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Internal forces in nondegenerate two-dimensional electron systems
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We use Monte CarlgMC) simulations to study the Coulomb forces that drive individual electrons in a
two-dimensional normal electron fluid and a Wigner crystal. These forces have been previously shown to
determine many-electron magnetoconductivity and cyclotron resonance of nondegenerate electron systems;
they are also known to provide an important characteristic of the dynamics of particles that form a fluid. We
have calculated the moments of the force distribution that are relevant for electron transport, which will permit
a quantitative comparison of the many-electron transport theory with experiment. We have investigated the
shape of the force distribution. Far tails of the distribution were analyzed by combining the method of optimal
fluctuation with MC calculations, and the results were compared with direct MC results.
[S0163-18207)05424-4

I. INTRODUCTION Internal forces have attracted much attention in the phys-

ics of liquids®® They are particularly interesting in the case

Much work has been done in the past few years on manyef a 2D electron fluid, since they can be u¥ed describe, in
electron effects in nondegenerate two-dimensi¢2B) elec- a broad parameter range, magnetoconductivity, the cyclotron
tron systems on the surface of liquid helium and in semiconfesonance spectrum, and other magnetotransport phenomena
ductors. For electron densities; and temperaturesT ~ which are commonly investigated in experiment to charac-
investigated experimentally, the ratio of the Coulomb energyerize electron systems. The thetryelates magnetotrans-
of electron-electron interaction tdf is usually large, port coefficients to the characteristic function of the distribu-
I'=10, where tion of the fieldE; and to the moments of this distribution.
However, theoretical analysis of the fielt} has been done
so far only for the harmonic Wigner crystal.

a In this paper we present results of a Monte CaMC)
investigation of the fluctuational internal field in the broad
range 16<I'<200 that includes the normal electron fluid,
Wigner crystal, and the phase transition between the two.
Extensive MC simulations of nondegenerate 2D electron sys-
?ems were first performed in the late 70s and early (8Gxfs.
11,14-17 (see Ref. 18 for a review; for more recent work
see for example Refs. 9,19,20 and references therddow-
ever, the fluctuational field was not analyzed, and the distri-
bution of the field cannot be obtained from the cited results.
Our results will further be used to perform detailed qualita-
tive and quantitative comparison of the many-electron trans-
port theory with experiment in Ref. 21.

In Sec. Il we formulate the problem of the fluctuational
ield and briefly discuss the MC algorithm. In Sec. Il we
present results for scaléé&?) and(E; ') as functions of the
single parametef’. We also discuss singular behavior of
internal energy, self-diffusion, an@E?) near the melting
transition. In Sec. IV we combine the method of optimal
fluctuation and the Monte Carlo method to find the logarithm
of the distribution, which is then compared with direct cal-
culations of Sec. Ill. Section V contains concluding remarks.

I'=e?(wng)Y3T.

D

Therefore the electron system is strongly correlated. It is
normal electron fluid in which the wave functions of differ-
ent electrons do not overlap, or fér=127 (lower T), a
Wigner crystal.

Most studies of many-electron effects in nondegenerat
systems have dealt with various types of plasma waves,
and the Wigner transition and collective excitations in a
Wigner crystal~° However, except for Monte Carlo analy-
ses of the velocity autocorrelation functibhthe dynamics
of electrons in a normal fluid remains unexplored. This is
related to the absence of “good” quasiparticles — the prob
lem generally encountered in the physics of liquids.

An important characteristic of electron dynamics in a nor-
mal fluid and in a crystal, is the internal force on an electronf
or, equivalently, the electric field; that drives each electron
due to thermal fluctuations of electron density. The fig}d
(and the forceeE;) is essentially all that an electron
“knows” about other electrons at a given time provided the
variation of the field across the electron wavelengttis
small compared to the field itself:

A(VaEn)| <(E2)Y2 2

whereE, is the field on thenth electron. The conditiol2)
means that the motion of an electron in the field of other
electrons is classical or, in the presence of a quantizing mag- The Coulomb fieldg,, on thenth electron is determined

