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131 Introduction

One of the important problems of physical kinetics is the investigation of
relaxation and fluctuation phenomena in systems which have two or more
stable states. Bi- and multistable systems are studied in various fields of
physics, and the causes of multistability and the types of stable states are
different in different cases. For systems moving in static potential fields
(disregarding the interactions that give rise to relaxation and fluctuationsin a
system) multistability takes place if a potential has several minima. In this case
the stable states are the equilibrium states. A number of systems of this type are
investigated in solid state physics; in particular, diffusing atoms and impurity
centers that reorient within a unit cell (see Narayanamurti and Pohl, 1970).

Multistability may also arise in systems driven by an external periodic field.
The constrained vibrations correspond to the stable states in this case (the
attractors with a more complicated structure may also appear here). In
particular, nonlinear oscillators of various physical nature refer to such
systems (see Landau and Lifshitz, 1976). It is well known that in a certain
frequency range the dependence of the amplitude 4 of the constrained
vibrations of a nonlinear oscillator on the resonant external field amplitude h
may be S-shaped (cf. curve (c) in Figure 13.1). In the range of the non-single-
valued dependence A (h) the states with the largest and smallest A are stable. In
the absence of noise the oscillator appears in one or another state depending .
on the ‘history’ of the field amplitude or frequency variation, i.e. the hysteresis
is present when the field is varied.

Bi- and multistability of nonlinear systems in an external periodic field is
studied intensively at present in nonlinear optics (Gibbs, 1985). Several stable
equilibrium or vibrational states may arise also in nonequilibrium nonlinear
systems driven by stationary energy sources of other types. The examples of
such systems are well known in fluid dynamics, radiophysics, chemical
kinetics, laser physics, etc. (see Haken, 1983).

The interaction of a multistable system with a medium (in particular, with a
thermal bath) leads to relaxation of the system and to fluctuations in it.
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Figure 13.1. Schematic dependence of the amplitude A of the constrained
vibrations of a nonlinear oscillator on the amplitude h of an external resonance
force. Curves (a)~(c) correspond to different frequency detunings w, —wg.

(b) corresponds to the critical value of wy, — w, starting with which the plot of
A versus h becomes S-shaped. The unstable stationary states are shown as a
dashed line.

Fluctuations may also arise due to other noise sources acting on a system. The
presence of several stable states gives rise to a number of features of relaxation
and fluctuation phenomena in a system. These features are due to a great
extent to the sufficiently large fluctuations being able to result in transitions
between the stable states.* As a result of fluctuational transitions the stationary
distribution of a system over the states is established and the dependence of the
characteristics of a system on its parameters becomes single-valued. In
particular, for sufficiently slow parameter variation the hysteresis described
above for a nonlinear oscillator does not arise.

Since large fluctuations are needed for the transitions between the states to
occur the transition probabilities W are small for small intensity & of
random force acting on a system. The value of W in the case of a system
performing Brownian motion in a static potential was obtained by Kramers
(1940). In this case In Woc — AU/, where AU is the potential barrier height

* We use the term ‘stable states’ for those states that are stable with respect to small fluctuations.
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(when relaxation and fluctuations result from coupling to a thermostat, Z oc T
and Woc exp(— AU/T)). Transition probabilities may be obtained also for
Markov systems in which the potentiality conditions are fulfilled and there are
no flows in the steady state.

In the general case of a nonpotential motion or motion in a variable field the
" calculation of W at small 2 is rather a complicated problem. To solve it when
random forces are of the white-noise type or, to be more general, are Gaussian
it is convenient (Dykman and Krivoglaz, 1979) to use the Feynman approach
(Feynman and Hibbs, 1965) to the description of fluctuations in dynamical
systems approach. This is based on the path integral method. It allows us to
reduce the problem to an investigation of the extreme trajectory of a certain
auxiliary dynamical system and to show the transition probability to be given
by the expression

W = const-exp(— P/%). ’ (13.1.1)

The quantity P in (13.1.1) is proportional to the action along the extreme
trajectory, and PT/# plays a role of activation energy. The value of P is
determined by the parameters of a dynamical system and does not depend on
random force intensity. In particular, for a nonlinear oscillator in a strong
resonant field, the quantities P were obtained explicitly (Dykman and
Krivoglaz, 1979).

Both P and the constant pre-exponential factor in (13.1.1) may be obtained
in a simple explicit form for the problem of an escape from a metastable state
near bifurcation point where this state coalesces with an unstable stationary
state (Dykman and Krivoglaz, 1980a). As the bifurcation point is approached
the escape probability and fluctuations as a whole increase rapidly.

In a bistable system (to be precise we assume in the following that the
number of stable states is equal to two) the populations w, and w, of the stable
states 1 and 2 are inversely proportional to the probabilities W, , and W,; of
the transitions from these states. In the general case, the values of P, and P, in
(13.1.1) for the transitions 1 —2 and 2 — 1 are different, and |P, — P,| » 2 for
small 8. Therefore w, and w, differ by many times in almost the entire range of
the parameters of the system, and one of w; is close to unity while another is
close to zero. Only in the extremely narrow range of parameters where P, ~ P,
the values of w, and w, are of the same order of magnitude. Owing to the sharp
exponential dependence (13.1.1) of W on P, the behavior of the system under
its parameters passing through the range where P, ~ P, is perceived as a
smeared first-order phase transition. In particular, in case of a nonlinear
oscillator in a strong resonant field the vibration amplitude A4 changes sharply
from the value corresponding to one branch of 4() to that for another branch
(see Figure 13.1), with a corresponding sharp change in the absorption of
energy from the resonant field. In the transition region fluctuations in bistable
systems acquire a number of characteristic features.

