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The motion of an overdamped particle in a bistable potential U(z), driven by quasimonochromatic
noise (high-frequency, narrow-band noise), has been investigated by means of electronic analog sim-
ulation. The escape rate from one potential well to another was found to be exponentially small
compared to the reciprocal mean first-passage time to the top of the potential barrier. The logarithm
of the quasistationary probability distribution was observed to fall extremely sharply at a particular
value of z, quite close to the equilibrium position. Theory describing the nonanalytic dependence of
this logarithm on the bandwidth of the noise is presented and shown to be in good agreement with
experiment. Data are also presented for a symmetric monostable potential. In a certain parameter
range, the quasistationary distribution is demonstrated to be independent of the form of such a

potential.
PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Fluctuations in physical systems can often be described
by assuming that they are generated by external noise.
Initial studies concentrated on the effect of Gaussian
white noise, with correlator

(F)F(¥)) = D&(t —t'). 1)

The white-noise approximation, which dates back to the
work of Einstein [1] and Smoluchowski [2], is of course
an idealization, not least because its power spectrum

o) = [ Z dt exp(iwt) (£ (£) F(0)) (@)

is flat and hence the total noise power is infinite for finite
characteristic noise intensity D. For any real physical
noise f(t), the mean-square value {f2(t)) is finite, and
the power spectrum falls to zero as jw| — oo, i.e., ®(w)
is frequency dependent. Such noise is termed colored.
For zero-mean stationary Gaussian noise, ®(w) contains
all information about the noise. Its form depends on the
physical characteristics of the source of the noise itself
and on the coupling between this source and the noise-
driven system. For example, if the noise originates from
coupling between the system and a heat bath, ®(w) is
determined by the density of states of the elementary ex-
citations of the bath, by the temperature, and by the cou-
pling constants. In many cases the noise power spectrum
can be directly measured experimentally. It is therefore
advantageous to express the characteristics of a fluctuat-
ing system in terms of ®(w).
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The effects of noise color have often been considered
phenomenologically by assigning a given functional form
to ®(w). By far the most studied example is exponen-
tially correlated noise [3], defined by

(FOFE)) = 5= exp(—lt — 1/7),

3
®(w)=D/(1 +wr?).

In this case the noise is characterised by a single correla-
tion time 7. White noise is recovered in the + — 0 limit.
(Note that some authors use the terms colored noise and
exponentially correlated noise interchangeably.)

The quantity of primary interest in noise-driven sys-
tems is the probability-density distribution or distribu-
tion function. For weak noise this distribution is localized
in the vicinity of the attractor(s) of the system. If the at-
tractor is a stable state, the quasistationary distribution
is, in general, Gaussian near the maximum. For many
applications it is important, however, to find the distribu-
tion in regions far from the attractors. In contrast to the
situation in the vicinity of a stable state, the distribution
here is not of a universal form; it depends strongly both
on the dynamics of the system in the absence of noise and
on the shape of the noise power spectrum. First attempts
at treating the exponentially correlated noise problem in-
volved construction of approximate Fokker-Planck equa-~
tions [3,4]. Unfortunately, solutions to such equations
sometimes gave conflicting results. Subsequently, the
problem was solved in the weak noise limit [5-10] using
path-integral techniques [11] and the eikonal approxima-
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tion to the exact multivariable Fokker-Planck equation
[12-14].

In many physical situations the noise driving a system
is more complicated. In particular, of great interest is
“truly colored” noise, whose power spectrum peaks at a
finite frequency wg, with the half width I satisfying

' K wp. (4)

An example of such noise is the electromagnetic field of
incoherent, nearly monochromatic light. By analogy with
optics and following [15] we shall call it quasimonochro-
matic noise (QMN).

QMN is generated by a variety of systems capable of
singling out a frequency, and can be viewed as the re-
sult of filtering broadband noise through a highly selec-
tive system. Examples of such systems include various
electromagnetic or acoustic high-Q cavities; their eigen-
vibrations excited at random by an external noise pro-
duce QMN [16,17]. Another familiar example is that of
local and quasilocal (resonant) vibrations of impurities in
crystals [18,19]. Such vibrations are mainly characterized
by a single frequency and are coupled to a broadband of
other modes of the crystal. Their thermal fluctuations
are a typical QMN. The power spectra of local and reso-
nant vibrations have been thoroughly investigated both
theoretically and experimentally [18-22]. QMN can also
be viewed as a narrow-band form of harmonic noise [23—
25]. The latter has been invoked as a possible description
of enzymatic catalysis.

The simplest type of QMN (which will be the specific
form that we refer to as QMN below) is that produced
by a harmonic oscillator of frequency wp and damping I,
driven by white noise

F@&) + 2T F(t) + wd F(t) = £(2),
(5)
(€(t)E(t")) = ATT6(t — t').

If the noise originates from coupling between the system

and a heat bath, 7" may be identified as the temperature;

more generally it is just 2 measure of the noise strength.
The power spectrum of QMN has the form

4T 6)
(w? — wd)? + 4T2w?’