II. FORMULATION OF THE PROBLEM

netic field, semiclassicaf
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by the positiondr .} of all electrons in the system
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1 which is the criterion for applicability of the classical ap-
Er=E({rn})=— o VnHee, proximation (4).23 [For zero or classically strong magnetic
fields the characteristic wavelength= x;=#/(2mT)%2]
1 It can be showt? that in the rang€9), Eq. (4) applies also
Hee:—eZE’ Ir,— rn,|*1, 3 for quantizing magnetic fields. The characteristic wavelength
205 in this case is given by

For classical electron systems the distributjg(ie;) of the X=1g(2n+1)"2 Ig=(himw.) 2
field on an electron is given by the expression B 1B “

w.=eB/m, n=[expfo./T)—1]"1. (10)

It is seen from(10) that in a strong quantizing field, where
n<l1, the wavelength x<x;. Therefore, even for
exp(— Heo/ T). 4) e_(E?)_1’27(T>T, where the electron m_otiqn is no Ionger clas-
sical in the absence of the magnetic field, the criteri®n
Jnay still apply. This means that, by using a magnetic field,
one may substantially broaden the range of electron densities
and temperatures over which the effects of electron-electron
interaction on the electron dynamics may be analyzed in

ra—ernd T2 B LE([E,, Eo=ndTY2 (5 terms of internal forces.

p(Ef)=Z(;1J (].—.[ drn’)a[Ef_En({rn’})]eHee/T,

Zczf (H dr,

Clearly, the form of the distribution does not depend on th
numbern of an electron in(3),(4).
It is convenient to change to dimensionless variables

The distribution of the dimensionless fiels; /E, is seen Monte Carlo algorithm
from (3), (4) to be determined by the single paramditer

The quantityE, provides the characteristic scale of the
fluctuational field. This is seen, e.g., from the expression fo
the mean square fiekE?) in terms of the two-particle dis-
tribution function of the electron systef@(rq,r,):

The integral (4) was evaluated using the Metropolis
ralgorithm.24 We modeled the system as a fixed number of
electrons placed on a rectangular unit cell with periodic
boundary conditions and neutralized by a uniform positive
background. The aspect ratio of the unit cell and the number

2,2\ _ 2 _ of particles in the celN were chosen so as to be able to
e(Er)=((VaHed")= ~€T(VaEn) accommodate a perfect triangular lattiée:

2T [ Pry,ry) .
“nsS |rl_r2|gdr1dr2, (6) L,/Ly=+3/2, N=4M?2, with integer M.  (11)

where S is the area of the system. For a normal fluid the Following Ref. 14, we used the Ewald summation tech-
function  P(ry,r,) depends on |r;—r,, e, Nique to evaluate the potential of an electron and its infinite
P(rl,r2)=n§ 9(|r1—r5), whereg(r) is the pair correlation set of images, minus the corrgspondmg potential of the posi-
function. If the interparticle distance is scaledrbgll’z then live background. The electric field of an electron and its

the ratioH /T, which determines the form @f(r), depends i_mages_ was evaluated as a numerical gradient O.f _the poten-
only onT" and the scaled particle coordinates. Therefore thé'al’ which proved to be more computationally efficient than

correlation functiorg(r) depends only on the scaled distance® direct Ewald summgﬂo_n. The potential and electric field
12 12, components at a point=(x,y) due to an electron at

rng”andl’, i.e, g(r)=g(rng";T). A_sllrz—_>oo the function  y_y—0 were tabulated on a 26200 grid in the region
g(r) approaches 1, whereas forng ~“ it becomes very x/L, & (0,0.5), y/Lye(O,\/§/4) (by symmetry it was only
small. It follows from(6), therefore, that necessary to consider one—fourthag]l(‘jthe unit)cdhis grid
2 o 22 was used for four-point interpolatiGhduring the simulation.
(Ef)=F(D)Ep=F(I)ng"T. (@) In order to improve interpolation accuracy at small distances,
For a Wigner Crysta| one can approximate the radially Symmetric Singular terms _(1 andr_z for the
potential and field, respectivelywere subtracted prior to
, tabulation and added during the simulation. This allowed an
Pr,ra)~ E (r1=Rp)&(ry=Ryr) efficient determination of the potential with an error of less
nn than 0.005%.
(R, are the lattice sitésvhich gives the asymptotic value of ~ We ran simulations wittN =100, 144, 256, and 324. We
F(T) found good convergence of all characteristics investigated as
a function ofN; there are I corrections to the moments of
the fieldE; related to the motion of the center of mass of the