The important characteristic of relaxation and fluctuations in a system is the
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spectral density Q'(w) of fluctuations of the generalized coordinates. For
underdamped systems far from the transition region Q’(w) has peaks at the
eigenfrequencies of vibrations about that stable state whose population w ~ I.
In the transition region besides the peaks corresponding to vibrations near
both stable states Q'(w) has an additional extremely narrow peak due to
fluctuational transitions between the states. Its width is of the order of the
transition probabilities W, , ~ W,, . It is much smaller than inverse character-
istic relaxation times. For systems moving in a static bistable potential, the
peak induced by fluctuational transitions occurs at zero frequency. In systems
performing forced vibrations at the strong-field frequency w, the peak lies at
the same frequency w,. The corresponding extremely narrow peak at w, is
present also in the spectrum of the absorption of an additional weak ficld
(Dykman and Krivoglaz, 1979).

As the random force intensity # increases, the form of Q’(w) for under-
damped systems changes substantially (Dykman and Krivoglaz, 1971, 1984;
- Dykman, Soskin and Krivoglaz, 1984). Even when 4 is rather small, the
shape of the peaks due to small-amplitude vibrations about the stable states
changes strongly because the vibration nonlinearity reveals itself. The width of
the peak induced by fluctuational transitions increases exponentially with 4
(see (13.1.1)). In addition, the relatively broad peak of Q'(w) caused by features
of the motion in the vicinity of the unstable equilibrium state appears.

In what follows, two relatively simple but nontrivial bistable systems, a
nonlinear oscillator driven by a sufficiently strong resonant field and an
oscillator moving in a static potential with two minima, are analyzed in
considerable detail. The results for these model systems describe many
properties of the physical systems mentioned above.

In Section 13.2 the probabilities of transitions between stable states of a
nonequilibrium system are considered using the path integral method. The
spectra of fluctuations at low noise intensities, mcludlng the narrow peaks
induced by fluctuational transitions, are analyzed in Section 13.3. In
Section 13.4 the features of the spectral density of fluctuations in under-
damped, essentially nonlinear systems with one and two stable states arc
investigated.

13.2 Probabilities of transitions between stable states of a
nonequilibrium system

In the analysis of transition probabilities for small intensities of a random force
acting on a dynamical system the most important thing is to calculate the
‘argument of the exponential in (13.1.1), while it suffices to estimate only the
order of magnitude of the pre-exponential factor. The method given in
Section 13.2.1 permits the calculation of the transition probabilities (o
logarithmic accuracy.

We illustrate this method and its application by considering the example of
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an underdamped nonlinear Duffing oscillator driven by a relatively strong
resonant force hcos w,t and a weak random force f(¢) which presents white
noise (Dykman and Krivoglaz, 1979). A Duffing oscillator in a resonant field is
frequently used as a model; in particular in the analysis of optical bistability
(Flytsanis and Tang, 1980; Goldstone and Garmire, 1984).
The equation of motion for the normal coordinate g of the oscillator is of the
form
G+2I'g+wiq+yg® =hcoswt + () (t> 0)}

SfOfE)) =286~ 1)

Here w, is the eigenfrequency of small-amplitude vibrations in the absence of
friction and external forces, I" is the friction coefficient, and y is the nonlinearity
parameter. We suppose the oscillator to be underdamped,

I' « wg, (13.2.2)

and that the periodic force is resonant and not too strong, so that |w, — @),
7{¢*> «w,. (We assume hereafter "that y>0; the results may be
generalized immediately also to the case y <0.) '

When these conditions are fulfilled it is convenient to transform from the fast
oscillating variables g,§ to the slowly varying (over the time ~ ;')
dimensionless envelopes u;, u,,

(13.2.1)

q = (3y/8w,") ™ 1/2(u, cos w,t — u, sin w,t),

4= — w,(3y/8w, ")~ 2(u, sin w,t + u, COS Wyt). (13.2.3)
Using the ideas of the averaging method from nonlinear vibration theory (see
Bogolyubov and Mitropolsky, 1961) and neglecting small fast oscillating
corrections to u;, u, one can write the equations for u,, u, in the form

th = 0,(C W) + fo(0),  {fult) () =20T6,,0(t — 1),
a=3yB/16w3 T2, | (13.2.4)

Here u = (u,,4,),¢ = (¢, ¢,). The functions v,v, are cubic polynomials in
u,, u, (the explicit expression for v(u, + i, u; — iu,) = (v + iv,)/T is given by
Dykman and Krivoglaz, 1979). The quantities ¢, and ¢, determine the
characteristic dimensionless parameters of the dynamical system,

Cy = r/(wh - w0)7 Cy = 3’)’h2/32a)g|a),, - Wo P . (13.2.5)

The dimensionless parameter a, characterizing noise intensity in (13.2.4), is
supposed to be small.

The bistability of the nonlinear oscillator can arise (in the absence of a
random force) due to the dependence of the effective vibration frequency wg =~
wo +374%/w, on the vibration amplitude 4. As a consequence of this
dependence, forced vibrations of both large amplitude (for which w. is close
to w, and the resonance condition is fulfilled very well) and also of small
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Figure 13.2. Range of coexistence of two stable states of a nonlinear oscillator
(solid lines are the loci of the bifurcation points, K is the spinode). The
dashed line corresponds to the parameter values at which the probabilities of
the transitions 1 -2 and 21 are equal and thus the kinetic phase transition
occurs (Dykman and Krivoglaz, 1979).

amplitude (with considerably larger |, — W) may turn out to be stable and
‘self-consistent’ provided that y(w, — @) > 0. The region of the parameters
¢?, ¢, where the bistability occurs is bounded by the full curves in Figure 13.2.

