
PHYSICAL REVIEW B 15 JUNE 1997-IIVOLUME 55, NUMBER 24
Internal forces in nondegenerate two-dimensional electron systems
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We use Monte Carlo~MC! simulations to study the Coulomb forces that drive individual electrons in a
two-dimensional normal electron fluid and a Wigner crystal. These forces have been previously shown to
determine many-electron magnetoconductivity and cyclotron resonance of nondegenerate electron systems;
they are also known to provide an important characteristic of the dynamics of particles that form a fluid. We
have calculated the moments of the force distribution that are relevant for electron transport, which will permit
a quantitative comparison of the many-electron transport theory with experiment. We have investigated the
shape of the force distribution. Far tails of the distribution were analyzed by combining the method of optimal
fluctuation with MC calculations, and the results were compared with direct MC results.
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I. INTRODUCTION

Much work has been done in the past few years on ma
electron effects in nondegenerate two-dimensional~2D! elec-
tron systems on the surface of liquid helium and in semic
ductors. For electron densitiesns and temperaturesT
investigated experimentally, the ratio of the Coulomb ene
of electron-electron interaction toT is usually large,
G*10, where

G5e2~pns!
1/2/T. ~1!

Therefore the electron system is strongly correlated. It i
normal electron fluid in which the wave functions of diffe
ent electrons do not overlap, or forG*127 ~lower T), a
Wigner crystal.

Most studies of many-electron effects in nondegene
systems have dealt with various types of plasma waves1–3

and the Wigner transition and collective excitations in
Wigner crystal.4–10However, except for Monte Carlo analy
ses of the velocity autocorrelation function,11 the dynamics
of electrons in a normal fluid remains unexplored. This
related to the absence of ‘‘good’’ quasiparticles — the pro
lem generally encountered in the physics of liquids.

An important characteristic of electron dynamics in a n
mal fluid and in a crystal, is the internal force on an electr
or, equivalently, the electric fieldEf that drives each electro
due to thermal fluctuations of electron density. The fieldEf
~and the forceeEf) is essentially all that an electro
‘‘knows’’ about other electrons at a given time provided t
variation of the field across the electron wavelength| is
small compared to the field itself:

|u^¹nEn&u!^Ef
2&1/2, ~2!

whereEn is the field on thenth electron. The condition~2!
means that the motion of an electron in the field of oth
electrons is classical or, in the presence of a quantizing m
netic field, semiclassical.12
550163-1829/97/55~24!/16272~8!/$10.00
y-

-

y

a

te

s
-

-
n

r
g-

Internal forces have attracted much attention in the ph
ics of liquids.13 They are particularly interesting in the cas
of a 2D electron fluid, since they can be used12 to describe, in
a broad parameter range, magnetoconductivity, the cyclo
resonance spectrum, and other magnetotransport pheno
which are commonly investigated in experiment to char
terize electron systems. The theory12 relates magnetotrans
port coefficients to the characteristic function of the distrib
tion of the fieldEf and to the moments of this distribution
However, theoretical analysis of the fieldEf has been done
so far only for the harmonic Wigner crystal.

In this paper we present results of a Monte Carlo~MC!
investigation of the fluctuational internal field in the broa
range 10<G<200 that includes the normal electron flui
Wigner crystal, and the phase transition between the t
Extensive MC simulations of nondegenerate 2D electron s
tems were first performed in the late 70s and early 80s~Refs.
11,14–17! ~see Ref. 18 for a review; for more recent wo
see for example Refs. 9,19,20 and references therein!. How-
ever, the fluctuational field was not analyzed, and the dis
bution of the field cannot be obtained from the cited resu
Our results will further be used to perform detailed quali
tive and quantitative comparison of the many-electron tra
port theory with experiment in Ref. 21.