Fw=n;s 3/22 |Rh—Ro| 2. (8)  system. The data presented in this paper is Nor 256,
which seemed to represent a reasonable compromise be-
For a triangular latticé=\y~8.917 tween a large number of particles and the amount of com-
It follows from (7), (8) that in the rangé2) we have the puter time needed to run the simulation.
inequality The particles were initially placed either in a random con-

212 figuration or a perfect triangular lattice. During each MC
e(Ef) A<T, (9 step, one electron was chosen at random and a displacement
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FIG. 2. Scaled mean reciprocal field(I')=n2*TY4E 1)
(@) and its value if the field distribution were Gaussian,
[@/F(D)]2 (A).

FIG. 1. Scaled mean square fluctuational fiel{I')=
(E?)/n32T. The asymptotic valu€,y, for a harmonic Wigner crys-
tal is shown dashed. Inse€(I') near the melting transition, for
crystalline @) and random Q) initial configurations. s .

=n, “P(r,,r,). With decrease of’ the peaks ofg(r) are
was considered within a square of side lengtiy centered ~ Proadened. If we assume the broadening occurs symmet-
about the particle’s position. The value &fc was chosen so fcally, itis clear that because of the weight”, the “gain
that approximately 50% of attempts were accepted, whici the integral(6) due to the increased smalkail is slightly
provides the fastest convergence. The corresponding value §€ater than the “loss” due to the increased largeail.
8(0~0.848 In; 34112 Therefore the overall effect of the changegy(r) is a slow

In each of our runs the number of MC stgper particle Increase O'.: asT decreases. .
exceeded 50 000We note that the total number of steps . For a Wigner crystal, the dec_reasgl%(ﬂ“) with increas-
~10 is very small compared to the period of our nonlinear'9 I can be seen from EG6) written in the form
additive feedback random number generatbor values of
I' away from the phase transition the first20 000 steps F(F):n;S/ZSflg' (|Rn= Ry +Up—Up/| %)
were discarded in order to allow the system to come to equi- nn
librium (or quasiequilibrium This number was obtained
from the data on the decay of systematic drift in the total
energy of the system, which proved to be a relatively slowly
converging quantity. The vicinity of the phase transition is

g<|un_un’|2>

1
I n— 302 -3
~ ns ¥IRy— Ry |73 1+ :
nssr%, s 1R~ Ry 4 |Ry—Ry/[?

discussed in Sec. Il A. where u,, is the displacement of thath electron from its
Our results for the radial distribution function are in good equilibrium position. The temperature-dependent correction
agreement with Ref. 14. in the right-hand side issT""*. We note that the divergence
of the mean square displacement does not affect the validity
IIl. MOMENTS OF THE FLUCTUATIONAL FIELD of the above expansion, becaupi,—u,|?) increases

~only logarithmically, as Fflns’lln|Rn—Rn/|, for large
The MC results for the scaled mean square fluctuationglr, — R ., |.
field F(I") (7) are shown in Fig. 1. FoF'=10, the function In the limit of smallT' the major contribution to the field
F decreases monotonically with increasiigQuite remark- g, comes from pair collisions; when two electrons come to
ably, the variation of is small in the whole rang€=10,  jthin a distancer ~e%T<ng 2 the squared field on each
although the structure of the system changes dramaticallyyf them increases as 4. A straightforward calculation in

from a liquid where correlations in electron positions decay,hich one ignores the effect of other electrons on the collid-
within twice the mean electron separation, to a crystal. Thq:ng electrons gives

function F(I") appears to have a smeared singularity at the

melting pointl"~127. This is further discussed in Sec. Il A. F(M)~273 "1, T'<1. (12)
The behavior of the functioft can be qualitatively un-

derstood by noting that, due to the weighting factorExtrapolating the estimatél2) to I'~1 gives F(1)~11,