Equations of the type (13.2.4) also describe the dynamics of more com-
plicated (than an oscillator) systems. In this case the number of the variables «,
may exceed two, while the intensities of the random forces may differ for
different n.

The phase portrait of an oscillator in the variables u, and u, for the
parameter range where the bistability occurs is shown schematically in
Figure 13.3. The dashed line in the figure is the separatrix between thc
attraction regions of the foci f, and f,. The saddle point, s, lies on this linc.
Such a phase portrait is typical for a wide class of bistable systems. In the
absence of a random force, the system, located at the initial instant at some
general position point, will approach, over a characteristic relaxation time
t.(t.~ T 1), that focus (or node) in whose attraction region it was located
initially. (Examples of phase trajectories are shown in Figure 13.3.)

In the presence of a weak random force the system moves, with overwhelm-
ing probability, practically along: the same trajectory. On approaching the
focus, the system stays near it for a long time, greatly exceeding ¢,, undergocs
small fluctuations. Ultimately it will experience a sufficiently large fluctuation,
as a result of which the phase trajectory will cross the separatrix. After this the
system will approach another focus over a time ~ t, and then will fluctuatc
near it. This just means a transition to a new stable state.
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Figure 13.3. Schematic phase portrait of a nonlinear dynamical system with
two stable states of the focus type. The dashed line is the separatrix, s is the
saddle point, f, and f, are foci. Arrows indicate the direction of motion.

13.2.1 Application of the path-integral method to the calculation of
transition probabilities

With the aim of calculating the probabilities W;; of fluctuational transitions we
shall consider the probability density w(u,;u,;t, —t,) of the transition of the
system from a certain point u, (in the phase space), at which the system was
located at instant ¢,, to a point u, at instant t,. To logarithmic accuracy the
value of, say, W, is determined by the function w for u, located near the focus
f1 and u, located near the separatrix.

It is convenient to write w(u,;w,;t, —t,) in the form of a path integral

w32, — ta)=f i) 2 [f(t)]o(u(t,) —uy)
wty)=u,
-1
X {J@f(t)g’[f(t)]} , AHW=[]2/.0).

(13.2.6)
In the calculation of the path integral it is assumed that at ¢ = ¢, the system is
located at the point u,. As seen from (13.2.6), contributions to the path integral
are made only by such realizations of the random force f(¢) which transfer the

system from u, to u, over the time ¢, — ¢,.
The functional 2[f] determines the probability distribution of the random
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function f(z). It is known (Feynman and Hibbs, 1965) that for a random
function of the white-noise type with correlators (13.2.4)

Pf(H)] = exp [ _ L f dt Z f2 (t):,. (13.2.7)

To find the transition probability W,, it is necessary to determine thc
probability density (13.2.6) in the range of time ¢, « t, —t, « Wi, Over the
time ~ t, the system approaches the focus f, and ‘forgets the initial state u,.
The ‘jump’ into the point u, from a certain point in the vicinity of £, is also
rapid, within the time ~ ¢,. It is evident, therefore, that the function w(u,; u,
t,—t, )dependsnextheronu noront, — t,(for pointsu, and u,located in attrac
tion region of one and the same stable state). This function thus determines
the quasistationary population of a point u, in the considered time range.
For u, located near the separatrix the transition probablhty density (13.2.6)
is exponentially small. It contains a sntall parameter o in the denominator of
the expression in the exponent. Performing the calculation with logarithmic
accuracy, we shall determine only the exponent and ignore the pre-
exponential factor, which depends on o weakly. To do this, it is convenient,
following Feynman, to change in (13.2.6) from integration over the random
force trajectories 21(t) to integration over the trajectories of the system Qu().

2£)]121(¢t) = ?[u()] Du(r). (13.2.8)

The functional 2[u(t)] determines the probability distribution of the random
function u(z). According to (13.2.4), (13.2.7) and (13.2.8)

P[u(t)] = exp(~ S/4aT)J [u(z)],

S= ~[dt ZLw), L(ua)=7} [4,—v,lcu)l? (13.29)

where J[u] is the Jacobian for the transformation (13.2.8). It is obvious from
(13.2.4) that J[u] is independent of a and influences only the pre-exponential
factor in w(u,;u,;t, —t,).

Within the adopted accuracy, it suffices to single out in the integral over
9Pu(t) the main exponential factor, which corresponds to the extremal path
u(t). This path is evident from (13.2.6), (13.2.8) and (13.2.9) to be determincd
by the condition that the functional S be minimum. At instant t, the extremul
path passes through a point u,, while it starts at u,, (according to the physical
picture described above). We note that the functional S can be regarded as
the action of a certain auxiliary particle, and . is its Lagrangian.