O(w) =

In this paper we study the effect of QMN on sim-
ple physical systems and compare our observations with
theoretical predictions. The previously published theory
[26] describing the tails of the probability distribution of
QMN driven systems worked to lowest order in the band-
width I" and reciprocal frequency wg!. Several unusual
features were predicted, including square-root singular-
ities and associated discontinuities in the logarithm of
the probability distribution. Initial experimental investi-
gations [15] demonstrated that this logarithm is contin-
uous, although it varies very steeply in the range where
theory predicted a discontinuity. A higher-order pertur-
bation theory and a fuller set of experimental data are
given in the present paper.
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Section II provides a qualitative explanation of the fea-
tures of the original theory. Experimental results, ob-
tained by electronic analog simulation of a particle in a
bistable potential, and also by digital-computer simula-
tion, are presented in Sec. III. The main result is that a
particle initially in one potential well can cross the po-
tential barrier top (PBT) several times, back and forth,
but still return to the initially occupied well with over-
whelming probability, instead of making a transition to
the other well. This is in sharp contrast to the situation
for simple dynamical systems driven by both white and
exponentially correlated noise, where a fluctuation driv-
ing the particle just over the PBT is sufficient to cause a
transition [6,8,27]. Section IV substantially extends the
theory to account for the smearing out of the discontinu-
ities in the logarithm of the probability density evident in
the experimental data. The smearing is found to depend
nonanalytically on I'. Section V discusses the features
of QMN-induced fluctuations in monostable systems and
Sec. VI contains concluding remarks. The Appendix
presents a numerical algorithm for Monte Carlo simula-
tion of a QMN-driven system.

II. QUASISTATIONARY PROBABILITY
DISTRIBUTION IN THE ADIABATIC
APPROXIMATION: INTUITIVE RESULTS

The dynamics of a system drivenr by colored noise is
characterized by the noise correlation time (times) 7 as
well as the relaxation time (times) ¢, in the absence of
noise. If the system is bi- or multistable, other important
characteristic times are the reciprocal probabilities W,-}Tl
of noise-induced transitions between the stable states 1, 5.
For sufficiently weak noise the transition probabilities are
small

"V,;jt,- < 1, T’V.;j'l' < 1. (7)

{In fact, the conditions (7) are necessary for the concept
of transition probability to be meaningful; the transition
probability would otherwise depend on the initial posi-
tion of the system and/or the initial state of the noise,
and one would arrive at a continuum of “transition proba-
bilities” when considering a distribution of initial states.]
If (7) are fulfilled and a system is placed initially in the
range of attraction to a stable state 7, then in the time
range

te, T €t K< W5t (8)

the probability distribution p; over the phase space of
the system in the vicinity of the state 1 is virtually time
independent. (We note that finding the boundary of the
range of quasistationarity is a nontrivial problem. In par-
ticular, as was shown in [15,26], this boundary depends
on the shape of the power spectrum of the noise.)

This paper examines the effect of QMN on an over-
damped particle in a potential U{z). The motion of the
particle is described by the Langevin equation

&+ U'(z) = f(1)- (9)

We consider the situation where time scales are widely
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separated T (t) = falt)/(tows), o == (15)
I <t < w. (10)  Although higher harmonics can formally be included

Here the relaxation time t, = max{[U"(z;)]~'}, where z;
are the minima of U{x). In this section we give a simple
qualitative derivation of the quasistationary probability
density in the adiabatic approximation. The full calcula-
tion, which has the advantage that it can be extended to
include nonadiabatic corrections, but which requires use
of path-integral theory, is deferred to Sec. IV.

We note first of all that QMN as given by Eq. (5) can
be viewed as vibrations at frequency wgy with random
amplitude and phase. To describe these vibrations it
is convenient to change from f(t), f(t) to new variables

fa(t)
F@&) =" falt) exp(iowst),

a==%
(11)
fy= Z iowp fa(t) exp(icwpt).

o=+

We emphasize that no approximations have been made
at this stage; Eq. (11) is just a definition of fi in terms
of f and f. It is clear from (5) that the amplitudes fu.(t)
depend on time comparatively smoothly

(=@ ~ T2 £ @) (12)

The stationary probability distribution p(Ref, Imf) of
the variables f. (t) can readily be obtained, since Eq . (5)
allows f(t) and f(t) to be associated with the position
and velocity of a harmonic oscillator coupled to a thermal
bath of temperature T. The probability distribution is
therefore of Boltzmann form; its dependence on f and f
is solely through the energy F

p(E) o exp(—E/T).

Since, in view of (11), E = 32 + 1w f? = 2wi|f+ %

2
P(Refy, Imfy) = 228 exp(~263121/T).  (13)

In response to the nearly periodic forcing, the coordinate
z(t) oscillates at the same frequency wg, with smoothly
varying amplitude and phase. However, because in gen-
eral the potential is nonlinear and asymmetric about the
stable point in the absence of forcing, not only do the
amplitude and phase change, but the center of vibration
also moves. To describe this effect we write

z(t) = Z Za(t) exp(iawet) + z(t). (14)

=k - . - -
Substituting (14) into (9) and allowing for the fact that,
on the one hand, the frequency wy is much higher than
the relaxation rate of the system and, on the other hand,
the latter greatly exceeds the rate at which the ampli-
tudes fi change, we get

in z,(t) and z.(t) in (15), they are small and
will be neglected. {The nth harmonic is of order
| U027 | fwe < |4 for small (wot,) 1]

To find the smooth function z. it is convenient to intro-
duce an auxiliary three-variable potential, by averaging
U(z) over the period of oscillation

1 2n

— dpU(ze +zoe™¥ +x_e™ ),
27 0

(16)

V(ze, Tyyz_) =

‘gb = wot.