Iri—r,| 72 in the integral(6), (E?) is determined primarily ~which approximately matches the value Bf1) obtained

by short-range order in the system. Therefore the value ofrom MC (not shown in Fig. 1

(E?) for an electron liquid at larg& would be expected to The variation of the scaled mean reciprocal field

be close to that for a Wigner crystal. Variation of the scaledF=Eq(E; *) with T is shown in Fig. 2. The functior

field F(I') with T" for an electron liquid is determined decreases monotonically with increasingAs in the case of

by the structure of the correlation functiog(|r;—r,|) the scaled mean square fidtd the overall variation ir in
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the rangel’=10 is small. If the distribution of the fluctua- , , , , , ]
tional field were Gaussiar# would be related td- by

0.003 % ®ee
FT)=Eo(E; Yl gause= [ 7/F(T)]¥2 (13 %

The distribution of the field is indeed Gaussian for a har- o %

monic Wigner crystal, which is a standard result for the dis- o ®

tribution of the force driving a particle in a classical solid .

(we note that, in contrast to the mean square displaceme

from the lattice site, which diverges for>0, the mean

square force remains finite in a 2D crystdh a fluid this

distribution is close to Gaussian for larggé, because 0.001 b © |

for most of the time, electrons perform vibrations about ; o

quasiequilibrium  positions with small amplitudes

~I'Yn 12<n Y2 AsT decreases, vibrations become in-

creasingly anharmonic and the deviation from Gaussian be 70 100 130 160

comes more substantidlThe exact shape of the distribution r

will be discussed in the next sectipiherefore the differ-

ence betweetF and (z/F)Y?increases as well. In contrast to

F, the function ¢r/F)*2 increases monotonically with. FIG. 3. Reduced mean electron potential enégyL5) vs T for
It is seen from Fig. 2 that the spread of the data points fokrystalline @) and random Q) initial configurations.

the scaled reciprocal field is larger than foir. We attribute

this to the contribution from electron configurations whererns the average energy took on an intermediate value be-
the field on an electron is substantially less than the meafyeen the branches. The corresponding electron configura-
square root field. _ _ tions displayed various degrees of disorder.

The decrease af with I' can be easily understood for  The Metropolis algorithm does not provide direct data on
smallT. In this case, electrons move nearly independentlythe dynamics of the system. However, it still can be used to
from each other, and for most of the time the field on anqyalitatively characterize the diffusion in a relatively narrow
electron is~eng, and correspondingly~T ~"2 These ar-  temperature range where the characteristic microscopic “at-
guments seem to differ from those used in the analysis ofempt” frequencies remain nearly constant. An effective dif-
(E?) where it was important to allow for occasional pair fusion constanD as a function of’ was obtained as fol-
collisions in which the field was very strong. Such collisionslows: after allowing the system to reach equilibrium, we

0.002

do not contribute tc(Ef‘1>. measured the displacememt¢K) of particles as a function
of the number K of MC steps per particle, up to
Vicinity of the melting transition K~50 000. We found thatA?(K))=K for largeK. That is,

. o - . . the displacement of electrons is diffusionlike, and we
We identified the position of the melting point by the can define a dimensionless diffusion coefficiem

change of the internal energy and onset of self-diffusion in"",, > - .
the electron system. The internal potential energy is given b¥_<A (K)>_/(K5Mf§)' We verified the mde(g)endence Df on
the expression he step siz&d,c in the range 0.{; 5MC/5M‘?.< 1.2. ' '
We found that for runs in which the initial configuration
1 P(r1,r,)—n2 o_f the electrons was a perfect crystal, the diffusion coeffi-
= zezf =1, drqdrs. (14  cient was very small fof =130 and was due to the transla-
102 tion of the finite-size crystal as a whole. The param@er
It is convenient to consider a reduced average potential edncreased by a factor of 15 whenl” decreased from 130 to
ergy per electron 126 and increased smoothly Bswas further lowered. This,
as well as the data on the electron endrgyndicate a melt-