Within the logarithmic accuracy the transition probability W,, is deter-
mined by the maximum value of w(u,;u,;t, —t,) for the points u, located
on the separatrix (on approaching the separatrix, the system with the
probability ~ 4 will go to another stable state). The extremum with respect
to u, is reached in the saddle point, u, = u,, and the transition probability
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is given by

. ’ t
W =const-exp(— R/a), R=-—min| dtZ(u,m0),
4F o

u0) ~u,, u(t)~u, (13.2.10)

(Dykman and Krivoglaz, 1979). The quantity R in (13.2.10) is calculated
under the additional condition

Emu)=0, &= —4F——~ Z[u - v3(c;uw)]. (13.2.11)

The equality € = 0 is obviously the condition of R be extremal with respect td
the duration of the motion along the path u(t). The crlterlon of the
apphcablllty of (13.2.10) is the inequality

“R»a. ' (13.2.12)

In the case of thermal fluctuations in a system (which are due to coupling to a
thermostat), « oc T and the quantity RT/« is independent of T and equals the
activation energy of the transition.

It is obvious from (13.2.9)~(13.2.11) that the suggested method reduces the
calculation of the probabilities of transitions between stable states for a
nonlinear oscillator driven by a resonant field, or for a system of a more
general type, to the solution of the variational problem of finding a minimum
ofthe action S (13.2.9) of an auxiliary particle which moves from the point u, to
u,. The function &(u, %) (13.2.11), is the energy of this particle (Landau and
Lifshitz, 1976). The auxiliary particle has twice as many degrees of freedom
as the initial dynamical system (its coordinates are u, and the momenta are
U, — U,).

13.2.2 Fluctuational transitions between stable states in concrete
systems

The explicit expression for R may be obtained easily in the case when the func-
tions v, in (13.2.4) satisfy the ‘potentiality condition’ (see Haken, 1983), v, =
— 0U/0u,. In this case the equations of motion for an auxiliary particle are
solved by the substitution t, = —v,, and asa result R=T""[U(u) - U(u,)].

Equations (13.2.10) and (13.2.11) permit us to find the transition probabilities
in the nontrivial case of a system whose motion is nonpotential. An example of
such a system is a Duffing oscillator in a resonant field. The values of the
effective ‘activation energy’ R may be obtained here in the explicit form in a
number of limiting cases (Dykman and Krivoglaz, 1979, 1980a). The
dependences of R, and R, on the characteristic field intensity c,och? at
relatively large frequency detuning, w,—w,>»I'(c; «1), are shown in
Figure 13.4 (the states 1 and 2 correspond to the smaller and the larger
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Figure 13.4. Dependences of the characteristic ‘activation energies’ R, and R,
on ¢, for the transitions 1—2 and 2— 1 between the stable states of a
nonlinear oscillator in a strong resonant field at relatively large frequency
detuning, j¢,| « 1 (Dykman and Krivoglaz, 1979).

amplitudes of the constrained oscillations). For small ¢, (but ¢, > ¢?) thesc
dependences are steep,

Ry =3—{'cd*, ¢ Ry=2c}?, A«c,«1;¢ ~098. (13.2.13)

The dashed curves in Figure 134 are plots of the expressions (13.2.13).
Similar results were obtained recently for ¢, « 1 (Dmitriev and Dyakonov,
1986; Maslova, 1986) by another approach.

The arguments R, ,/a of the exponentials in (13.2.10) for the transition
probabilities at ¢, « 1 are seen from (13.2.5), (13.2.13) and from Figure 13.4 to
depend on the external field amplitude h only through the parameter
¢, och?|w, — wo| ~3, and R, decreases monotonically with increasing h, while R,
increases. The frequency detuning w, — w, enters in both ¢, and c¢,, and
Roc|w, — wy| for fixed ¢,. In addition, R/aoc(al) L. If friction and noisc
result from the coupling of an oscillator to a thermostat, then e occ TI' ™! and
thus R/aoc T~ 1, while I" drops out from R/

The approach to the calculation of transition probabilities stated above may
be generalized directly to the case when random forces acting on a dynamical
system depend on dynamical variables (in a nonsingular way) or are Gaussian,
but not d-correlated (in the latter case the expressions of the type (13.2.9) and
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(13.2.10) for the action S and R include retardation). The approach may be also
generalized easily to systems described by higher-order equations.

We shall illustrate the latter by taking as an example a system performing
Brownian motion in a static potential U(g),

§+2T¢g + = 1), FOSE)> =285 ~1). (13.2.14)

Writing the transition probablllty density w(qy, dy; 44, das ty — t,) in the form
(13.2.6) and changing from integration over 2 f(¢) to integration over 2q(t)
similarly to (13.2.8), we obtain, that within the logarithmic accuracy the
probability of the transition from an equilibrium position g =g, to a saddle
point g = g, is

W = const-exp(— P/#), P=3}min f <q +2Ig +(Clltqj> dr,

a0)=g;, 9()=q, 4¢0O)=4@)=0. (13.2.15)

The extremal trajectory of the functional P, which satisfies the boundary
conditions and the condition dP/dt =0, is described by the equation

dUu
j—2I'q+—= 2.
§—2 q+dq 0 (13.2.16)
(i.e. it corresponds to a motion with negative friction). Substituting (13.2.16)
into (13.2.15) we obtain the well-known result

W= const'ei(p { —%—[U(qs)— U(qf)]}. (13.2.17)

13.2.3 Transition probabilities near bifurcation points

The additive-noise induced fluctuations in dynamical systems acquire peculiar
features if the system is near a bifurcation point, i.e. if its parameters are close
to values at which, e.g., new equilibrium positions or limit cycles appear or
coalesce. These features are quite universal, they depend not on details of a
system but on a type of bifurcation. The problem of fluctuations near
bifurcation points was first considered for the bifurcation points correspond-
ing to soft excitation of a limit cycle within a model of the Van der Pol
oscillator (see, e.g., Lax, 1967, 1968; Risken, 1970; Rytov, 1955).