Averaging (9) and working to lowest order in (wpt,)™?
gives

Ze = —V{(Tey T4, z), Vi= oV @an

© T gz,

_ Equations (12) and (15) show that the complex ampli-

tudes fi(t) and hence z4(t) vary over a time ~ I'"1,
which greatly exceeds the characteristic relaxation time
t, of x.. Therefore z. follows the variation of z4 (¢} adi-
abatically, and the &, term in (17) may be neglected,
yielding

Vc’(xgad): z4,2-) =0, (18)
which determines z, implicitly
zo(t) ~ 28 (z4,2-). (19)

In other words, the center of vibrations sits at the mini-

mum of the smoothed potential V' as shown in Fig. 1.
It is now possible to find the logarithm of the probabil-

ity distribution p;(z) of the system far from the equilib-
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FIG.1. The smoothed potential V(z.) (solid lines) result-
ing from the particular case U(z) = —$#? + Lz*, for various

values of the oscillation amplitude z.. The lowest curve is for
x4+ = 0; each subsequent curve increments the value of z; by
0.1. The heavy dashed line shows the evolution of z. (plotted
horizontally) as a function of ;. The extreme limits of oscil-
lation z. — 2z, zc + 274 are also shown (light dashed lines).
Note that the left limit does not go beyond —+/5/3 ~ —1.29.
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rium position z;. The distribution in this range is formed
by occasional, comparatively large outbursts of the noise
f(#). We need to express the probability of the appro-
priate outburst as given by (13) in terms of z. It suffices
to express the position z in terms of x.., since p;(z) can
then be obtained (up to a prefactor) by using (15) to re-
place f4 by z4 in (13). The time origin is chosen so that
the point z is reached at ¢t =0

z = z.(0) + z (0) + z_{0). (20)

By far the most probable way of reaching z, is if the
particle arrives there just when the fluctuations reach
their maximum amplitude. The condition for this is

z.4(0) = z_(0). (21)
Equations (19)-(21) give the required relation between x
and z4. According to (13) the expression for the proba-
bility density is

Infp:(z)/pi(a:)] = ~Ri(z)/D  [Ri@)> D] (22)
where
2
Ri(z) = 281z, (0)]%. (23)

Here D is a rescaled noise intensity, equal to the maxi-
mum value of the power spectrum of the noise

D = ®pax(w) = T/Twi. (24)
The dependence of the probability distribution p;(z) on
D is thus of the activation type, and R;(z) may be called
an activation energy for reaching the point by the sys-
tem in the ith stable state.

We stress that Egs. (22)—(24) have been derived in
the double-adiabatic approximation. On one hand, the
central frequency wg of the power spectrum of the noise
was assumed to exceed substantially the relaxation rate
of the system and, on the other hand, the latter was
assumed to exceed the bandwidth of the noise.

Two specific consequences follow immediately from
Bqgs. (18)-(21) and (23) [26]. The first applies to a
monostable, symmetric potential where U(z) = U(—z).
{We have chosen the origin to coincide with the equilib-
rium position.) In this case, V'(z) has only one minimum,
at £ = 0, so that 289 = 0 and z+(0) = %z, with the
activation energy

Ri(@) = 87 2

T) = 5T (25)

The distribution given by (22) and (25) is of the form

of that for a system with a parabolic potential [although

U(z) is not parabolic, in general] but, remarkably, its
shape is independent of U(z).

The other feature can arise for a potential asymmet-
ric about the minimum. It is related to the fact that as
the noise amplitude o |fi(%)| increases, not only does
the amplitude of oscillations in xz(t) increase in propor-
tion to |f+(%)], but also their center is shifted. If this
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shift is comparatively strong, then as |f4.(¢)| and |z, (£)]
vary, the extreme value attained by z(t) will not enter the
range beyond the limiting value T given by (20), (21), and
the equation

dzx

— =0, z4(0) =74,

(26)

This behavior is clearly seen in Fig. 1. The range of
z encountered in the forced vibrations does not spread
beyond a certain point. Taking into account the inter-

relation (19) between mg’d) and zi, one can rewrite Eq.
(26) as
V=V for z4+=TFp=7%_, T, = 8D (T, T)
(27)
v
Vi = I V=V(zez4,2-)

(Subscripts «a,c denote derivatives with respect to
2T, Zc respectively. The number of primes indicates the
total order of the derivative.)

It is obvious from (26) that for = close to T the differ-
ence .. (0) — Z,. varies as [C(z — )]}. (The constant C
can easily be expressed in terms of the derivatives of V;
see below.) Therefore

Ri(z) = Ry(T) — [C'(z —T)]*/?,  C'=const, (28)

i.e., the effective activation energy for reaching a point
z has a square-root singularity and is discontinuous at
T = T. We stress that this singularity can arise even if the
potential U(x) of the system itself is perfectly smooth; it
is not associated with any singular points of U(z), al-
though the onset of the singularity depends solely on the
form of U(z) and is independent of the parameters of the
noise.

ITI. ANALOG EXPERIMENTS

A. Experimental details

Quasistationary distributions and escape rates were
measured using electronic analog simulation, in which
the variables = and f are represented by voltages in an
electronic circuit [28]. A harmonic-oscillator circuit was
driven by noise from a feedback shift-register noise gen-
erator [Fig. 2(a)]. The integrators in the circuit had a
time constant 77 = 1 ms. As this is orders of magni-
tude greater than the noise correlation time, 74 = 4.53
us, the noise was perceived as white, with characteristic
intensity

r_ LV

or T (29)

where V is the noise voltage. The output from this
circuit is just QMN and was used to drive a second circuit
modeling Eq. (9) [Fig. 2(b)] for the symmetric, bistable
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FIG. 2. Block diagrams of the electronic circuits used in
the simulation. (a) Circuit used to convert white noise into
QMN. (b) Circuit modeling an overdamped particle in the
potential U(z) = —12? + 1%,

potential
_ L o 1 4
Ulz) = 5% + i (30)
for which minima occur at z; = -1 and 9 = +1 with a

maximum at = 0.
The QMN parameters are nominally determined by the
resistances R;—Rj3:
wg = Ra/Ry, 2T = Ry/Rs. (31)
When compared with measured values, the second ex-
pression was found to break down for I'< 0.1. It is not
known why this should be the case. The damping was
measured in two different ways. First, it is well known
that the probability density for a system driven by white
noise obeys the Maxwell distribution over velocities [27]

P(f) o exp(—F2/2T)

from which it follows that (f2) = 7. On measuring {f2)
and (VZ), the value of I follows from (29). The alter-
native method was to switch off the white noise, and in-
stead drive the oscillator by a sine wave of amplitude
A, whose frequency was adjusted until resonance was
achieved. One can then find I" and wp from the ampli-
tudes of f(t) and f(t) which are equal to A/(2Twp) and
A/(2T"), respectively. The two methods agreed to within
5%.

