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Relaxation of a qubit measured by a driven Duffing oscillator
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We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation
amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are
different in different states. They can display strong dependence on the qubit frequency and resonant enhancement,
which is due to quasienergy resonances. Coupling to the driven oscillator changes the effective temperature of
the qubit.
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I. INTRODUCTION

The Duffing oscillator is a paradigmatic model for nonlinear
dynamics. Its quantum properties [1–8] have gained renewed
recent interest in the light of nanomechanics [9] and as a qubit
readout device [10–13] for superconducting qubits [14], the
Josephson bifurcation amplifier (JBA). In the context of read-
out, examples of the experimental setup are a driven nonlinear
superconducting resonator [13] coupled to the quantronium
qubit [15] or a superconducting quantum interference device
(SQUID) used as a JBA [12], inductively coupled to the flux
qubit and in contact with dissipative measurement circuitry.

The JBA detection profits from the very different ampli-
tudes and phases of the coexisting states of oscillator’s forced
vibrations and the formally infinite gain at the bifurcation
[10–13]. In the first step of detection, the JBA is driven
through the bifurcation point where, depending on the state
of the qubit, one of the attractors disappears. The JBA then
decides between the attractors, thus premeasuring the qubit.
This decision is probabilistic, because of quantum and classical
fluctuations that can cause an interattractor transition even
before the bifurcation point is reached. At the next stage,
the parameters are changed so as to suppress the probability
of fluctuation-induced switching and the latched vibration
state is observed. Qubit energy relaxation in the latter state
will drive the measurement away from the ideal quantum
nondemolition (QND) regime in that the postmeasurement
state is not correlated with the measurement output [16].

In this article, we study qubit relaxation mediated by the
oscillator. Because of the oscillator-qubit interaction, coupling
of the oscillator to a heat bath leads to an indirect coupling
of the qubit to that same bath and, consequently, to relaxation.
The energy emitted by the qubit creates excitations in the bath.
The qubit transition can be stimulated by forced vibrations
of the oscillator, which have a comparatively large amplitude
already for a weak resonant driving. This means that the driving
accelerates qubit relaxation. For the lowest-order stimulated
processes that we consider, the energy transfer to the bath
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becomes |ωq ± ωF |, where ωq is the qubit frequency and ωF

is the driving frequency. As a consequence, the qubit relaxation
rate becomes dependent on the vibration amplitude of the
oscillator, which bears on the experimental observations [16].

The dependence on the vibration amplitude is even more
pronounced where ωq/2 is close to the oscillator eigen-
frequency ω0, |ωq − 2ω0| � ω0. In this case the decay
rate displays resonances where h̄(ωq − 2ω0) goes through
the quasienergy level spacing of the driven oscillator. We have
analyzed both resonant and nonresonant cases. The results
coincide where the ranges of their applicability overlap, which
indicates that they describe all qubit frequencies. We have also
extended the analysis to the case where ωq is close to ω0.

In Sec. II we give a general expression for the relaxation rate
of a qubit coupled to a driven quantum oscillator. In Sec. III we
describe the theory of the oscillator and its fluctuations close to
the stable vibrational states. In Sec. IV we provide an explicit
expression for the oscillator power spectrum. The proposed
method and the result go beyond the immediate problem of the
qubit relaxation. The expression obtained allows us to study
the qubit relaxation rate as a function of frequency detuning
ωq − 2ωF , including the onset of quasienergy resonances,
and to discuss resonant heating and cooling of the qubit.
In Sec. V, qubit relaxation and the change of the effective
qubit temperature far from resonance are studied. Section VI
provides a summary of the results.

II. GOLDEN RULE QUBIT RELAXATION

We will express the qubit relaxation rate in terms of the
power spectra of small-amplitude fluctuations of the driven
oscillator about its steady states of forced vibrations. The
fluctuations will be assumed to be small, which justifies
describing them in a linearized approximation. This approach
allows us to find the relaxation rate both where the qubit
frequency ωq is close or far detuned from the oscillator
eigenfrequency ω0 and 2ω0.