Besides the bifurcation points where the roots A, , of the characteristic
equation for a dynamical system pass through the imaginary axis and a limit
cycle is excited, as in the case of the Van der Pol oscillator, there are also quite
general bifurcation points of the marginal type, where A, =0 (A;#0atis1)
and two singular points (e.g. a node and a saddle) mutually annihilate (or arise)
in phase space. The value of the set of the system parameters ¢ = (c;,¢,,...)
corresponding to a marginal point will be denoted by c¢y,.
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In the range of ¢ close to ¢y the inequality |A;| «<|ReA,|, |Re Aj,... holds,
i.e. one of the motions in the system (say that described by the variable u,) is
slow (u, is a ‘soft mode’). This results in the strong increase of fluctuations, if
the system is located in the corresponding region of phase space. The smallness
of A, makes it possible to use an adiabatic approximation for the description
of the fluctuations and to reduce the multidimensional problem, generally
speaking, to a one-dimensional one if the random forces are small (Dykman
and Krivoglaz, 1980a).

In the region of phase space adjacent to the singular points emerging al
¢ =c¢y the fast’ dynamical variables of the system u,, u,,... within a timc
~t(t,=max(|ReA,| !, |[ReA;|™1,...), |A,|t. « 1 relax to their equilibrium
values (for a given u,) and then fluctuate about these values; following
adiabatically the slow variation of u,. The equation of motion for u = u, near
the marginal point is of the form :

i= =DMy 10, V)= ulhbu —o)
CFOSE) =285 —1) @=unf (O =11() (132.18)

The parameter ¢ in (13.2.18) characterizes a distance to the bifurcation point
in space of the parameters ¢ (¢, b, # may be easily expressed in terms of
the parameters of the initially multidimensional system (cf. Dykman and
Krivoglaz, 1980a)). Only the main terms of the expansion of Uy (u) in u arc
kept in (13.2.18). The adiabatic approximation used in the derivation of
(13.2.18) is accurate to corrections ~ (#b?)'/3t, oc #'/* in the most favorablc
case, ¢ =0, '

At ¢b >0 in the region of small |u| the system has a stable equilibrium
point 4® and a saddle point 49,

u'® = (¢/b) /2 signb, u® = —(¢/b)'/*signb, (13.2.19)

which correspond to a local minimum and maximum of the potential U, (1)
(see Figure 13.5). At ¢ =0 the points 4'? and u® merge, and at ¢b <0 the
system has no stable states with small |u|. Obviously, the point u'”
corresponds to a metastable state at sufficiently small ¢.

The one-dimensional Markov process u(t) can be investigated by standard
methods. In particular, when (¢/b)}/? || » 4 it is of interest to determine the
probability W;, of the escape of the system from the metastable state (in this
case Wy, is small compared with the reciprocal time A, ~ |b|(¢/b)*/? character-
izing the motion of the system near the equilibrium position). With allowance
for physical picture of a motion, the problem of calculation of the escapc
probability Wy, for the one-dimensional process u(t) reduces in a natural way
to the well-known (Kolmogorov and Leontovich, 1933) first passage timc
problem. This makes it possible to determine explicitly not only the exponent,
but also the pre-exponential factor in the expression for Wy (Dykman and
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Figure 13.5. The potential for the ‘slow’ variable of a system near the marginal
point.

Krivoglaz, 1980a):
Wa= - 6D)" exp(~ P/ ),
Py =%(e/b)'?lel  (Py> B). (13.2.20)

According to (13.2.20), the escape probability Wy near a marginal point
depends on the noise intensity & in an activation way. The ‘activation energy’
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Py equals the potential difference for a saddle and stable points, Py =
Up(u®) — Upy(u'®). It varies with the distance to the bifurcation point along
the axis ¢ as |¢[>2 and, thus, decreases rapidly (while W, increases) with
approaching bifurcation point. The argument of the exponential in (13.2.20)
may be found also by the direct calculation of the quantity R/4aI" (13.2.10)
near the bifurcation point. The result coincides with that in (13.2.20). Thc
pre-exponential factor in (13.2.20) depends on the small ‘distance’ to the
bifurcation point ¢ as |g|*/2

In two-parameter systems, ¢ = (c,,¢,), the curves in the parameter plane,
which are the loci of the bifurcation points of the marginal type, can havce
singular points of the form of spinodes. An example of the spinode is.the point
K in Figure 13.2 which refers to an oscillator driven by a resonant field.
Another important example is the spinode that occurs under polarization
optical bistability as a consequence of symmetry properties (Dykman, 1986).

The shape of the bifurcation curve in the vicinity of the spinode K (¢, = ¢4,
¢, =C,x) in the general case coincides with that shown in Figure 13.2,
In the parameter region bounded by the solid curves in Figure 13.2 the system
has two stable states and one unstable equilibrium state — a saddle point. As
the point K is approached (in parameter space) these states come closcr
together (in phase space), the rigidity of the system decreases, and as a result
the fluctuations increase sharply. In a certain sense, the point K is analogous to
the critical point on the gas—liquid phase-transition curve. '

To describe the fluctuations near the point K one may also use the adiabatic
approximation and thus reduce the problem to a one-dimensional one. The
error due to this approximation is oc #*/4 here. The equation for the ‘slow’
variable u = u, is similar to (13.2.18), but the potential U (u) is the polynomial
of fourth degree,

Ugw) =u(idu® —3e,u—e,) (d>0). (13.2.21)
In the range

e,>0, 3le,|(3d)1%/2:32 < 1 (13.222)

the potential U () has two minima separated by a region in which U, (u) has a
local maximum. The extrema of U (u) correspond to stable states and a saddlc
point. They coalesce at ¢, =¢, = 0.