The output voltage z was digitized by a Nicolet 1080
data processor into blocks of 4096 samples. After ini-
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tial processing, the data could later be transferred to a
mainframe computer for further analysis.

B. Escape rates

One of the most important problems in multistable
noise-driven systems is to determine the rate at which

. particles escape from one well to another. In the white-

noise case, a system that has just crossed the potential
barrier top changes wells with a probability of order %
However, the problem is quite nontrivial in the present
case of QMN, as exemplified by Fig. 3(a), which shows

typical time series z(t), one for each well. Motion on two

Ulx)

x [t} fc)

FIG. 3. (a) Two time series x(t), one for each potential
well, measured with I' = 0.021, wp = 9.81, D = 192. Although
the particle frequently crosses z = 0, the oscillations are not
(quite) large enough to cause a transition. (b) Schematic illus-
tration of the motion in (a). The coordinate oscillates (thick
line with arrows) with amplitude 2 |z+| about a center of mo-
tion wg’d) , and can pass PBT on each cycle without making a
transition out of the initially occupied potential well. (c) The
program determines the times t,{_ separating first crossings
of the two criterion levels, here set equal to &= 1. Two sep-
arate distributions are created, for upwards and downwards
transitions, respectively, by acquiring and analyzing a large
number of z(t) blocks and averaging the results.
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different time scales is evident: rapid oscillations of fre-
quency wp are accompanied by a slow drift of the center
of oscillations z,. Equation (15) states that the ampli-
tude of the oscillations |z | is proportional to the size of
the noise fluctuations. An ocutburst of sufficiently large
fluctuations will cause oscillations so large that the par-
ticle will cross and recross the potential barrier several
times. Nevertheless, an interwell transition does not oc-
cur because z, still lies in the original well, and when the
fluctuational outburst decays the system returns to the
stable state occupied initially. The situation is illustrated
schematically in Fig. 3(b) for a general (asymmetric) po-
tential. As the size of the driving fluctuations increases
still further, . approaches Top, the position of the PBT
and eventually crosses it. [The explicit relationship be-
tween x, and z. is given by Eq. (19).] Only then does
a transition between wells take place. This is one of the
most remarkable features of QMN [15,26]. The mean
time to escape from one potential well to the other was
obtained by setting two reference levels, typically z =
=+ 1, measuring the distribution of passage times between
the levels, and averaging, The results turned out to be
insensitive to changes of the reference levels within rea-
sonable limits. The data processor divides the time series
z(t) into discrete blocks of duration

tmax = (block size) x (dwell time),

where the block size is the number of points per block
(in this case 4096) and the dwell time is the time interval
between samples. Each block is analyzed independently.
It should be noted that any transition straddling more
than one block will be missed and that this may give rise
to a distortion of the resultant distribution. Two differ-
ent algorithms were used for analysis of the z(t) data.
In each of them, the program measured the time interval
separating each pair of successive level crossings [see Fig.
|

(total time of observation)

4001

3(c)], and then incremented the corresponding points in
the memory blocks in which the passage-time distribu-
tions were being formed: separate blocks were used for
the distributions of upwards and downwards level cross-
ings. In the first algorithm, the maximum time of the
distributions was equal to tmax. This meant not only
that passage times longer than ¢y, would inevitably be
missed, but also that shorter passage times than fpax
would effectively be underweighted because the initial
level crossing would not, in general, be at the start of
the z(¢t) block. In the second algorithm, this problem
was avoided by making the maximum time in the distri-
bution equal t6 tax /4 and terminating new passage-time
searches tmax/4 before the end of the z(t) block. Thus all
passage times less than tnax/4 would have had an equal
chance of being observed, regardless of the time at which
the initial level crossing occurred in 0 < ¢ < 3¢pyax/4. Dis-
tributions measured in this way exhibited a sharp cutoff
at tmax/4.

The distortion in the distributions determined with the
first algorithm could be corrected in two ways. One can
assume the time distribution of escape times is exponen-
tial, with mean escape time 7. This is reasonable be-
cause escapes are rare and therefore uncorrelated. The
observed distribution is then

o) =N (1-

) exp(—t/T), t < tmax

tmax
(32)

p(t) =0, t > tmax.

(N is a normalization factor.) Averaging gives a rela-
tionship between the observed mean escape time and T.
Alternatively, to a good approximation, exactly one tran-
sition per block is missed provided tax is several times
larger than T. The mean escape time is given by

"~ (number of transitions observed) + (number of blocks)’

The corrected escape times for the two methods were in
agreement over a wide range of dwell times.

Theory [26] predicts that the mean escape time varies
exponentially with inverse noise strength:

T o< exp(Rit/ D),

where R;; = %wg /T for the potential under considera-
tion. Mean escape times obtained by analog simulation
are shown in Fig. 4. When plotted in the form InT ver-
sus 1/D the data lie on a straight line to an excellent

(34)

approximation. Its slope, Ri: = 1600 for wp = 9.81, " = -

0.021; and Ry = 719 for wp = 9.95, I' = 0.045. These
values are gratifyingly close to the theoretical predictions
of 1528 and 733, respectively.