The Hamiltonian of a superconducting qubit reads

Ĥq = h̄
w

2
σ̂z + h̄

δ

2
σ̂x, (1)
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where σx,y,z are Pauli matrices and |δ| � w. The inductive
coupling of the qubit to the oscillator will be treated as a
weak perturbation and, for the typical setup of supercon-
ducting qubit measurements, is quadratic in the oscillator
coordinate x [11,12,17–20],

ĤId = mω0�q

2
σ̂zx̂

2, (2)

where �q is the oscillator frequency shift due to the coupling.
We will also discuss the linear case, in which the operator x2 in
Eq. (2) is replaced with x. Because the interaction (2) does not
commute with the qubit Hamiltonian Ĥq, it introduces energy
relaxation.

We assume that the oscillator is coupled to the bath strongly
enough so that its damping κ exceeds the decay rate of the
qubit. Then the oscillator serves as a bath for the qubit. To
second order in �q , the decay rate of the qubit excited state �e

has a standard golden rule form [21–25],

�e = C�ReG(ωq), C� = 1

2
(mω0�qδ/h̄ωq)2,

(3)

G(ω) =
∫ ∞

0
dteiωt 〈δx̂2(t + τ )δx̂2(τ )〉F ,

where ωq = √
w2 + δ2 is the qubit transition frequency and

δx̂2(t) ≡ x̂2(t) − 〈x̂2(t)〉. The averaging 〈·〉 is done disregard-
ing the qubit-oscillator interaction and assuming that the
oscillator fluctuates about a given steady state of forced vi-
brations. In calculating 〈Â(t + τ )B̂(τ )〉F , we imply additional
averaging with respect to τ over the driving period; this period
is small compared to �−1

e due to the underdamped nature of
the system.

The expression for the excitation rate out of the qubit ground
state �g has the same form as �e, except G(ωq) should be
replaced with G(−ωq). We will see that the ratio �g/�e is
not given by the Boltzmann factor exp(−h̄ωq/kBT ) due to the
nonequilibrium character of this driven system. The Bloch-
Redfield rates for the qubit are

T −1
1 = �e + �g,

(4)
T −1

2 = 1

2
T −1

1 + 2C�(w/δ)2ReG(0).

Of primary interest for us will be the decay rate T −1
1 . As

we show, it has a component where one quantum of the
oscillator or the bath is created or annihilated; this component
is proportional to the squared dimensionless amplitude r2

a [see
Eq. (10)] of the attractor the JBA has latched to; T −1

1 also has a
two-quantum component. Both of them can lead to enhanced
relaxation at specific working points, identified as quasienergy
resonances.

III. DYNAMICS OF A RESONANTLY DRIVEN
NONLINEAR OSCILLATOR

To find the oscillator correlation function G(ω), we assume
the limit where the resonant driving current IB of the
corresponding JBA is much smaller than the critical current I eff

c
but is large enough to reach the oscillator bistability regime.
Then the driven JBA can be modeled by a Duffing oscillator.
Dissipation is described as resulting from contact with a bath

of harmonic oscillators. The Hamiltonian of the combined
oscillator and bath system reads

Ĥd(t) = ĤS(t) + ĤI + ĤB,

ĤS(t) = p̂2

2m
+ mω2

0

2
x̂2 − γSx̂

4 + F (t)x̂, (5)

ĤB =
∑

j

h̄ωj b̂
†
j b̂j , ĤI = −

∑
j

x̂λj (b̂j + b̂
†
j ),

where F (t) = F0(eiωF t + e−iωF t ) is the driving field with
frequency ωF . The spectral density of the bath weighted
with the interaction J (ω) = π

∑
j λ2

j δ(ω − ωj ) is assumed
to be a smooth function for ω close to ω0. The oscillator
damping constant is κ = J (ω0)/2h̄ω0m (cf. [24]). For the
case of an Ohmic bath, we have J (ω) = 2h̄mκω�(ωc − ω),
where ωc is a high-frequency cutoff. The interaction-induced
renormalization of ω0 is supposed to be incorporated into ω0.