Not too close to the point K the probabilities W), of transitions between the
stable states are small compared with the reciprocal relaxation times. To
logarithmic accuracy they are given by

W,; = const-exp{— B~ [Ugu®)— Ug@®)]1}, i,j=12, (13.2.2})

where u(®) is the position of the ith minimum of U y(u).
As the point K is approached the quantities W,; increase sharply. In the
immediate vicinity of the point K the concept of the transition probability
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becomes meaningless, since all relaxation and fluctuation processes have the
same time scale (see Section 13.3.3).

The results for the transition probabilities near the marginal and spinode
points (the bifurcation points of codimension 1 and 2, cf. Arnold, 1978) were
applied to the problem of a nonlinear oscillator in a resonant field (Dykman
and Krivoglaz, 1980a). The dependences of these probabilities (in particular, of
the activation energies) on the oscillator parameters in the vicinity of the
bifurcation curves shown in Figure 13.2 were obtained in the explicit form.

It should be noted that the probability of reaching the phase-space point far
from points corresponding to stable states was investigated by another
method in a mathematical paper by Ventsel and Freidlin (1970) for a certain
type of Markov system. The approach presented above in Section 13.2.2¢
makes it possible to obtain simply the results of this investigation and to
generalize them to include, in particular, the case of Markov processes of more
general type, as well as the case of non-Markov processes. It allowed also to
obtain the expression for the probabilities of transitions between stable states
in the closed form and to calculate these probabilities for a concrete physical
system, a Duffing oscillator in a strong resonant field.

To calculate transition probabilities and to find a stationary distribution of
a system whose motion presents Markov process the Einstein—-Fokker—
Planck equation may be used as well. This method is particularly suited to the
case of potential motion. It was shown recently that both in this case and in the
case of nonpotential motion, the determination of a stationary distribution of
a bistable system and the calculation of transition probabilities to logarithmic
accuracy may be reduced for small noise intensities to the solution of a non-
linear partial differential equation (Ben-Jacob, Bergman, Matkowsky and
Schuss, 1982; Graham and Shenzle, 1981). This equation is the Hamilton-
Jacobi equation for the action S, (13.2.9), of an auxiliary particle (see
Section 13.2.2). A similar equation arises also when transition probabilities are
calculated by solving the first passage time problem for Markov process
(Matkowsky and Schuss, 1983; Schuss, 1980; Shenoy and Agarwal, 1984;
Talkner and Hinggi, 1984). The latter method permits to find also the pre-
exponential factor in the expression for W.

133 Spectral density of fluctuations in bistable systems at low noise
intensities

The time correlation functions (L(E)M(t)> (<...> denotes the ensemble
averaging) of the dynamical variables L, M and their spectral distributions are
analyzed for bistable systems hereafter. These quantities not only characterize
quite completely the relaxation and fluctuations, but describe also the
generalized susceptibilities (cf. Landau and Lifshitz, 1980) and, thus, may be
determined directly by experiment. We note however that when dissipation
and a random force acting on a system are not connected (or not only
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connected) with coupling of a system to a thermostat or when a system is
driven by a periodic field, the fluctuation—dissipation relations become more
complicated and lose the universality. For Markov systems these relations are
considered in detail by Risken (1984).

In the absence of external periodic fields the correlators { L() M(t')) under
stationary conditions depend on ¢ — ¢’ only. Supposing a system to be ergodic
we can write the time correlation function Q, ,,(t) of variables L, M in the form

T

Q= llm @27t I de[L(t+7)—<L(t+1))]

x [M(t)—{M(z)>]. (13.3.1)
For systems subjected to a periodic force h cos w,t the distribution function
under stationary conditions depends periodically on time (such systems are,
generally speaking, nonergodic) and therefore the correlators ( L(t + )M (z))
depend periodically on . However, for a number of applications it is of interest
(¢f. Dykman, 1978; Dykman and Krivoglaz, 1984) to find the addend in
{L{t +t)M(7)) that does not depend on . This addend is given by (13.3.1) as
well.
Besides Q, () we shall consider also the spectral distributions

Opae(@) =% J : dte %0, (1) (e— +0). (13.32)

The quantity Re Q,; (w) is the spectral density of fluctuations of a dynamical
variable L.

In Sections 13.3.1 and 13.3.2 we suppose that the intensity of noise actmg
on a dynamical system is small, so that the probabilities of transitions between
stable states are much smaller than all reciprocal relaxation times (in thce
absence of noise). In this case within an overwhelming part of time a system
fluctuates about equilibrium positions, and it is convenient to write Q; ,,(w) in
the form

Qru(@) = ZW:QBW (@) + Qf (). (13.3.3)

Here w; is the stationary population of the ith stable state, and Q{), () is the
partial spectrum formed by small fluctuations about the ith state. The term
0% (w) at small noise intensities is formed by transitions between the states
(see Section 13.3.2).

The populations w, are determined by the balance equation, and in the case
when transition probabilities are given by (13.2.10), W;;oc exp(— Ry/a), we
obtain for a bistable system

wy Wiy

R;—R
W, —%—const exp( , 2), AL R, ,. (13.3.4)
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It is evident from {13.3.4) that for almost all values of the dynamical system
parameters, excluding the narrow range where R, ~ R,, the population ratio
w, /w, is either exponentially small or large, and only one addend contributes
to 3,w; 08, (w) in (13.3.3) (for this addend w, ~ 1).