In Sec. II we formulate the problem of the fluctuation
field and briefly discuss the MC algorithm. In Sec. III w
present results for scaled^Ef

2& and^Ef
21& as functions of the

single parameterG. We also discuss singular behavior
internal energy, self-diffusion, and̂Ef

2& near the melting
transition. In Sec. IV we combine the method of optim
fluctuation and the Monte Carlo method to find the logarith
of the distribution, which is then compared with direct ca
culations of Sec. III. Section V contains concluding remar

II. FORMULATION OF THE PROBLEM

The Coulomb fieldEn on thenth electron is determined
by the positions$rn8% of all electrons in the system
16 272 © 1997 The American Physical Society
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En[En~$rn8%!52
1

e
¹nHee,

Hee5
1

2
e2( 8

n,n8
urn2rn8u

21. ~3!

For classical electron systems the distributionr(Ef) of the
field on an electron is given by the expression

r~Ef !5Zc
21E S) drn8D d@Ef2En~$rn8%!#e2Hee/T,

Zc5E S) drn8Dexp~2Hee/T!. ~4!

Clearly, the form of the distribution does not depend on
numbern of an electron in~3!,~4!.

It is convenient to change to dimensionless variables

rn→ernns
3/4T21/2, Ef→Ef /E0 , E05ns

3/4T1/2. ~5!

The distribution of the dimensionless fieldEf /E0 is seen
from ~3!, ~4! to be determined by the single parameterG.

The quantityE0 provides the characteristic scale of th
fluctuational field. This is seen, e.g., from the expression
the mean square field̂Ef

2& in terms of the two-particle dis
tribution function of the electron systemP(r1,r2):

e2^Ef
2&[^~¹nHee!

2&52eT^¹nEn&

5
e2T

nsS
E P~r1 ,r2!

ur12r2u3
dr1dr2 , ~6!

whereS is the area of the system. For a normal fluid t
function P(r1,r2) depends on ur12r2u, i.e.,
P(r1,r2)5ns

2 g(ur12r2u), whereg(r ) is the pair correlation
function. If the interparticle distance is scaled byns

21/2, then
the ratioHee/T, which determines the form ofg(r ), depends
only onG and the scaled particle coordinates. Therefore
correlation functiong(r ) depends only on the scaled distan
rns

1/2 andG, i.e., g(r )5 g̃(rns
1/2;G). As r→` the function

g(r ) approaches 1, whereas forr!ns
21/2 it becomes very

small. It follows from~6!, therefore, that

^Ef
2&5F~G!E0

2[F~G!ns
3/2T. ~7!

For a Wigner crystal one can approximate

P~r1,r2!'( 8
n,n8

d~r12Rn!d~r22Rn8!

(Rn are the lattice sites! which gives the asymptotic value o
F(G)

FW5ns
23/2 ( 8

n
uRn2R0u23. ~8!

For a triangular latticeFW'8.91.22

It follows from ~7!, ~8! that in the range~2! we have the
inequality

e^Ef
2&1/2|!T, ~9!
e

r

e

which is the criterion for applicability of the classical ap
proximation ~4!.23 @For zero or classically strong magnet
fields the characteristic wavelength| 5 |T[\/(2mT)1/2.#

It can be shown12 that in the range~9!, Eq.~4! applies also
for quantizing magnetic fields. The characteristic wavelen
in this case is given by

|5 l B~2 n̄11!21/2, l B5~\/mvc!
1/2,

vc5eB/m, n̄5@exp~\vc /T!21#21. ~10!

It is seen from~10! that in a strong quantizing fieldB, where
n̄!1, the wavelength |!|T . Therefore, even for
e^Ef

2&1/2|T.T, where the electron motion is no longer cla
sical in the absence of the magnetic field, the criterion~9!
may still apply. This means that, by using a magnetic fie
one may substantially broaden the range of electron dens
and temperatures over which the effects of electron-elec
interaction on the electron dynamics may be analyzed
terms of internal forces.

Monte Carlo algorithm

The integral ~4! was evaluated using the Metropol
algorithm.24 We modeled the system as a fixed number
electrons placed on a rectangular unit cell with perio
boundary conditions and neutralized by a uniform posit
background. The aspect ratio of the unit cell and the num
of particles in the cellN were chosen so as to be able
accommodate a perfect triangular lattice:14

Ly /Lx5A3/2, N54M2, with integer M . ~11!