Comparison with Fig. 5, derived from measurements
of quasistationary distributions (see below), shows that
R;; is substantially greater than the activation energy
required to reach the potential barrier top R; (0) = 910

(33)

— v
(T' = 0.021), R; (0) = 467 (I' = 0.045). For the lowest D
investigated with I' = 0.021, R;;/D and R; (0)/D were
equal to 12.1 and 6.89, respectively, confirming that the
probability of reaching the PBT exceeded the transition
probability by a factor of approximately 100.

As a further check, digital simulations were performed
using a Monte Carlo technique discussed in the Ap-
pendix. Figure 4 shows them to be fully consistent with
the analog experiments, and hence also with theory.

- C. Quasistationary distributions

On time scales short compared to W1, the center of
oscillations is confined to one potential well with over-
whelming probability and the position of the particle is
described by a quasistationary distribution. Experimen-
tal quasistationary distributions obtained for the left-
hand well are plotted in Fig. 5.
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FIG. 4. Mean escape times as a function of the inverse noise strength. Crosses and pluses represent analog and digital

simulation, respectively (a) wo = 9.81, T' = 0.021, (b) wo = 9.95, I' = 0.045. The straight line is a fit to the analog data.
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FIG. 5. Quasistationary distributions centered on z = -1, plotted in activation energy form R = D|In[p(z)/p(-1)]|. In
(a)~(c) wo = 9.81, I' = 0.021 and the noise intensity is (a) D = 132, (b) D = 189, (¢) D = 231. In (d)-(f) wo=1995T
= 0.045, with noise intensities (d) D = 80, () D = 111, (f) D = 150. The jagged line (i.e., the central line for x < —1)
is experimental data, the smooth line which becomes vertical at £ = ~1.29 is adiabatic theory and the leftmost smooth line
(plotted for < —1) is theory corrected for nonadiabatic effects.
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FIG. 6. Comparison of quasistationary distributions for
white noise and QMN with I = 0.021, wo = 9.81. Solid line is
QMN (experiment) with D = 132. Dashed line is white noise
(theory) with D chosen so that the two curves have same
curvature at z = —1.

For the weakest noise intensities considered, no inter-
well transitions occurred during the period of observation
and data acquisition was therefore straightforward. For
stronger noise occasional transitions were, however, en-
countered. This problem was overcome by rejecting any
block of data in which the x(¢) signal exceeded a cer-
tain level, typically 0.9. We emphasize that complete
blocks were rejected, not just those points satisfying = >
0.9. Thus the distributions obtained were not contami-
nated by z(t) trajectories leading up to or from a tran-
sition. That the distributions obtained were insensitive
to the exact choice of cutoff level gives extra confidence
that this procedure is equivalent to observing over much
shorter time intervals (in which no transitions occur) and
averaging the results in order to reduce random scatter
to an acceptable level.

The data agree very well with the adiabatic theory
outlined in Sec. II when > T = —4/53/3 ~ -1.29. As
expected, best agreement is at the smallest values of I’
and D. Below z = —1.29, where theory predicts a discon-
tinuity in the activation energy R, experiment shows a
steep rise in R. A comparison with white-noise results
for the same potential (Fig. 6) shows that the steepness
is genuine. The white-noise strength was chosen to give
the same curvature of R(z) at x = —1. Note that it is
not meaningful to compare QMN and white noise at the
same D. The steepest-descent theory is valid for small D,
i.e., D small compared to R. For QMN, the expression for
R contains a large factor wg/I" which is of course absent
in the white-noise case. Thus D values which are rela-
tively large numerically may still be small from the point
of view of QMN induced fluctuations. The rounding off
of the discontinuity in R(z) predicted by the lowest-order
theory at ¥ can be treated by perturbation theory in I'.
This forms the subject of the next section.

IV. THEORY OF THE
PROBABILITY DISTRIBUTION

A. General formulation

The quantitative theory of the shape of the tails of the
quasistationary distribution about a stable state ¢, p;(z),
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is based on the path-integral formulation [11,29,30] in
conjunction with the method of optimal fluctuation
[22,26,31] or steepest-descent method [6]. See Ref. [32]
for a review. To logarithmic accuracy, the calculation of
pi(z) reduces to the solution of the variational problem,

In(pi(z)/ps(2s)) = —Ri(2)/D, D =T/T(wd —T?),
m(x)zmin{ ) /_ : dt £ (£) F(—id/ dt) £ (¢)
1]
+/ wmmwumw—ﬂm} (35)

F(w) = D/®(w).

The corresponding variational equations are of the form
F(—id/dt)f(t) = A(%),
A®) = U (@)A@), (36)
z+ U’(m) = f(t))

while the boundary conditions are as follows:

z(—00) =x;, f(£00) =0, A(-00)=0,

(37)
z(0) =z, Mt)=0 for t>0.
The function R;(z) in (35) is the “activation energy” for
the passage to a point z from the equilibrium position
z;. We note that only the first term in the variational
functional in (35) contributes to R;; the second term has
been added to allow for the interrelation (9) between z(t)
and f{(t) so as to make them independent variational vari-
ables. A(t) is the Lagrange multiplier.

Equations (35)-(37) provide the basis for a consistent
derivation of the results of the double-adiabatic approx-
imation considered in Sec. II, and also make it possible
to go beyond this limit and consider nonadiabatic correc-
tions. If the interrelation (10) between the characteristic
decrement I', the relaxation time £,., and the characteris-
tic frequency wo holds, it is convenient to seek the solu-
tion of the variational equations (36) as a superposition
of fast oscillating terms and terms which are slowly vary-
ing on average:

f) = falt)exp(iawot) + 6£(t),

a=+

o(t) =Y Ta(t) exp(iowot) + z.(t), (38)
a=+

AlR) = Z Aa(t) exp(iawet) + AL(t)-
a==%

We shall choose the auxiliary variables zi,Tc, A+,
Aey f4,6f in such a way that they will be nearly smooth
on the optimal path (36); the fast-oscillating terms in
them will be small. To describe them we shall use the
three-variable potential V' as introduced in (16).