13.3.1 Contribution from small fluctuations about stable states

To calculate QW{w) in the limit of very small noise intensities (see below) one
may linearize the equations of motion of a system in the vicinity of the jth
stable equilibrium state. The respective linearized equations may be easily
solved. For systems described by (13.2.4) we obtain with account taken of
(13.3.2)
0. (w)= aZ(F/ReAU’)(AU’+1w) H(SDY* S (13.3.5)

Here AY are the eigenvalues of the matrix || dv,(c; u)/Ou,, | calculated for the jth
stable state, S is the unitary transformation that diagonalizes this matrix.

The form of the function QY (w) is seen from (13.3.5) to depend on the
relation between the real and imaginary parts of the roots AY of the
characteristic equation (note that for stable states ReAY <0). At
[ReAV|>»[ImAY| the distribution (13.3.5) is smooth, and the spectral
densities of fluctuations Re 0%, () are of the form of the Lorentzian peak
with the maximum at low frequency (as compared with |ReAY]) and the
halfwidth [Re AY| (or of the superposition of such peaks, if the number of the
dynamical variables u, exceeds two).

If for some p the opposite condition is fulfilled,

[Re AY| « [Im A, (13.3.6)

the spectral densities of fluctuations ReQY), (w) have distinct peaks at
frequencies Im AY. The shape of these peaks is also Lorentzian, and their
halfwidth is [Re AY|.

For a nonlinear oscillator performing constrained vibrations in a resonant
field the values of AY), may be obtained explicitly with account taken of
 (13.22)(13.24), AP, = —T[1 +i(A} — 1)'/2], where 4, are given in eqn. (25) of

the paper by Dykman and Krivoglaz (1979). The ‘weak damping’ condition
(13.3.6) is fulfilled for a relatively large detuning of the field frequency relative
to the eigenfrequency of the oscillator, |w, — wo| > I (then A?> 1).

The spectral densities of fluctuations of the oscillator coordinates and
momenta in the range of resonance, w, ~ , are expressed according to
(13.2.3) in terms of the functions @, ,, (@ — ). In terms of these functions one
can express also the coefficient u(w) of the absorption (amplification) of an
additional weak resonant field at frequency w by the oscillator. At small noise
intensities the quantity u(w) may be put into a form similar to that of (13.3.3).
When condition (13.3.6) is satisfied, the partial contributions to pu{w) have
distinct Lorentzian peaks with a halfwidth I (see Dykman and Krivoglaz,
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1979, 1984 for details). The emergence of peaks of this type was shown by
Bonifacio and Lugiato (1978) (see also Lugiato, 1984) when analyzing light
transmission spectra for bistable optical systems.

If the weak damping condition (13.3.6) is satisfied, the range of noisc
intensities, where the expression (13.3.5) holds, appears to be much narrower
than that determined by the inequality a « R, (13.3.4). Indeed, we have
obtained (13.3.5) allowing only for the terms linear in the displacements from
the equilibrium positions. In this approximation the frequencies [Im AY| of
vibrations about equilibrium positions are independent of the vibration
amplitudes. This does not, of course, hold true once the nonlinearity of the
motion becomes significant. The dependence of the vibration frequency on the
amplitude results in the frequency being modulated by fluctuations of the
amplitude. This gives rise to the specific modulational broadening of the peaks
of the spectral densities of fluctuations (Dykman and Krivoglaz, 1971).

It is evident that the approximation, (13.3.5) describes the spectrum at the

" frequency ~ Im AY correctly when the characteristic frequency straggling duc
to fluctuations is small compared with the frequency uncertainty due to
damping [Re AY|. In most cases for underdamped systems this condition
reduces to the inequality

Re A(J)
I A(J)

éx

R «1 (13.3.7)

(see Section 13.4.1 for details). The restriction (13.3.7) is substantially stronger
than (13.3.4). The effects arising when the left inequality in (13.3.7) does not
hold are discussed below.

13.3.2 Narrow spectral peaks caused by noise-induced transitions
between stable states

In contrast with the addends Q) (w) in (13.3.3), which are formed by small
fluctuations, the addend Q{%(w) is formed by large fluctuations causing
transitions between the states of a system. At small noise intensities, when
@ < R, the probability of such fluctuations is small. The peaks of Q) (w)
and Q%) (w) are formed within substantially different time intervals, i.e. the
different ranges of integration over ¢ in (13.3.2) contribute to Q{},(w) and
089 (w). The peaks of Q) (w) are formed within a characteristic relaxation
time |[ReA®|™" (cf. (13.3.5)), while those of Qf(w) relate, in effect, to
the times corresponding to the« transition ‘probabilities, t ~ W1t + W3, »
Re AP| 1.

The values of the time correlation function Q;,(t) in the region >
[Re A®|~! and, consequently, the values of Qf(w) differ qualitatively for
the values of the system parameters far from the range of the kinetic phasc
transitions and for those close to this range. It is easy to see that in the first casc,
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when |R; — R;| > a, the function Q, ,(¢) is exponentially small for correspond-
ing t. Indeed, in this case with a probability close to unity the system fluctuates
about the certain stable states, while an average time passed in the vicinity of
another stable state is exponentially small. The correlation of such fluctuations
decays within a time ~[Re AW|™* (with the proper i).