The steady states of the oscillator are forced vibrations. For
weak damping and almost resonant driving, |ωF − ω0|, κ �
ω0, and up to moderate driving amplitude |F0| these vibrations
are almost sinusoidal. They can be analyzed in the rotating
wave approximation (RWA) by changing to the rotating frame
with a canonical transformation Ûr(t) = exp(−iωF tâ†â) (â is
the oscillator annihilation operator) and then by changing to
dimensionless variables [5,7,8]

x̂ = Cres(Q̂ cos ωF t + P̂ sin ωF t),
(6)

p̂ = −CresmωF (Q̂ sin ωF t − P̂ cos ωF t),

where Cres = [2mωF (ω0 − ωF )/3γS]1/2. This transformation
changes phase space volumes, so that

[Q̂, P̂ ] = iλS, λS = h̄
3γS

2m2ω2
F |δω| , δω = ωF − ω0. (7)

The dimensionless parameter λS plays the role of Planck’s
constant in these units. We assume that λS � 1, in which
case the oscillator dynamics is semiclassical. The oscillator
has coexisting states of forced vibrations provided γSδω < 0.
Motivated by the description of the JBA, we have chosen
the soft case of the Duffing oscillator, γS = mω2

0/24 > 0
(i.e., δω < 0). The main results can be straightforwardly
generalized to the hard case by choosing δω > 0.

If we disregard fast oscillating terms, following the RWA,
the oscillator Hamiltonian ĤSr = Û

†
r ĤSÛr − ih̄Û

†
r ∂t Ûr be-

comes time independent,

ĤSr = −(h̄|δω|/λS)ĝ,
(8)

ĝ = 1
4 (P̂ 2 + Q̂2 − 1)2 − Q̂β1/2,

where β is the dimensionless squared amplitude of the driving
field, β = 3γSF

2
0 /2(mωF |δω|)3.

For β < 4/27, the Hamilton function HSr has three extremal
points. In the presence of dissipation, two of them, with largest
and smallest Q, become attractors. In the laboratory frame they
correspond to stable forced vibrations with amplitude Cresra .
The third extremum of HSr is a saddle point. For not too
weak driving, the distance between the steady states in (P,Q)
space is large compared to the typical amplitude of quantum
fluctuations ∝ λ

1/2
S , as well as to the amplitude of classical

fluctuations, which come into play for higher temperatures.
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Of primary interest for us are small-amplitude fluctu-
ations of the oscillator about steady states. They can be
conveniently described by the oscillator density matrix ρ̂ in
the Wigner representation, ρW (Q,P ) = ∫

dξ exp[−iξP/λS]
〈Q + ξ/2|ρ̂|Q − ξ/2〉. When the oscillator is latched to one of
the attractors, ρW has a narrow Gaussian peak at that attractor.
For weak damping, that is, up to second order in the interaction
ĤI in Eq. (5), and linearized close to an attractor, the master
equation for ρW in the RWA reads [7]

ρ̇W ≈ −∇ · (KρW ) + λSκ
(
n̄ + 1

2

) ∇2ρW , (9)

where we introduced vector K = (−|δω|∂P g −
κQ, |δω|∂Qg − κP ) that describes the drift of the mean
coordinate1; ∇ = (∂Q, ∂P ), and n̄ = 1/[exp(h̄ωF /kBT ) − 1]
is the Planck occupation number of the oscillator. The
attractor position (Qa, Pa) is found by demanding the drift to
cease, K(Qa, Pa) = 0, which leads to Qa = β−1/2r2

a (r2
a − 1),

Pa = −β−1/2(κ/|δω|)r2
a , and

r2
a

[(
r2
a − 1

)2 + (κ/δω)2
] = β (10)

(r2
a = Q2

a + P 2
a ) [26]. Near attractor a vectors K should be

expanded,

K(Q,P ) ≈ [(Z · ∇)K]a, Z = (Q − Qa, P − Pa). (11)

Here, [·]a indicates that the derivatives are calculated at
attractor a. This expansion defines a matrix K̂ with elements
Knm = [∂mKn]a , where components 1 and 2 correspond to Q

and P , respectively.
Equation (11) is an expansion in the width of the Gaussian

peak [5] [λS(2n̄ + 1)]1/2 as can be seen by combining Eqs. (9)
and (11). In our units, if this quantity is much smaller than
unity, the deviations of ĤSr [Eq. (8)] from a quadratic form in
P̂ − Pa and Q̂ − Qa can be neglected. This is also reflected
in the absence of higher derivatives and higher-order terms in
λS in Eq. (9).