Following Ref. 14, we used the Ewald summation tec
nique to evaluate the potential of an electron and its infin
set of images, minus the corresponding potential of the p
tive background. The electric field of an electron and
images was evaluated as a numerical gradient of the po
tial, which proved to be more computationally efficient th
a direct Ewald summation. The potential and electric fie
components at a pointr[(x,y) due to an electron a
x5y50 were tabulated on a 2003200 grid in the region
x/LxP(0,0.5), y/LyP(0,A3/4) ~by symmetry it was only
necessary to consider one-fourth of the unit cell!. This grid
was used for four-point interpolation25 during the simulation.
In order to improve interpolation accuracy at small distanc
the radially symmetric singular terms (r21 and r22 for the
potential and field, respectively! were subtracted prior to
tabulation and added during the simulation. This allowed
efficient determination of the potential with an error of le
than 0.005%.

We ran simulations withN5100, 144, 256, and 324. W
found good convergence of all characteristics investigate
a function ofN; there are 1/N corrections to the moments o
the fieldEf related to the motion of the center of mass of t
system. The data presented in this paper is forN5256,
which seemed to represent a reasonable compromise
tween a large number of particles and the amount of co
puter time needed to run the simulation.

The particles were initially placed either in a random co
figuration or a perfect triangular lattice. During each M
step, one electron was chosen at random and a displace
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was considered within a square of side length 2dMC centered
about the particle’s position. The value ofdMC was chosen so
that approximately 50% of attempts were accepted, wh
provides the fastest convergence. The corresponding valu
dMC
(0)'0.848e21ns

23/4T1/2.
In each of our runs the number of MC steps~per particle!

exceeded 50 000.~We note that the total number of step
;107 is very small compared to the period of our nonline
additive feedback random number generator.! For values of
G away from the phase transition the first'20 000 steps
were discarded in order to allow the system to come to eq
librium ~or quasiequilibrium!. This number was obtained
from the data on the decay of systematic drift in the tot
energy of the system, which proved to be a relatively slow
converging quantity. The vicinity of the phase transition
discussed in Sec. III A.

Our results for the radial distribution function are in goo
agreement with Ref. 14.

III. MOMENTS OF THE FLUCTUATIONAL FIELD

The MC results for the scaled mean square fluctuatio
field F(G) ~7! are shown in Fig. 1. ForG*10, the function
F decreases monotonically with increasingG. Quite remark-
ably, the variation ofF is small in the whole rangeG*10,
although the structure of the system changes dramatica
from a liquid where correlations in electron positions dec
within twice the mean electron separation, to a crystal. T
function F(G) appears to have a smeared singularity at t
melting pointG'127. This is further discussed in Sec. III A

The behavior of the functionF can be qualitatively un-
derstood by noting that, due to the weighting fact
ur12r2u23 in the integral~6!, ^Ef

2& is determined primarily
by short-range order in the system. Therefore the value
^Ef

2& for an electron liquid at largeG would be expected to
be close to that for a Wigner crystal. Variation of the scal
field F(G) with G for an electron liquid is determined
by the structure of the correlation functiong(ur12r2u)

FIG. 1. Scaled mean square fluctuational fieldF(G)5
^Ef

2&/ns
3/2T. The asymptotic valueFW for a harmonic Wigner crys-

tal is shown dashed. Inset:F(G) near the melting transition, for
crystalline (d) and random (s) initial configurations.
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22P(r1 ,r2). With decrease ofG the peaks ofg(r ) are

broadened. If we assume the broadening occurs symm
rically, it is clear that because of the weightr23, the ‘‘gain’’
in the integral~6! due to the increased small-r tail is slightly
greater than the ‘‘loss’’ due to the increased large-r tail.
Therefore the overall effect of the changes ing(r ) is a slow
increase ofF asG decreases.