R 12 [U—Uw ing point of the Wigner crystal dt,,~127+ 2, in agreement
U=e “(mns) s | (19 with experimental resuffs and previous computer
s simulationst*1°
whereU,, is the potential energy for a triangular lattice, In the transition region, the melting of initially crystal-

Uw~—1.962°n%?S.2° The termT is subtracted in15) to  lized electrons sometimes required more than the 20 000 MC
allow for the mean thermal potential energy of electron vi-steps normally used to equilibrate the system. In these cases
brations in the harmonic approximation. D was determined by considering the diffusion only after
The results forif vs I are shown in Fig. 3. When the melting had occurred. The number of MC steps used to cal-
initial configuration of electrons was a perfect crystal theculateD in every case exceeded 20 000.
function &/ was found to vary smoothly with increasifig For runs which started with random initial configurations,
except in the range 125I'<130 wherel/ drops sharply. the values of the reduced potential enetgyand the diffu-
This is consistent with a first-order phase transition smearedion coefficientD for I'<<125 were approximately equal to
by finite-size effects. On the lower “branch” of/ ¢ andD for runs in which the system was initially a crystal.
(U=0.0005) the electron system displays crystalline orderThis was no longer true for largdr. For random initial
whereas on the upper branchiéit is disordered. In several configurations the value d was larger than for crystalline
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0.06 | | the many-electron system. Our value for the entropy change
’ L T per particle at melting\S~0.2&g is close to the result of
o ROTRR ST Ref. 17 AS~0.%g and the prediction of the mean-field
R EIPE RTINS theory® AS~0.3%g. We note that our results have been
Dirleena obtained using a different MC technique than in Ref. 17. The
- other difference is that in Ref. 17 hysteresis was investigated
R S RIS, by monotonically heating Wigner crystal or cooling electron
D B .0%@ ESUTIAPIS LRSI I liquid, whereas in our case the data were obtained starting
8 &°° each time from a crystalline or random configuration, inde-

004 ®o° o

S pendently for eacH". In contrast to Ref. 17 we have ob-
0.02 - ° 1 served configurations with metastable defects.
0’ o The entropy change on meltingS~0.2&g may be also
- compared to an upper limit for the change of entropy on
(4 . . .
e ® melting of 0.Xg for electrons on helium found experimen-
] PSR tally in Ref. 29. We note that the data in Ref. 29 was ob-
70 100 130 160 tained in a range where quantum effects should be taken into
r account in the analysis of electron motion in the field of
other electrons. These effects lie outside the scope of the
present paper.

FIG. 4. Effective diffusion constari® vsI" in the region of the In the range below ~ 126 we observed a smooth depen-
melting transition for crystalline®) and random Q) initial con- dence of ./ on T, down tol’ = 10. A recent estimat8 of the
figurations. Inset: Snapshot of a disordered configuration forvalue of T',, for the hexatic phase to liquid transition, which
I'=130. was obtained assuming two-stage melting, gives

24.5<T',<<104.85. Within the accuracy of our calculations
initial configurations in the rangé'<140. Comparatively for the internal energy, we found no evidence for such a
large values oD in the rangd™ < 132 for initially disordered transition. Detailed data on melting of a 2D Wigner crystal
configurations suggest that the disordered state is metastabidll be discussed elsewhere.
in this range of">T",,,. A snapshot of the system in a meta-
stable state is shown in the inset of Fig. 4.