IV. QUBIT DISSIPATION CLOSE TO RESONANCE WITH
THE OSCILLATOR

We first consider dissipation of the qubit in the situation
where its frequency is close to 2ωF ≈ 2ω0 (i.e., |2ωF −
ωq | � ωF ); however, we assume that |2ωF − ωq | largely
exceeds the qubit dephasing rate so that the driving does
not pump the qubit resonantly. The major contribution to
the correlation function G(ωq) in Eq. (3) comes from the
terms in x̂(t1) proportional to [Q̂(t1) + iP̂ (t1)] exp(−iωF t1)
for t1 = t + τ and [Q̂(t1) − iP̂ (t1)] exp(iωF t1) for t1 = τ

[note that Q̂(t), P̂ (t) remain almost unchanged over a drive
period]. We can now rewrite the excursion of the quadratic
term as

δx̂2(t) = 2xa(t)[x̂(t) − xa(t)] + [x̂(t) − xa(t)]2. (12)

Here, xa(t) is given by Eq. (6) with Q̂, P̂ replaced with
Qa, Pa , which have to be determined from Eq. (10). With

1The signs of the derivatives of g in K are opposite to those in
Ref. [7]; we also incorporated the factor |δω| into K.

x̂(t) − xa(t) being a Gauss distributed variable, Eqs. (3) and
(12) give rise to two types of decay rates. One is due to
the noise of x̂(t) − xa(t) scaled by the prefactor xa . This
is a one-quantum process, where a transition between the
qubit states is accompanied by creation or annihilation of one
quantum of the oscillator vibrations induced by the driving
field, with the energy difference compensated by the field
and the thermal bath. The second is based solely on the
noise of [x̂(t) − xa(t)]2. This is a two-quantum process for the
oscillator, which makes transitions between the next-nearest
levels with energy deficit compensated also by the field
and the thermal bath. We are now going to compute both
contributions.

A. One-quantum noise

We start with the first term in Eq. (12), the one-quantum
noise, that is, the linear correlator scaled by the attractor radius.
From Eqs. (6),

G(ωq) ≈ m2ω2
F δω2

9γ 2
S

r2
aN+−(ωq − 2ωF ),

(13)

N+−(ω) =
∫ ∞

0
dt exp(iωt)〈Ẑ+(t)Ẑ−(0)〉slow,

where Ẑ± ≡ Ẑ1 ± iẐ2 and we define Ẑ1 = Q̂ − Qa and
Ẑ2 = P̂ − Pa . The averaging 〈·〉slow is done in the rotating
frame and in the RWA. The time dependence of operators
is calculated with Hamiltonian ĤSr + ĤB + Û

†
r HI Ûr. This

Hamiltonian has the same structure (except for the explicit
form of ĤSr) as for a stationary oscillator with no driving, if one
goes to the interaction representation via the transformation
Ûr. Then we can apply the quantum regression theorem and
write [24]

〈Ẑn(t)Ẑm(0)〉slow = Tr[Ẑnρ̂(t |Ẑm)] (14)

(n,m = 1, 2). The operator ρ̂(t |Ẑm) is the weighted den-
sity matrix; it satisfies the standard master equation [cf.
Eq. (9)], but its initial condition is ρ̂(0|Ẑm) = Ẑmρ̂(st),
where ρ̂(st) is the RWA density matrix in the steady
state.

Equation (13) reduces the problem of the qubit de-
cay rate to calculating the oscillator power spectrum
in the rotating frame. For a quantum oscillator in a
given attractor, it can be done using Eqs. (9), (13),
and (14) and the relations for the transition to the
Wigner representation [Q̂ρ̂]W = (Q + 1

2 iλS∂P )ρW (Q,P ) and
[P̂ ρ̂]W = (P − 1

2 iλS∂Q)ρW (Q,P ). By multiplying Eq. (9)
by Ẑn exp(iωt) and then integrating over Q,P, t , we obtain
a linear equation for matrix N̂ (ω) of the Fourier-transformed
correlators Nnm(ω) = ∫ ∞

0 dt exp(iωt)〈Ẑn(t)Ẑm(0)〉slow,

(iωÎ + K̂)N̂ (ω) = N̂ − 1
2 iλSε̂,

(15)
N̂ K̂† + K̂N̂ = λSκ(2n̄ + 1)Î ,

where Î is the unit matrix and ε̂ is the fully antisymmetric
tensor (the Levi-Civita tensor) of rank two. The matrix
elements of the matrix N are Nnm = − ∫

dQdP ZnZmρ
(st)
W .