We define x4, A+ by the relations
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Aa(t) = (iaw0)~1‘/;,«;:)‘c(t)a
(39)

To(t) = (iWO)—lfa(t)a

i.e., we relate the complex amplitude of the oscillations
of the coordinate to the amplitude of the force, while the
oscillating term in the variable X is related to asymmetry
of the potential U(z).
The equations for x., A, are of the form
e+ V! —6Ff =Dz Ae— VA=A (40)
The explicit expressions for Az, A, follow from (36).
To zeroth order in the nonsmoothness of the auxiliary
variables under consideration, A, is the sum of terms
proportional to exp(inwyt) with n # 0. They result in
fast-oscillating corrections to z. of order (wot,)~1,T'/wo
that are thus small compared both with z, a.nd |z |
(lze] ~ |z+|) and are neglected in what follows. The
terms in Ay oscillating as exp(inwet) (n # 0, & 1) give
rise to corrections ~ (A./wot,)exp(inwpt) to A(£). They
can be ignored because apart from being small, they are
also nonresonant with f(¢) [f(t) and A(¢) are interre-
lated by Eq. (36)] and cause extremely small corrections
~ (T2 Jwdtr)Ac exp(inwog to f(t). The smooth term in
Ay is ~ Ax/tr ~ Aejwot? <« AV, and thus can be ne-
glected as well. The term oscillating as exp (+iwot) can
be easily seen to give rise to a correction that contains an
extra factor (wot,-) 1 as compared with Ay. Therefore,
to lowest order in (wot,)~!, we can replace (40) by the
equations

d.+V!—6f=0, (41a)
Ae = ViAc=0 (41b)
Fourier transforming (36), (6) gives
0
1= [ arae-xe),
#(t) = $Tio exp(~Te)
x [(@o — L)~ exp(—idot]) + c.c.] , (42)

o = (Wi —T2)V/2,

To lowest order in T'/wy, (wot,)~! one obtains from (38)
and (42)

=30 [ ® dt’ exp(=Tlt — ) Aalt)

+’2“F Xe(0) exp(~T) (43)
and
6F(t) = (40? /) Xe(t)- (44)

It is seen from (39), (41a), (43), and (44) that the auxil-
iary variables introduced in Eq. (38) are indeed smooth
[we note that A(t) and d*f(t)/dt* are discontinuous at ¢
= 0; the value of A\;(0) in (43) and in what follows is that
of A;(%) for t — 0—1.

" relation V

DYKMAN, MANNELLA, McCLINTOCK, STEIN, AND STOCKS 47

The characteristic time scale for the variation of fi(t)
is "1, and the smooth part of the force §f(t) is indeed
small for not too large A.. If the double adiabaticity
holds, the term &f(¢) can be neglected in (41) and the
solution of this equation takes the form

zo(t) = 209 (24 (2), 2~ (8)),
(45)
V! =V (), z 2 ) =0

which coincides with (18) and (19). According to (45),
the center of vibrations occupies the minimum (over z.)
of the averaged potential V(z.,z4,x-) for given z,z_.
As was shown in Sec. II, the system cannot go beyond
a certain point in this approximation and the distribu-
tion has a singularity there. The nonadiabatic theory is
considered in the next subsection.

B. Nonadiabatic theory

It can be seen from Egs. (41)-(43) that the value of
Ac(0) increases sharply as z approaches the boundary
point T [26]. As a consequence, the smooth component
of the force 6f(t) which drives the center of vibrations
z. also increases, and should be taken into account in
(41a). Moreover, relatively fast terms appear in z(£).
Their effect must also be considered. The theory which
takes these factors into account is nonadiabatic.

The nonadiabaticity parameter is

€= (P/v::,c)l/2’

where V = V(%,,%4,T_). We study the large wo limit,
i.e., we assume (wpt,)~* < €. As we shall see, there is a
critical range where

16£(0)1/V ae ~ |24(0)

(46)

=Ty |~ |2e(0) —Fe| ~ €

for |z —T| ~€ (47)
(

Writing z, = 28D 4 6z, and linearizing (41a) about the
adiabatic solution gives

S + 20D + 6zV o — 6F = 0. (48)

Derivatives of V at the end point z(0) will be approx-
imated by their values at &, when calculating nonadia-
batic corrections.

It follows immediately from (41b) and (44) that

85 (t) = 6£(0) exp(Vogt). (49)

leferentlatmg (43) and using (39), (44), (49), and the
= V gives

1
+ = 40F()
from which (45) yields
$ — —%5 f. (50)

The solution of (48) is now seen to be
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62 = 265/ V e (51)
One more relation is required to close the system of equa-
tions for the smooth variables. It can be obtained by first
integrating (41b) and substituting (39) to give

t
() = (iowo) " A(0) V2 () exp f dt' VIt
0

Expansion about ¢t = 0 then gives

Aalt) = (iaw0)~2c(0) explV4(0)]
x (vc';(m +AVL® +VAO [ dt’AVc’é(t')> ,
0

[t| « Tt (52)

f+(0) = f-(0)

2wp 8V

ce

On expanding the first bracket about the adiabatic solu-
tion and changing variables from fi to z4 one obtains

2.(0) =z (0) = 224) [1 e }

8 T yHed)
_ 18750
64 I\T/i’f
X(7v::l¢l:+ - 5v::,éc - VZ:H. - v,c,-lt-—)'

(85)