Metastability of the disordered state is supported also by  IV. LOGARITHM OF THE FIELD DISTRIBUTION
the data on the energ@y. Arguably, the dependence &fon
I' displays hysteresis fdr close tol',,,; the values oi/ are

larger for the disordered state. For larger I'r, the state shown in Fig. 5. The logarithm of the field is parabolic near

with long-range translational order is expected to be the 0n|¥he minimum in the investigated range> 10, which corre-

stable state of the system. However, because of the ex- . . :
e - ; sponds to the central part of the distribution being Gaussian.
tremely small diffusion coefficients for respective tempera-

tures, in particular fol"> 140, some defect@uch as dislo- The deviation from Gaussian shape as characterized by the

; . . fourth moment was small; we found that the ratio
cation pairg remained quenched when the system was

initially disordered, even with the maximum number of MC [(Ef0 — HED?W(EF)” was ~0.1 for '=10 and decreased to
steps used in the simulatiofDiffusion of defects and the 0.03 for I'>100. The mean reciprocal fiekE; ) also is
effect of boundaries on the defect energies were discussed #¢en from Fig. 2 to be close to its value for a Gaussian
Ref. 27. This is clearly seen from the final configurations of distribution.
the system. As a result, the energy of the initially disordered For an electron fluid the distribution of different compo-
system remained larger than that of the initially crystallinenents of the field should be the same. We verified that
one; cf. Fig. 3. p(Etx) =p(Esy) in the liquid phase, within the accuracy of
We note the similarity between the expressiénfor the the data. For a Wigner crystal with sixfold symmetry we
scaled mean square fluctuational figle:(E?) and the ex- expect thaEf)=(Ef), (Ef,)=(Ef,)=3(EfEf,). These
pressiong(14), (15) for /. If the liquid-crystal transition is  relations held true to within an accuracy e2%. We have
first order, we should expect bothandF to be discontinu- also analyzed the sixth moments of the components. These
ous; therefore experimental investigationFofay shed light moments should reflect the difference between the isotropic
on the order of the transition. Our data ferin Fig. 1 shows electron fluid and Wigner crystal. For example,
what is arguably a smeared discontinuity when the Wignef(EfEf,)—(1/16XE)1/[(1/16XEf)] should be equal to
crystal is melted, withF greater on the liquid side of the zero in a fluid, and is in general nonzero in a crystal. How-
transition, similar td/. The values of are slightly larger for  ever, in the simulations it was as smalla$.02 for a crys-
random rather than crystalline initial configurations. We notetal. This shows that the anisotropy of the central part of the
that the spread of the data is relatively large in the vicinity offield distribution in a Wigner crystal is small.
the transition. It is seen from Fig. 5 that in the far tails the distribution
The behavior of the internal energy, field, and diffusiondecays much slower than a Gaussian distribution with the
with varyingI" suggests that melting of a Wigner crystal is a same width; the dependence of the logarithm of the probabil-
first order transition. This conclusion coincides with that ofity distribution onEs, goes from parabolic to nearly linear
Kalia et al!” based on molecular dynamics simulations offor large EfX/<E$)1’2. The tails are determined by the prob-

The logarithm of the probability density distribution of
one of the field componentg(E;,), for two values ofl" is
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0.3 ] Here, N is the Lagrange multiplier. Clearly, the value of
; Hee({rf]f,)}) is independent of the number of the electron

for which the fieldE, is consideredbut the positionsff,)
depend om). The valueH.J 0] is the minimal Coulomb
energy forE,= E;=0. The configuratiomff,) for E;{=0 cor-
responds to lattice sites of a Wigner cryst%?;)z R, .

The problem(17) can be solved analytically for small
E;. In this case the optimal positionﬁ‘ﬁf,) correspond to
small displacementsi,, of the electrons from lattice sites
R, . The displacements can be found by expandiigand
E,, to second and first order in,, respectively, in which
case(17) becomes a set of linear equations fg,. The
displacementsl,,, are proportional tde;, and the resulting
increment inH, is quadratic inE;. One can show that in
this approximation