From Eqs. (13)–(15) one obtains for a given
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attractor a

ReN+−(ω)

= 2λSκ
(n̄ + 1)

{[
ω − |δω|(2r2

a − 1
)]2 + κ2

} + |δω|2n̄r4
a(

ω2 − ν2
a

)2 + 4κ2ω2
,

(16)

where ν2
a = κ2 + |δω|2(3r4

a − 4r2
a + 1) with ra obtained from

solving Eq. (10). In the high-temperature limit n̄ 	 1, Eq. (16)
coincides with the result obtained earlier [27] in the classical
limit.

B. Two-quantum noise

The second contribution to the qubit decay rate originates
from direct two oscillator quanta transitions. It is not pro-
portional to the squared attractor amplitude ∝r2

a . The decay
probability is determined by the power spectrum of the squared
oscillator displacement [x̂(t) − xa(t)]2. At resonance, |ωq −
2ω0| � ω0, the main contribution to this power spectrum
comes from the Fourier-transformed correlator 〈Ẑ2

+(t)Ẑ2
−(0)〉.

The latter was studied earlier for a nonlinear oscillator in
the absence of driving [24] and for linear driven oscillators
[18,20]. Up to moderate temperatures, h̄n̄γS/m2ω2

0κ � 1, it
leads to

ReG(ωq) ≈ h̄2

(mω0)2

κ(n̄ + 1)2

(ωq − 2ω0)2 + 4κ2
. (17)

This term becomes important for weak driving, where the
amplitude of forced vibrations is on the order of the fluctua-
tional oscillator displacement, r2

a � λS(2n̄ + 1). However, if
the oscillator is strongly underdamped in the rotating frame,
κ � νa (see later in this article), the decay rate may display
attractor-dependent, two-quantum quasienergy resonances for
|ωq − 2ωF | ∼ 2νa , which will be larger than the background
given by Eqs. (13) and (16) for κra � νa[λS(2n̄ + 1)]1/2. Both
their height and position depend on the field amplitude F0.

C. Discussion of the results for resonant decay

In total, the qubit decay rate is a sum of the one-quantum,
�1, and two-quantum, �2, rates (i.e., �tot = �1 + �2). These
contributions are described by Eq. (3) with the function G

given by Eqs. (13) and (16) for �1 and (17) for �2.
The one-quantum rate �1 is quadratic in the forced vibration

amplitude ∝ra . The physical origin of this term can be
understood as follows: Small fluctuations of x(t) − xa(t)
are frequency-mixed with the forced vibrations xa(t) in the
laboratory frame, as described by the interaction ∝δx2. As
a result, fluctuation amplitude is multiplied by the forced-
vibration amplitude, and the qubit decay rate is quadratic in
the latter amplitude.

Apart from the proportionality to r2
a , the attractor depen-

dence of �1 is also due to the different curvature of the
effective potentials around the attractors. For weak oscillator
damping κ � νa , the parameter νa in Eq. (16) is the frequency
of small-amplitude vibrations about attractor a. It sets the
spacing between the quasienergy levels, the eigenvalues
of the rotating frame Hamiltonian HSr, close to the attrac-
tor. The function ReN+−(ω) has sharp Lorentzian peaks at

1

2

0 0.05 0.10 0.15 0.20
0

0.4

0.8

1.2

β

ra2 1 2

0 0.05 0.10 0.15 0.20
0

0.4

0.8

1.2

β

υa
δω

FIG. 1. (Color online) (Left panel) Squared scaled attractor radii
r2
a as functions of the dimensionless field intensity β for the

dimensionless friction κ/|δω| = 0.3. (Right panel) The effective
frequencies νa/|δω| for the same κ/|δω|. Curves 1 and 2 refer to
small- and large-amplitude attractors, respectively.

ω = ±νa with half-width κ determined by the oscillator decay
rate. The dependence of νa on the control parameter β is
illustrated in Fig. 1.