For a Wigner crystal, the decrease ofF(G) with increas-
ing G can be seen from Eq.~6! written in the form

F~G!5ns
25/2S21( 8

n,n8
^uRn2Rn81un2un8u

23&

'
1

nsS
( 8
n,n8

ns
23/2uRn2Rn8u

23S 11
9

4

^uun2un8u
2&

uRn2Rn8u
2 D ,

where un is the displacement of thenth electron from its
equilibrium position. The temperature-dependent correctio
in the right-hand side is}G21. We note that the divergence
of the mean square displacement does not affect the valid
of the above expansion, because^uun2un8u

2& increases
only logarithmically, as G21ns

21lnuRn2Rn8u, for large
uRn2Rn8u.

In the limit of smallG the major contribution to the field
Ef comes from pair collisions; when two electrons come t
within a distancer;e2/T!ns

21/2 the squared field on each
of them increases asr24. A straightforward calculation in
which one ignores the effect of other electrons on the collid
ing electrons gives

F~G!'2p3/2G21, G!1. ~12!

Extrapolating the estimate~12! to G;1 gives F(1)'11,
which approximately matches the value ofF(1) obtained
from MC ~not shown in Fig. 1!.

The variation of the scaled mean reciprocal field
F5E0^Ef

21& with G is shown in Fig. 2. The functionF
decreases monotonically with increasingG. As in the case of
the scaled mean square fieldF, the overall variation inF in

FIG. 2. Scaled mean reciprocal fieldF(G)5ns
3/4T1/2^Ef

21&
(d) and its value if the field distribution were Gaussian,
@p/F(G)#1/2 (n).
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the rangeG*10 is small. If the distribution of the fluctua
tional field were Gaussian,F would be related toF by

F~G!5E0^Ef
21&uGauss.⇒@p/F~G!#1/2. ~13!

The distribution of the field is indeed Gaussian for a h
monic Wigner crystal, which is a standard result for the d
tribution of the force driving a particle in a classical sol
~we note that, in contrast to the mean square displacem
from the lattice site, which diverges forT.0, the mean
square force remains finite in a 2D crystal!. In a fluid this
distribution is close to Gaussian for largeG, because
for most of the time, electrons perform vibrations abo
quasiequilibrium positions with small amplitude
;G21/2ns

21/2!ns
21/2. As G decreases, vibrations become i

creasingly anharmonic and the deviation from Gaussian
comes more substantial.~The exact shape of the distributio
will be discussed in the next section.! Therefore the differ-
ence betweenF and (p/F)1/2 increases as well. In contrast t
F, the function (p/F)1/2 increases monotonically withG.

It is seen from Fig. 2 that the spread of the data points
the scaled reciprocal fieldF is larger than forF. We attribute
this to the contribution from electron configurations whe
the field on an electron is substantially less than the m
square root field.

The decrease ofF with G can be easily understood fo
small G. In this case, electrons move nearly independen
from each other, and for most of the time the field on
electron is;ens , and correspondinglyF;G21/2. These ar-
guments seem to differ from those used in the analysis
^Ef

2& where it was important to allow for occasional pa
collisions in which the field was very strong. Such collisio
do not contribute tôEf

21&.

Vicinity of the melting transition

We identified the position of the melting point by th
change of the internal energy and onset of self-diffusion
the electron system. The internal potential energy is given
the expression

U5
1

2
e2E P~r1,r2!2ns

2

ur12r2u
dr1dr2 . ~14!

It is convenient to consider a reduced average potential
ergy per electron

U5e22~pns!
21/2F SU2UW

nsS
D2TG , ~15!

whereUW is the potential energyU for a triangular lattice,
UW'21.96e2ns

3/2S.26 The termT is subtracted in~15! to
allow for the mean thermal potential energy of electron
brations in the harmonic approximation.

The results forU vs G are shown in Fig. 3. When th
initial configuration of electrons was a perfect crystal t
function U was found to vary smoothly with increasingG
except in the range 125&G&130 whereU drops sharply.
This is consistent with a first-order phase transition smea
by finite-size effects. On the lower ‘‘branch’’ ofU
(U&0.0005) the electron system displays crystalline ord
whereas on the upper branch ofU it is disordered. In severa
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runs the average energy took on an intermediate value b
tween the branches. The corresponding electron configu
tions displayed various degrees of disorder.