0 0.3 0.6 HeelE—HeelO] _ . EF
Efz/eﬂ-ns T =T EéFW,

Er=ewns. (18

The parametefy, is defined in(8) and is expressed in terms
FIG. 5. Logarithm of the distribution of the field component of a lattice sum.
p(E) as a function of the scaled fiel;,/emns for I'=60 (+) Equation (18) applies for E;<Eg where anharmonic
and 20 (). Solid and dashed lines show the results obtained by theerms in the expansion #i..in u,, are small. However, for

method of optimal fluctuation fox andy components of the field, |argeI the ratio(18) may be large even for small; /Eg. It
respectively. Dotted line refers to a Gaussian distribution for thgs seen from(7), (8), (18) that

harmonic Wigner crystal. The data points extend to the far tails of

the distribution where EZ/(E?)~11 for T'=60, and E2 E2
E2/(E?)~5.5 for I'=20. T N R
" ERFw (Ef)w

qbilities (_)f large electron displacements from quasiequilib-where<Ef2>W is the mean square field for a harmonic Wigner
filum positions. _ _ crystal. This shows that the method of optimal fluctuation
. The shape of the tails for comparatively larfecan be  .qrrectly describes the Gaussian distribution of the field on a
investigated analytically using the method of optimal fluc-paricle in the range of comparatively strong fields where
tuation. The small probability that the field, on the nth (E?)l’zs E,<Eg.

electron takes on a givep 'Iarge valég _(Ef><E%_>l/2) is In the rangeE;~Eg (and E;>Eg) the logarithm of the
determined by the probability of the optimdéast improb-  fia|4 gistributionp( E;) as given by(16), (17) becomes non-
able fluctuation that gives rise to such a field. FIUCtuat'onparaboIic inE; and anisotropic: it depends on the orientation

probabilities are given by the factor. explee/ T). There—” of E; with respect to the lattice vectors of the Wigner crystal.
fore, the dominant term in the logarithm of the probability 114 '\ ariational problem fop( E;) in the rangeE= Eg can
density of the corresponding optimal fluctuation can

found from the minimal value ofH.J/T for which
En= E,

behe analyzed numerically.
Numerical solution of Eq(17) for the many-electron sys-

tem was obtained from MC simulation of an auxiliary system
L ) with the Hamiltonian
—In[p(Er)/p(0)]~(Hee[Ef] —Hee[OD/T, (16)

Hee:Hee({rn’})_)\En({rn’})-

We used the same algorithm as in the MC simulations of the
real system, with particles initially arranged in a crystal con-
figuration. The simulations were done with extremely small
effective temperatures in order to find the ground state con-

HOTEI=He{r'")), En=En({r{')=E;.

The optimal electron positior‘éf,’ for a given fieldE; and

the minimal valuel-lee({rf]f,)}) are given by the solution of the

variational problem figuration of the auxiliary system for a given By varying
) ) A we obtained different values of the fluctuational fi&g
Hed{rn D =min[Hed{rs}) = MEx({rn}) —Ep], and found the corresponding energi¢S)[ E;].

The results fod” ~*In[p( Ef)/p(0)] obtained from the nu-
merical solution of the variational problem are plotted in Fig.
p 5. Note from(16) thatI" ~In[p( E¢)/p(0)] for optimal fluc-

—[Hed{rn ) —AE,({raH]=0, tuations is independent of temperature and is a function of

ar 17) the scaled fieldE;/Eg only. We analyzed orientations of
E; in the x andy directions, which are the directions to the

En({rnhH=—e "1V Hd{r,})=E;. nearest and next nearest neighbors, respectiwaynote that

which is reduced to a set of algebraic equations
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that give rise to a given large; /Eg are “less optimal,” and

. . . o . - @ thus less probable. We note that(E?)/E%
=7 3%F(')/T<2I' ! increases quickly with decreasing
o . . e . . . I', and therefore for smalldr it was possible to analyze the
distribution over a broader range Bf /Eg.

V. CONCLUSIONS

We have investigated internal fluctuational forces that
drive electrons in a nondegenerate 2D electron system and
found the distribution of the scaled fluctuational field
®) Ef/ng"“Tl’2 on an electron as a function of the plasma pa-

¢ rameter]’. The results refer to the range<0'<200, where
the electron system varies from a normal electron fluid with
. ° @ ® ® . the correlation length of two mean interelectron distances to
a Wigner crystal, including the region of the melting transi-
1; - . ° tion. We have analyzed the moments of the fluctuational
field (E?) and(E; '), quantities which determine magneto-
conductivity and cyclotron resonance of a nondegenerate
many-electron system in strong magnetic fields. The varia-
tion of the moments of the scaled fiel; /nZ“T%2 through-
out the range 181'<200 was found to be relatively small,
~15%. The central part of the distribution Bf is close to
Gaussian. These results indicate that, to a substantial extent,
in the rangd™> 10 electron motion is nearly harmonic vibra-
Yions about guasiequilibrium positions.