The decay rate of the excited state of the qubit �e ∝
ReN+−(ωq − 2ωF ) sharply increases if the qubit frequency
ωq coincides with 2ωF ± νa; that is, ωq − 2ωF resonates
with the inter-quasienergy level transition frequency. This
new frequency scale results from the interplay of the system
nonlinearity and the driving and is attractor specific, as seen in
Fig. 1. In the experiment, for ωq close to 2ω0, the resonance
can be achieved by tuning the driving frequency ωF and/or the
driving amplitude F0. This quasienergy resonance destroys
the QND character of the measurement by inducing fast
relaxation.

The analysis of the excitation rate out of the qubit ground
state in the resonant case |ωq − 2ωF | � ωF is similar; �g is
given by Eqs. (3) and (13) with N+−(ωq − 2ωF ) replaced with
N−+(−ωq + 2ωF ); the last function is given by Eq. (16) with
ω = ωq − 2ωF and with interchanged coefficients n̄ + 1 ↔ n̄.

The scaled decay rates �e,g as functions of detuning
ωq − 2ωF are illustrated in Fig. 2. Even for comparatively
strong damping, the spectra display well-resolved quasienergy
resonances, particularly in the case of the large-amplitude
attractor. As the oscillator approaches bifurcation points where
the corresponding attractor disappears, the frequencies νa

become small (cf. Fig. 1) and the peaks in the frequency de-
pendence of �e,g move to ωq = 2ωF and become very narrow,
with width that scales as the square root of the distance to the
bifurcation point. We note that the theory does not apply for
very small |ωq − 2ωF |, where the qubit is resonantly pumped;

1

2

3 2 1 0 1 2 3
0

2

4

6

8

10

ωq 2ωF δω

0

1

2

3 2 1 0 1 2 3
0

5

10

15

20

25

30

ωq 2ωF δω

0

FIG. 2. (Color online) The scaled decay-rate factors for the
excited and ground states (curves 1 and 2, respectively) as functions
of scaled difference between the qubit frequency and twice the
modulation frequency; �0 = h̄C�r2

a /6γS . Left and right panels refer
to the small- and large-amplitude attractors, with the values of β

being 0.14 and 0.12, respectively. Other parameters are κ/|δω = 0.3,
n̄ = 0.5.
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β

Teff

0.10 0.12 0.14 0.16 0.18

50

0

50

β

Teff

FIG. 3. (Color online) The effective scaled qubit temperature
T ∗

eff = kBTeff/h̄ωq as function of the scaled field strength β in the
region of bistability for the small- and large-amplitude attractors (left
and right panels, respectively); (ωq − 2ωF )/|δω| = −0.2 and 0.1 in
the left and right panels, respectively; other parameters are the same
as in Fig. 2.

the corresponding condition is (mω0�qδC
2
resr

2
a /h̄ωq)2 �

[T1T
−1

2 + (ωq − 2ωF )2T1T2]. For weak coupling to the qubit,
�e � κ , it can be satisfied even at resonance.

An important feature of the qubit relaxation in the presence
of driving is that the stationary distribution over the qubit
states differs from the thermal Boltzmann distribution. If
the oscillator-mediated decay is the dominating qubit decay
mechanism, the qubit distribution is determined by the ratio
of the transition rates �e and �g . One can characterize it by
effective temperature Teff = h̄ωq/[kB ln(�e/�g)]. If the term
in curly brackets in the numerator of Eq. (16) is dominating,
Teff ≈ 2T , but if the field parameters are varied so that this
term becomes comparatively smaller, Teff increases, diverges,
and then becomes negative, approaching −2T . Negative
effective temperature corresponds to population inversion. The
evolution of the effective temperature with the intensity of the
modulating field is illustrated in Fig. 3.

D. Linear qubit-to-oscillator coupling

The preceding results can be extended also to a qubit
linearly coupled to the oscillator. Such coupling was discussed
in numerous contexts in the problem of a two-level system
coupled to an oscillator; in particular, it underlies the broadly
used Jaynes-Cummings model of the cavity quantum elec-
trodynamics. The linear coupling leads to resonant decay of
the qubit if the qubit frequency ωq is close to the oscillator
eigenfrequency, |ωq − ω0| � ω0, and the oscillator decay rate
largely exceeds the qubit decay rate. The effect is significantly
modified if the oscillator is resonantly driven. If we consider
linear coupling of the Jaynes-Cummings form Vxσ̂xx, the
corresponding contribution to the decay rate of the excited
state of the qubit is

�e = (Vxw/h̄ωq)2(mωF |δω|/3γS)ReN+−(ωq − ωF ). (18)

(For the coupling of the form Vzσ̂zx one should replace in the
above expression Vxw with Vzδ.)