The Metropolis algorithm does not provide direct data o
the dynamics of the system. However, it still can be used
qualitatively characterize the diffusion in a relatively narrow
temperature range where the characteristic microscopic ‘‘a
tempt’’ frequencies remain nearly constant. An effective dif
fusion constantD as a function ofG was obtained as fol-
lows: after allowing the system to reach equilibrium, we
measured the displacementsD(K) of particles as a function
of the number K of MC steps per particle, up to
K'50 000. We found that̂D2(K)&}K for largeK. That is,
the displacement of electrons is diffusionlike, and we
can define a dimensionless diffusion coefficientD
5^D2(K)&/(KdMC

2 ). We verified the independence ofD on
the step sizedMC in the range 0.1,dMC /dMC

(0),1.2.
We found that for runs in which the initial configuration

of the electrons was a perfect crystal, the diffusion coeffi
cient was very small forG>130 and was due to the transla-
tion of the finite-size crystal as a whole. The parameterD
increased by a factor of;15 whenG decreased from 130 to
126 and increased smoothly asG was further lowered. This,
as well as the data on the electron energyU, indicate a melt-
ing point of the Wigner crystal atGm'12762, in agreement
with experimental results5 and previous computer
simulations.14,15

In the transition region, the melting of initially crystal-
lized electrons sometimes required more than the 20 000 M
steps normally used to equilibrate the system. In these cas
D was determined by considering the diffusion only afte
melting had occurred. The number of MC steps used to ca
culateD in every case exceeded 20 000.

For runs which started with random initial configurations
the values of the reduced potential energyU and the diffu-
sion coefficientD for G,125 were approximately equal to
U andD for runs in which the system was initially a crystal.
This was no longer true for largerG. For random initial
configurations the value ofD was larger than for crystalline

FIG. 3. Reduced mean electron potential energyU ~15! vsG for
crystalline (d) and random (s) initial configurations.
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initial configurations in the rangeG&140. Comparatively
large values ofD in the rangeG&132 for initially disordered
configurations suggest that the disordered state is metasta
in this range ofG.Gm . A snapshot of the system in a meta-
stable state is shown in the inset of Fig. 4.

Metastability of the disordered state is supported also b
the data on the energyU. Arguably, the dependence ofU on
G displays hysteresis forG close toGm; the values ofU are
larger for the disordered state. For largerG2Gm the state
with long-range translational order is expected to be the on
stable state of the system. However, because of the e
tremely small diffusion coefficients for respective tempera
tures, in particular forG.140, some defects~such as dislo-
cation pairs! remained quenched when the system wa
initially disordered, even with the maximum number of MC
steps used in the simulation.~Diffusion of defects and the
effect of boundaries on the defect energies were discussed
Ref. 27!. This is clearly seen from the final configurations of
the system. As a result, the energy of the initially disordere
system remained larger than that of the initially crystalline
one; cf. Fig. 3.

We note the similarity between the expression~6! for the
scaled mean square fluctuational fieldF}^Ef

2& and the ex-
pressions~14!, ~15! for U. If the liquid-crystal transition is
first order, we should expect bothU andF to be discontinu-
ous; therefore experimental investigation ofF may shed light
on the order of the transition. Our data forF in Fig. 1 shows
what is arguably a smeared discontinuity when the Wigne
crystal is melted, withF greater on the liquid side of the
transition, similar toU. The values ofF are slightly larger for
random rather than crystalline initial configurations. We not
that the spread of the data is relatively large in the vicinity o
the transition.

The behavior of the internal energy, field, and diffusion
with varyingG suggests that melting of a Wigner crystal is a
first order transition. This conclusion coincides with that o
Kalia et al.17 based on molecular dynamics simulations o

FIG. 4. Effective diffusion constantD vs G in the region of the
melting transition for crystalline (d) and random (s) initial con-
figurations. Inset: Snapshot of a disordered configuration fo
G5130.
ble
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the many-electron system. Our value for the entropy cha
per particle at meltingDS'0.28kB is close to the result of
Ref. 17 DS'0.3kB and the prediction of the mean-fiel
theory28 DS'0.32kB . We note that our results have bee
obtained using a different MC technique than in Ref. 17. T
other difference is that in Ref. 17 hysteresis was investiga
by monotonically heating Wigner crystal or cooling electr
liquid, whereas in our case the data were obtained star
each time from a crystalline or random configuration, ind
pendently for eachG. In contrast to Ref. 17 we have ob
served configurations with metastable defects.