Finally, invoking (38), the activation energy R;(zx) for
reaching a point  starting from the equilibrium position
z; can be written as

0
Rilz) ~ %f_w dt[Zfa(t)/\,‘;(t)
+c(t) D Falt) expliowot)

+Ac(t)Sf (t)] : (56)

Evaluation of the second and third integrals is simple.
Exploiting the fact that the main terms in fi(t) vary
much more slowly than Ay allows the first to be split
into two:

£
Fa(5(8) = oo [2a(0) + } Javere)) xze. on

The first term in (57) has already been integrated in (43)
(ignoring contributions of order €2) while integration of
the second is straightforward. Collecting contributions
together gives

I

SLIBY0O) {(1 - ‘:,*((8))) +3L0 (i _+

where

AV () = Ve () — VE5(0)

=i

= Vccs (mc (t) - .'z:c(O))

+ > Voge(@-p(t) —2-5(0)) (s=,c). (53)
Be=

Integration of (43) using (48)—(52) is straightforward and
results in

Vert = Vee —V:’;-)]. (54)
273 [ , 3 6£2(0)
R(.'II) = '—1.‘— $+(0) + EZW ) (588')
where
2= 20.(0) +20D(0) + S167(0) /T (58b)

Equations (55) and (58) give an analytic solution for
the quasistationary probability distribution for a QMN
driven system (quoted earlier, without derivation, in Ref.
[15]). They were used to generate the theoretical curves
plotted in Fig. 5.

Some simplification occurs for z close to Z. In terms of
small parameters Azy = z4.(0) — Ty, Az, = D (0) —
T, one has

VL (0)

with

=5/ —=/1! s =t

—y
p= (4Vcc+ - 2Vccc - Vc++ - Vc+—)/Vcc (60)
and (58b) reduces to

= -7 = p(Acs)? + 361(0)/ Vi (61)

which makes it easier to follow the evolution of R(z) from
(55). However, we emphasize that the full equations (55)
and (58) are valid for arbitrary z. Far from the singular
point T, the function R;(x) is smooth (1/R;)(dR;/dx) ~
1. In this range 6f(0) ~ T and the 6f(0)? terms
can be neglected. For z close to ¥ these terms be-

come substantial and R;(z) becomes extremely steep:
/!

(1/R:)(dRi/fdz) ~ (V o/T)/ for p(E — z) ~ (T/V2)M2.
[The steep section of R;(z) lies on the side of T which
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is inaccessible in the I' — 0 limit.] The slope of R;(z)
increases with decreasing I, i.e., with decreasing width
of the peak in the QMN power spectrum. We stress that
such a steep coordinate dependence occurs in the loga-
rithm of the quasistationary distribution and p;(x) itself
is much steeper still.

V. MONOSTABLE POTENTIALS

QMN also gives rise to interesting effects in symmet-
ric single-well potentials. The solution of the variational
equations (39) and (40) in the adiabatic approximation
gives here the same results as Eq. (25) obtained from
qualitative arguments. We know that for a harmonic
potential U(z) = 4a2a?, the stochastic differential equa-
tions (5) and (9) are linear and the probability distribu-
tion, including the prefactor, can be obtained exactly for
arbitrary a2, T, we. The result reads [33]

p(z) = (%)1/2 exp (—%Amz) )

(a3 + w§)? — 4%a}
T?) az(a2 + wg) — 4l2%ay + 2LwZ

(62)
aywd

A= TD(w2 —

This probability density is shown to coincide with exper-
iment to within 5% in Fig. 7(a) over a wide range of ag
values. In the regime I' € ay; €« wy Eq. (62) reduces to
p(z) o< (—wgx?/2I'D), which is independent of the cur-
vature of the potential. Even more remarkably, Ref. [26]

1500
R(x)

1000

500

[¢]
-1.0
R(x)

1500 -

1000 - -1

500+ —

(b)
O I I T 1.
—-10 —05 0.0 05 - 10
FIG. 7. (a) Quasistationary distributions for harmonic

potentials U(z) = }a22>. Pairs of curves (theory and experi-
ment, the experiment being the jagged line) are labeled with
the value of az (b) Effect of including anharmonic terms:
A, U(z) = 12®; B,U(2) = 32® + }o*
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and the arguments of Sec. II show that the latter form
is unaffected by anharmonic terms U(z) = z agn 2.
The expenmenta.l data of Fig. 7(b) verify thls predlctlon

VI. CONCLUSIONS

The experimental data obtained in this paper confirm
unequivocally that the dependence of the escape proba-~
bilities on the noise intensity in a system driven by QMN
is of activation type. The activation energies obtained
in analog and digital simulations are virtually coincident
and are extremely close, within the accuracy of the exper-
iment, to the theoretical results. An important feature is
that they exceed the characteristic activation energy for
reaching the potential barrier top from a corresponding
stable state. This corresponds to the fact that crossing
the PBT in the course of fluctuations does not result
in a transition, with overwhelming probability, for QMN
driven systems. Indeed for I' = 0.021, wo = 9.81, it was
observed that only one in a hundred sertes of crossings
resulted in a transition (by series we mean multiple cross-
ings of the PBT by an oscillating coordinate within one

" outburst of the noise).