For linear coupling, the decay rate does not have the
factor r2

a . However, it is still different for different attrac-
tors. If the oscillator is strongly underdamped, it displays
resonances whenever h̄|ωq − ωF | coincides with the oscillator
quasienergy level spacing near the attractor h̄νa .

V. QUBIT DECAY FAR FROM RESONANCE

For the case where |ωq − 2ω0| is not small compared
to ω0 and ωq 	 νa , the correlation function G(ωq) can be
calculated by perturbation theory to the lowest order in
the oscillator-to-bath coupling. To this end we again write
δx̂2(t) ≈ 2xa(t)[x̂(t) − xa(t)]. We need to find x̂(t) − xa(t)
in the time range ∼|ωq − ωF |−1. The analysis is familiar
from the studies of phonon sidebands in solids [28]. We
linearize the Heisenberg equation of motion for x̂(t) − xa(t).
The terms ∝γS and ∝F (t) in this equation can be disregarded,
since the oscillator nonlinearity is weak, |γS |x2 � mω2

0, as
is the driving; the back-action (friction) force from the bath
can be disregarded as well, since κ � |ωq − 2ω0|. However,
the quantum force from the bath

∑
j λj (b̂j + b̂

†
j ) may have

components at frequency |ωq ± ωF | and should be kept.
Integrating the linear equation for x̂(t1) − xa(t1) first with
t1 = t + τ and then with t1 = τ and substituting the result
into Eq. (3), we obtain

ReG(ωq) = 2ωF |δω|
3mγS

r2
a

∑
i

J (ωi)�T (ωi)(
ω2

0 − ω2
i

)2 , (19)

where ωi takes on the values ωq ± ωF , ωF − ωq . The function
J (ω) is the density of states of the bath weighted with the
coupling to the oscillator; it is defined below Eq. (5) and we
assume J (ω) ≡ 0 for ω < 0. Function �T (ωi) = n̄(ωi) + 1
for ωi = ωq ± ωF and �T (ωi) = n̄(ωi) for ωi = ωF − ωq ;
here n̄(ω) = 1/[exp(h̄ω/kBT ) − 1]. It is important that the two
asymptotic expressions obtained in different ways, Eqs. (13)
and (16) on the one hand and Eq. (19) on the other hand,
coincide in the range νa, κ � |ωq − 2ωF | � ωF , ωc, thus
indicating that we have found the qubit relaxation rates at
arbitrary frequency.

Equation (19) describes decay of the qubit excitation into
excitations of the bath coupled to the oscillator. This decay is
mediated by the oscillator and stimulated by the driving. The
decay rate is determined by the density of states of the bath
at the combination frequencies |ωq ± ωF |. Most notably, it is
quadratic in the amplitude of the oscillator forced vibrations
and therefore strongly depends on the occupied attractor.

The far-from-resonance regime is important for the exper-
iment [16] with a SQUID-based bifurcation amplifier, since
the amplifier was operated at a frequency far below the
qubit frequency. In this experiment, the relaxation rate of the
qubit for the large vibration amplitude of the oscillator was
much larger than for the small amplitude (see Fig. 2(c) of
Ref. [16]) and was increasing with the driving strength on the
low-amplitude branch (branch 1 in the left panel of Fig. 1), in
qualitative agreement with the theory. It is not possible to make
a direct quantitative comparison because of an uncertainty
in the qubit relaxation rates noted in Ref. [16]; also, even
though the decay rate of the oscillator at frequency ω = ωF

is given, the oscillator decay rate at the relevant much higher
frequency ω = ωq ± ωF is not known.