The entropy change on meltingDS'0.28kB may be also
compared to an upper limit for the change of entropy
melting of 0.2kB for electrons on helium found experimen
tally in Ref. 29. We note that the data in Ref. 29 was o
tained in a range where quantum effects should be taken
account in the analysis of electron motion in the field
other electrons. These effects lie outside the scope of
present paper.

In the range belowG'126 we observed a smooth depe
dence of U onG, down toG510. A recent estimate30 of the
value ofGh for the hexatic phase to liquid transition, whic
was obtained assuming two-stage melting, giv
24.5,Gh,104.85. Within the accuracy of our calculation
for the internal energy, we found no evidence for such
transition. Detailed data on melting of a 2D Wigner crys
will be discussed elsewhere.

IV. LOGARITHM OF THE FIELD DISTRIBUTION

The logarithm of the probability density distribution o
one of the field components,r(Efx), for two values ofG is
shown in Fig. 5. The logarithm of the field is parabolic ne
the minimum in the investigated rangeG>10, which corre-
sponds to the central part of the distribution being Gauss
The deviation from Gaussian shape as characterized by
fourth moment was small; we found that the rat

@^Efx
4 &2 3

4^Ef
2&2#/^Ef

2&2 was'0.1 for G510 and decreased t
0.03 for G.100. The mean reciprocal field̂Ef

21& also is
seen from Fig. 2 to be close to its value for a Gauss
distribution.

For an electron fluid the distribution of different comp
nents of the field should be the same. We verified t
r(Efx)5r(Efy) in the liquid phase, within the accuracy o
the data. For a Wigner crystal with sixfold symmetry w
expect that̂ Efx

2 &5^Efy
2 &, ^Efx

4 &5^Efy
4 &53^Efx

2 Efy
2 &. These

relations held true to within an accuracy of;2%. We have
also analyzed the sixth moments of the components. Th
moments should reflect the difference between the isotro
electron fluid and Wigner crystal. For exampl
@^Efx

2 Efy
4 &2(1/16)̂ Ef

6&#/@(1/16)̂ Ef
6&# should be equal to

zero in a fluid, and is in general nonzero in a crystal. Ho
ever, in the simulations it was as small as&0.02 for a crys-
tal. This shows that the anisotropy of the central part of
field distribution in a Wigner crystal is small.

It is seen from Fig. 5 that in the far tails the distributio
decays much slower than a Gaussian distribution with
same width; the dependence of the logarithm of the proba
ity distribution onEfx goes from parabolic to nearly linea
for largeEfx /^Ef

2&1/2. The tails are determined by the prob

r
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abilities of large electron displacements from quasiequi
rium positions.

The shape of the tails for comparatively largeG can be
investigated analytically using the method of optimal flu
tuation. The small probability that the fieldEn on thenth
electron takes on a given large valueEf (Ef@^Ef

2&1/2) is
determined by the probability of the optimal~least improb-
able! fluctuation that gives rise to such a field. Fluctuati
probabilities are given by the factor exp(2Hee/T). There-
fore, the dominant term in the logarithm of the probabil
density of the corresponding optimal fluctuation can
found from the minimal value ofHee/T for which
En5 Ef ,

2 ln@r~Ef !/r~0!#'~Hee
~ f !@Ef #2Hee

~ f !@0# !/T,
~16!

Hee
~ f !@Ef #[Hee~$rn8

~ f !% !, En[En~$rn8
~ f !% !5Ef .

The optimal electron positionsrn8
( f ) for a given fieldEf and

the minimal valueHee($rn8
( f )%) are given by the solution of the

variational problem

Hee~$rn8
~ f !% !5min@Hee~$rn8%!2l„En~$rn8%!2Ef…#,

which is reduced to a set of algebraic equations

]

]rn8
@Hee~$rn8%!2lEn~$rn8%!#50,

~17!

