transitions to
the L valleys exceed ¢, this warping gives rise to addi-
tional anisotropy of TPA for 6~ 1.

IV. CONCLUSION

It follows from the results of the present paper that
both linear-circular and linear dichroisms of the two-
photon absorption are of utmost sensitivity to the interre-
lation between the band-structure parameters of direct-
band-gap zinc-blende-structure semiconductors. The
difference in the TPA cross sections for different light po-
larizations is quite large. This makes it possible to deter-
mine the ratios of the band-structure parameters, in par-
ticular warping of the constant-energy surfaces, in one-
laser-beam experiments without external fields.

We note in conclusion that the dichroism considered in
the present paper is inherent not only to bulk cubic semi-
conductors, but also to the cubic-semiconductor-based
quantum-well structures for light propagating along the
confinement direction (in addition to the difference in the
absorption cross sections for the beams polarized parallel
and perpendicular to this direction!®). It can be even
stronger because of the splitting of the valence band. The
corresponding results will be discussed elsewhere.
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