The excitation rate out of the ground state of the qubit �g is
also determined by Eq. (19) with interchanged n̄(ωi) + 1 ↔
n̄(ωi) in function �T (ωi). If the oscillator-mediated decay is
the dominating qubit decay mechanism, the effective qubit
temperature Teff depends on the interrelation between the
values of J (|ωq ± ωF |). This goes beyond the temperature
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analysis in the resonant case because, in the former, only
J (ωF ) entered into the relaxation rate, whereas for strong
detuning, the environmental spectrum is probed at multiple,
distinct frequencies. The analysis here is fully similar to that
of cooling and heating of oscillators [24,29], the area that
attracted much interest recently [30,31]. We note that, in
contrast to the previous work, here we consider heating and
cooling of a two-level system, a qubit, that results from the
coupling to an oscillator rather than heating and cooling of
the oscillator that may result from such coupling provided the
relaxation rate of the qubit is higher than that of the oscillator.

If J (ωq − ωF ) 	 J (ωq + ωF ), the qubit temperature
Teff ≈ T ωq/(ωq − ωF ) exceeds T , whereas for J (ωq −
ωF ) � J (ωq + ωF ) we have driving-induced cooling of the
qubit, Teff ≈ T ωq/(ωq + ωF ); for ωF > ωq the temperature
Teff ≈ −T ωq/(ωF − ωq) is negative. Heating and cooling of
the qubit can be achieved also for nonresonant excitation of the
oscillator [24,29,30].

For weak driving and ωq far from 2ω0, qubit decay
may be due to two-quanta transitions in which an oscillator
makes a transition between its neighboring levels and a
quantum of the bath is created or annihilated (for stronger
oscillator-bath coupling, two bath quanta transitions may
be also important). The corresponding rate is determined
by ReG(ωq) ≈ (2h̄/m3ω0)

∑
i J (ωi)(ω2

0 − ω2
i )−2�T (ωi)�T i ,

where ωi = ±ωq ± ω0. Here, function �T (ωi) is the same
as in Eq. (19) (except that ωF should be replaced with ω0),
whereas �T i = n̄ + 1 for ωi = ±(ωq − ω0) and �T i = n̄ for
ωi = ωq + ω0. This expression coincides with Eq. (17) for
ω0 	 |ωq − 2ω0| 	 κ .

The results on nonresonant oscillator-mediated decay
can be extended also to the case of linear qubit-oscillator
coupling, with coupling energy Vxσ̂xx. In this case �e =
2(Vxw/h̄mωq)2(ω2

q − ω2
0)−2J (ωq)[n̄(ωq) + 1]. The decay rate

is independent of the attractor occupied by the oscillator.
Due to the factor (w/δ)2 in T −1

2 , that is, the particular choice
of working point, the dephasing rate of the qubit is several
orders of magnitude larger that the relaxation rate, allowing
for a good, near-QND qubit detection.

VI. CONCLUSION

In conclusion, the presented approach describes the relax-
ation of a qubit coupled to an underdamped driven quantum
oscillator, both in the regime where the qubit transition
frequency ωq resonates with the oscillator frequency or its
second overtone and where it is far away from resonance. The
proposed mechanism shows to what extent quantum measure-
ments with bifurcation amplifiers are of the nondemolition
type.

The qubit relaxation rate is expressed in terms of the power
spectrum of the oscillator. We find this power spectrum in the
explicit form near resonance where, as we show, it can have
a double-peak structure as function of frequency. This result
and the proposed method are general for a nonlinear oscillator,
and thus go beyond the problem of qubit relaxation.

Both in the resonant and nonresonant regimes the qubit
decay rate strongly depends on the attractor the oscillator is
latched to. Far from resonance, including the experimentally
important range of a high qubit frequency, and for the coupling
quadratic in the oscillator coordinate the qubit decay rate is
quadratic in the amplitude of the oscillator’s forced vibrations.
For ωq close to 2ω0, the decay rate is resonantly enhanced. For
a strongly underdamped oscillator it displays narrow maxima
as a function of the control parameters once h̄ωq goes through
the appropriate oscillator quasienergy, which depends on the
attractor. We observe that the decay mediated by a driven
oscillator changes the qubit temperature, leading to heating,
cooling, or population inversion, depending on the frequency
detuning. In the case of linear qubit-oscillator coupling, the
qubit relaxation rate does not contain the squared vibration
amplitude as a multiplying factor, but for ωq close to ω0 it
displays attractor-dependent quasienergy resonances.
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