En~$rn8%![2e21¹nHee~$rn8%!5Ef .

FIG. 5. Logarithm of the distribution of the field compone
r(Efx) as a function of the scaled fieldEfx /epns for G560 (1)
and 20 (s). Solid and dashed lines show the results obtained by
method of optimal fluctuation forx andy components of the field
respectively. Dotted line refers to a Gaussian distribution for
harmonic Wigner crystal. The data points extend to the far tails
the distribution where Efx

2 /^Ef
2&'11 for G560, and

Efx
2 /^Ef

2&'5.5 for G520.
-

-

e

Here, l is the Lagrange multiplier. Clearly, the value o
Hee($rn8

( f )%) is independent of the numbern of the electron

for which the fieldEn is considered~but the positionsrn8
( f )

depend onn). The valueHee@0# is the minimal Coulomb
energy forEn5 Ef50. The configurationrn8

( f ) for Ef50 cor-

responds to lattice sites of a Wigner crystal:rn8
(0)

5Rn8.
The problem~17! can be solved analytically for sma

Ef . In this case the optimal positionsrn8
( f ) correspond to

small displacementsun8 of the electrons from lattice site
Rn8. The displacements can be found by expandingHee and
En to second and first order inun8, respectively, in which
case ~17! becomes a set of linear equations forun8. The
displacementsun8 are proportional toEf , and the resulting
increment inHee is quadratic inEf . One can show that in
this approximation

Hee
~ f !@Ef #2Hee

~ f !@0#

T
5p3/2G

Ef
2

ER
2FW

, ER5epns . ~18!

The parameterFW is defined in~8! and is expressed in term
of a lattice sum.

Equation ~18! applies for Ef!ER where anharmonic
terms in the expansion ofHee in un8 are small. However, for
largeG the ratio~18! may be large even for smallEf /ER . It
is seen from~7!, ~8!, ~18! that

p3/2G
Ef
2

ER
2FW

5
Ef
2

^Ef
2&W

,

where^Ef
2&W is the mean square field for a harmonic Wign

crystal. This shows that the method of optimal fluctuati
correctly describes the Gaussian distribution of the field o
particle in the range of comparatively strong fields whe
^Ef

2&1/2&Ef!ER .
In the rangeEf;ER ~andEf.ER) the logarithm of the

field distributionr( Ef) as given by~16!, ~17! becomes non-
parabolic inEf and anisotropic: it depends on the orientati
of Ef with respect to the lattice vectors of the Wigner cryst
The variational problem forr( Ef) in the rangeEf*ER can
be analyzed numerically.

Numerical solution of Eq.~17! for the many-electron sys
tem was obtained from MC simulation of an auxiliary syste
with the Hamiltonian

H̃ee5Hee~$rn8%!2lEn~$rn8%!.

We used the same algorithm as in the MC simulations of
real system, with particles initially arranged in a crystal co
figuration. The simulations were done with extremely sm
effective temperatures in order to find the ground state c
figuration of the auxiliary system for a givenl. By varying
l we obtained different values of the fluctuational fieldEf

and found the corresponding energiesHee
( f )@ Ef #.

The results forG21ln@r( Ef)/r(0)# obtained from the nu-
merical solution of the variational problem are plotted in F
5. Note from~16! thatG21ln@r( Ef)/r(0)# for optimal fluc-
tuations is independent of temperature and is a function
the scaled fieldEf /ER only. We analyzed orientations o
Ef in the x andy directions, which are the directions to th
nearest and next nearest neighbors, respectively@we note that

e
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the orientation of the crystal is fixed by the choice of asp
ratio ~11! of the rectangle containing the electrons#.

The optimal electron configurations for the fieldsEfx and
Efy are shown in Fig. 6. The optimal configuration for th
force eEx on a given particle corresponds to the displa
ments towards each other of this particle and its nea
neighbor in thex direction. Two nearby particles are dis
placed by small amounts away from the given particle,
shown. In the case of a forceeEy , the optimal configuration
corresponds to the displacement of the particle in they di-
rection, while the closest neighbors on its way move towa
each other in thex direction. The displacements of the oth
particles are small in both cases and decay within a
interparticle distances.