The tails of the distribution of the field; are non-

aussian, and are anisotropic for a Wigner crystal. Direct
MC data and data obtained by the method of optimal fluc-
E,, are shown in Fig. 6. The optimal configuration for the tuation are in good quantitative agreement in a broad range

/. I . .

force eE, on a given particle corresponds to the displace—Of Ef/ng 4T1/2,’ where the d|st.r|but|on varies ,by gevergl or-
ments towards each other of this particle and its neared{ers of magnitude. The logarithm of the distributionEgfis
neighbor in thex direction. Two nearby particles are dis- close to I_mear on the_far ta_lls._Thg an_|sotropy of the slope of
placed by small amounts away from the given particle, adhe logarithm of the_ﬂeld dlstrlbutlon IS smgll.

shown. In the case of a foreE, , the optimal configuration Th(.a rgsults of th_|s paper make it possible to perform a
corresponds to the displacement of the particle inythe- quantitative comparison O.f the many-electron.theory of mag-
rection, while the closest neighbors on its way move towarddtotransport with experiment and to describe the experi-
each other in the direction. The displacements of the other ment_al data in a broad range of 'ghe magnetic field, electron
particles are small in both cases and decay within a fev?ens'ty’ and temperature. Detailed experlment_al data on
interparticle distances magnetoconductivity of a normal electron fluid will be pre-

It is seen from Fig. 5 that optimal fluctuations which give sented and com_pargd with the theory n Ref._ 21.
rise to a field of a given amplitude in the direction of a We note that if Wigner crystallization is a first order tran-

nearest neighbor are more probable than for a field in a pers—'t'on’ the moments of the fielé; gnd thus the magne-
transport coefficients, should be discontinuous at the melt-

pendicular direction, as would be expected. In both cases the . ) :

dependence of p(E;) on E; changes from parabolic to N9 point. However, from MC simulations we expect the
. S 0 ;

nearly linear with increasing;, and the crossover occurs in discontinuity to be small-¢19%). Forelectrons on helium

the range 0.3 E;/Ex<0.4. The slopes of |o(E;) in the the Debye temperature of a Wigner crystal B0 is close

quasilinear region are nearly equal for different 0rientationéq_umer'c"""y to th(’.} melting tempera_tuTen, and the semiclas-
of E sical approximation used to obtain the MC data does not

apply. Comparison of experimental results with the theory

neighbor direction obtained from direct MC simulations is should be _done the_refore when the te_mp_erature SWeeps
seen in Fig. 5 to be close to the results obtained by théhrgugthm Ina zufﬂ.men'gly strong magnetic field such that
method of optimal fluctuation over the entire range of fields’€ (Ef)/Mac<T*, since in this case the motion of electrons
we investigated. As expected, the agreement is particularl{@y be well described in the semiclassical approximation.
good for largel’ where the method of optimal fluctuation
applies immediately. It follows from Fig. 5 thdi=60 is
sufficiently large, but the agreement is still reasonably good
even forl'=20 where the oscillations of the pair correlation  C.F.Y. acknowledges financial support from the Depart-
function for the electron fluid decay over three mean inter-ment of Physics at Stanford University, and the Center for
particle distances. As expected, for smallerfluctuations Fundamental Material Research and REU program at MSU.

FIG. 6. Optimal electron positior(gull circles) for a strong field
E; in thex (a) andy (b) directions. The particle that experiences the
field is marked by a cross. Lattice sites are shown by empty circle

the orientation of the crystal is fixed by the choice of aspecb
ratio (11) of the rectangle containing the electrgns
The optimal electron configurations for the fielg, and

The distribution of the field component in the nearest-
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