It has been demonstrated explicitly that the steep rise
in the absolute value of the logarithm of the probabil-
ity distribution provides evidence of a singular feature of
fluctuations. It is not associated with any sort of singu-
larity of the regular motion of the system in the absence
of noise, but is related instead to the interplay of fluctu-
ations and dynamics. The theory provided in the paper
fully describes this unusual behavior. The theory and

_experiment are in good agreement. QMN may be viewed

as the prototype of a class of more complicated colored
noises, whose power spectra peak at finite frequencies wy,
instead of zero frequency. The dramatic effects revealed
by this paper motivate further exa.mmatlon of such noise
processes. = . B
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APPENDIX

The algorithm used for the numerical simulations is
based on Refs. [24] and [34], and generalizes that of {24]
to the case where the eigenvalues are not necessarily com-
plex conj ugate The equa.tlons one wants to integrate are

f=-2Tf -l f +&(),
(A1)
&= _UI(:B) + f’

where £ is a Gaussian random variable with average zero
and variance 4I'T. The first step is to integrate the
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stochastic evolution of the variable f, which can be done
exactly (in a statistical sense), due to the linearity of the
equations of motion. As shown in Ref. [34] (see also [24]),
the idea is to split the motion of f into a deterministic
plus a stochastic part.

From Eq. (A1) for the evolution of y it is possible to
write

f=v, v=—2Tv—wdf+e). (A2)

Introducing W = (y,v), F(t) = (0,£(t)), and the ma-
trix M defined by

0 1
M= (-—wg —21") ’

one can rewrite Eq. (A2) as
W = MW + F(3). (A3)

The formal solution of this equation is (A will be the
integration time step of the numerical simulations)

t+h

Wi +hr)= (exp M (s)ds) W(t)
¢

t+h t+h
+‘/t * (exp ’ M(z)dz) F(s)ds,
(A4)

where the first and the second term on the right-hand
side of this equation yield, respectively, the determinis-
tic and the stochastic evolution of the vector W. It is
then straightforward to derive the evolution of each com-
ponent of W, although some care is necessary when the
stochastic integral is evaluated. The final result can be
cast in the form

f(t + h) = Anf(t) + Algv(t) + wy,
(A5)
‘U(t + h) = Aglf(t) + Agz'f](t) + wa,

where w;, wy are Gaussian stochastic variables with zero
average and as yet unknown standard deviations and
cross correlation.

The matrix A follows immediately from the first term
in Eq. (A4). For the stochastic variables, on the other
hand, one matches correlations of the wy, w, in Eq. (A5)
to the corresponding quantities in Eq. (A4).

The most general expression for wy, wg would be of the
form

wy = B2,
(A6)
wa = B2121 + Baazs,

where 2, 29 are two uncorrelated Gaussian variables with
zero average and standard deviation one. We will write
explicit expressions for A;; and B;; below.

Now, we need to integrate the equation for z(t). This
is done with a first-order predictor of Adams-Bashforth

type, followed by a second-order corrector of Adams-
Moulton type [35,36]. The deterministic drift [—U’(z)]
of Eq. (Al) poses no problem. On the other hand, the
integration of the stochastic variable y(t) from ¢ to t + A
generates yet another stochastic variable r(¢) for which
we write

r(t) = Az1y(t) + Asav(t) + ws (A7)
and
(A8)

where 23 is another Gaussian variable with zero average
and standard deviation one, not correlated to 2, zs.
We first predict

z'(t + h) = z(t} + h[-U'(z(t))] + (¢ + R)
and then correct as
z(t+h)={z' (t+h) +z(t) + h[-U'(2'(t + h))]
+r(t + h)}/2. (A10)

Now, let us give explicit expressions for the various quan-
tities. Introducing eigenvalues

w3 = B3121 + B3z + Bagza,

(A9)

A =D+ /T2 -2 (A11)
and
02 = w2 — T2 (A12)
(©2 can be negative), we have for the matrix A
i
Ap = o) {ApePr- — At}
z
Agy = = {ehr- — b}
TALA_
A= ——;—Q— {eM- — eh)‘+} ,
(A13)

Agz = —1,— {)\_eh)‘— — /\+eh’\+} y
T [A_ A
Aay =3a {X: (M —1) — ﬁ (ePr- — 1)} ,

i [efr~ —1 el _g
Aaz_—{ ATy }

The matrix A turns out to be always real.

Explicit expressions for the matrix B are very cum-
bersome. It is simpler to write the expressions for the
moments of the variables w;,wq, ws and to evaluate B
numerically from the resulting equations. Suppose we
knew the moments (w}), (wiws), (w3), we have, mul-
tiplying and averaging Eq. (A5) and remembering the
properties of 23, 2o,

B%l = (w%),

Bi2 = (wiwsa) /By,

B§2 = (w%) - sz,
and similarly for ws.

The expressions for the various moments of the vari-
ables w;, wy, and ws are
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(w?) = 4nT [1—e?hr+ 1A 1 JLICWES W
1/ 02 2/\+ 22— /\+ L ’
47fT ezhA+ + ezh)\—
(wrwz) = 207 {-— 5 + eh(A++>\—)} ,
<w2 47T _x 1 4 e2hr+ 1+ e2hA- ,\1 +AZ 4+ 20y A_ePO+ro)
(A14)
4T A 1-— ehA+ B 1 — ehA_
) = o] (@ = g @) P

A (A +A0)

AL (eh,\Jr +ehr- 1 eh(A++A-)) + At (ehx_ +ebry —1— eh()\++A_)) }

AnT 2ehA+ — 1 — e2hA+ 9ghA- _ ] _ e2hA-
(wows) = 553 I + 2 L
hA - A hA_ A Ao hi_
+2—e + —ehA- 4 gk (eh —1)eh++-,\:(eh>‘+—1)e>‘
A+ A ’

ArnT [ 4P+ —3 —2RA, — 2P+ 4ePr- —3 —2RA_ — 22~
(ud) = +

Q2 43 423

Oy +A2)?

. RALA- + }%";T)‘ﬁ (e2h(A++A-) - 1) — (ghA+ _ 1) — At (e"'\— . 1) }

which allows us to derive the necessary elements of the matrix B and hence the coeflicients for the numerical algorithm.

Note that all moments are real.
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