It is seen from Fig. 5 that optimal fluctuations which giv
rise to a field of a given amplitude in the direction of
nearest neighbor are more probable than for a field in a
pendicular direction, as would be expected. In both cases
dependence of lnr(Ef) on Ef changes from parabolic to
nearly linear with increasingEf , and the crossover occurs i
the range 0.3,Ef /ER,0.4. The slopes of lnr(Ef) in the
quasilinear region are nearly equal for different orientatio
of Ef .

The distribution of the field component in the neare
neighbor direction obtained from direct MC simulations
seen in Fig. 5 to be close to the results obtained by
method of optimal fluctuation over the entire range of fie
we investigated. As expected, the agreement is particul
good for largeG where the method of optimal fluctuatio
applies immediately. It follows from Fig. 5 thatG560 is
sufficiently large, but the agreement is still reasonably go
even forG520 where the oscillations of the pair correlatio
function for the electron fluid decay over three mean int
particle distances. As expected, for smallerG fluctuations

FIG. 6. Optimal electron positions~full circles! for a strong field
Ef in thex ~a! andy ~b! directions. The particle that experiences t
field is marked by a cross. Lattice sites are shown by empty circ
t
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w
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e
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-

that give rise to a given largeEf /ER are ‘‘less optimal,’’ and
thus less probable. We note that ^Ef

2&/ER
2

5p23/2F(G)/G&2G21 increases quickly with decreasin
G, and therefore for smallerG it was possible to analyze th
distribution over a broader range ofEf /ER .

V. CONCLUSIONS

We have investigated internal fluctuational forces th
drive electrons in a nondegenerate 2D electron system
found the distribution of the scaled fluctuational fie
Ef /ns

3/4T1/2 on an electron as a function of the plasma p
rameterG. The results refer to the range 10<G<200, where
the electron system varies from a normal electron fluid w
the correlation length of two mean interelectron distances
a Wigner crystal, including the region of the melting tran
tion. We have analyzed the moments of the fluctuatio
field ^Ef

2& and ^Ef
21&, quantities which determine magneto

conductivity and cyclotron resonance of a nondegene
many-electron system in strong magnetic fields. The va
tion of the moments of the scaled fieldEf /ns

3/4T1/2 through-
out the range 10<G<200 was found to be relatively smal
'15%. The central part of the distribution ofEf is close to
Gaussian. These results indicate that, to a substantial ex
in the rangeG.10 electron motion is nearly harmonic vibra
tions about quasiequilibrium positions.

The tails of the distribution of the fieldEf are non-
Gaussian, and are anisotropic for a Wigner crystal. Dir
MC data and data obtained by the method of optimal fl
tuation are in good quantitative agreement in a broad ra
of Ef /ns

3/4T1/2, where the distribution varies by several o
ders of magnitude. The logarithm of the distribution ofEf is
close to linear on the far tails. The anisotropy of the slope
the logarithm of the field distribution is small.

The results of this paper make it possible to perform
quantitative comparison of the many-electron theory of m
netotransport with experiment and to describe the exp
mental data in a broad range of the magnetic field, elect
density, and temperature. Detailed experimental data
magnetoconductivity of a normal electron fluid will be pr
sented and compared with the theory in Ref. 21.

We note that if Wigner crystallization is a first order tra
sition, the moments of the fieldEf , and thus the magne
totransport coefficients, should be discontinuous at the m
ing point. However, from MC simulations we expect th
discontinuity to be small (;1%). For electrons on helium
the Debye temperature of a Wigner crystal forB50 is close
numerically to the melting temperatureTm, and the semiclas-
sical approximation used to obtain the MC data does
apply. Comparison of experimental results with the theo
should be done therefore when the temperature swe
throughTm in a sufficiently strong magnetic field such th
\e2^Ef

2&/mvc!T2, since in this case the motion of electron
may be well described in the semiclassical approximatio
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