For the parameter region where |R, — R,| < « and the populatlons Wi, Wy
are thus of the same order of magnitude the form of Q, () is quite different.
In this region a system located initially, e.g., in the state 1, within a time
t~ Wit ~W; changes to state 2 with an appreciable probability. The
transition results in the finite change of the values of dynamical variables
L, M (from those corresponding to the state 1, L~L,, M ~M,, to those
corresponding to state 2, L~ L,, M ~ M,). The probability of the opposité
transition is of the same order of magnitude. Taking the transmons into
account, we obtain

Quu() = wywy(Ly — L} (M,; — My)exp[ —(W,, + Wy, )t],
t>|Re A2~
and respectively,

1 . e
Q(lf?l(w)=;W1 wa (Wi + Wy —iw) ™!

x (Ly — Ly )(M{ — M,). (13.3.8)

In the more general case, when a system is subjected to a field & cos w,t
and the values of L(t), M(t) in the stable states depend periodically on time,

L{t)=Y Lj,exp(inwyt),
n
Myt)= ¥ M explina), j=1,2
n

the function Q% (w) takes the form
1 . -
Qﬁ;}(a))=;w1w22[W12 + Wy — i —nw,)] ™1

X (L’Ikn “’Lgn)(Mln - M2n)- (13.3.9)

It is obvious from (13.3.8) and (13.3.9) that in bistable systems the spectral
density of fluctuations Re Qf(w) has the extremely narrow Lorentzian peak
at zero frequency and similar peaks at the external field frequency w, and
multiple frequencies. The halfwidth of the peaks W, , + W, equals the sum of
the transition probabilities. It is much smaller than the reciprocal relaxation
time of a dynamical system. The intensity of the peak is proportional to

Wiwy =W, Wy (Wyy + Wyy) 2~ exp[— Ry — R, /).

It is exponentially small everywhere excluding the range of the smeared phase
transition.
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In the case of a nonlinear oscillator in a strong resonant field the most
intensive peak of the spectral density of fluctuations of the coordinates
(momenta) is located at the field frequency w,. The corresponding extremely
" narrow peak exists as well in the spectrum p(w) of the absorption (amplifi-
cation) of an additional weak field by an oscillator (Dykman and Krivoglaz,
1979, 1984). The intensity of this peak is also proportional to exp[ — |R, —
R,|/a]. The emergence of such a specific peak in the vicinity of the first-order
kinetic phase transition in a system far from thermal equilibrium may underlie
a way of detecting the transition itself. The peak of u(w) makes it possible
also to compare with high accuracy the frequencies of the strong and weak
fields. The frequency error is ~ W here, and thus can be smaller by many
orders of magnitude than not only the strong field frequency w,, itself, but also
the small friction coefficient I" of the nonlinear oscillator.

The relation between the parameters of a nonlinear oscillator and strong
resonant field that corresponds to the kinetic phase transition may be
obtained by solving the variational problem (13.2.10), (13.2.11) and (13.2.4) for
Ry, R;. The results of Sections 13.2.2 and 13.2.3 (see also Dykman and
Krivoglaz, 1979) give this relation in the explicit form in the region of a
comparatively large frequency detuning, |w,—wy|>» T, and also in the
parameter region near the spinode K in Figure 13.2. For the dimensionless
parameters ¢, and c,, (13.2.5), it takes the form: ¢, ~0.013 at ¢, =0, and
¢ = k[l —3/3(cix —¢1)] at ¢y ey = /3, ¢; = ¢, = 8/27. Allowing for
these results and for the monotonic character of the ‘phase-transition curve’
¢,(c}), which is obvious from qualitative arguments, we have interpolated this
curve by that shown dashed in Figure 13.2.

13.3.3 Fluctuations in close vicinity to the spinode point on the
bifurcation curve

The spectral density of fluctuations has the characteristic narrow peak in the
case when the parameters of the system lie in the immediate vicinity of the
spinode point K on the bifurcation curve (see Figure 13.2). Since the two
stable states and the saddle point are very close to one to another in this
parameter range (see Section 13.2.3), the system is ‘soft’ and the relaxation
times are large (the so-called ‘critical slowing down’ occurs). At point K itself
the damping is substantially nonexponential in the absence of fluctuations (the
dynamics is obvious from (13.2.18) and (13.2.21) to be described by the
equation # = — du?). Respectively, for the parameter values close enough to
the point K even a weak random force causes such large fluctuations, that the
probabilities of transitions between the stable states appear to be of the same
order of magnitude as the reciprocal relaxation times, and thus the concept of
a transition probability becomes meaningless. The fluctuations may be
characterized here with the aid of the time correlation function Q,,(t) of the
slow variable u and its spectral distribution Q,,(w).
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The evolution of the correlator Q,,(t) is determined by the set of the damping
decrements 1,82,

Qult) =Y a,exp(— 1,B"2) (t>0,4,>0). (13.3.10)

The values of 4, are independent of the random force intensity %, and thus the
‘rate’ of damping is proportional to the small quantity /2. The behavior of
0..(?) at large times is determined by the lowest nonzero decrement A, B2,

0.(t) ~a, exp(— 1, B'21), A, B2t 1. (13.3.11)

The quantities A, may be obtained by reducing the Einstein-Fokker—
Planck equation for the random process u(t) in (13.2.18) and (13.2.21) to the
eigenvalue problem (see, e.g., Lax, 1967; Tomita, Ito and Kidachi, 1976; Van
Kampen, 1965). The dependence of 4; on the parameters of the system
obtained in this manner is shown in Figure 13.6 (Dykman and Krivoglaz,
1980a, 1984). The parameters g, and g, in Figure 13.6 are proportional to the
parameters ¢, and &, in (13.2.21), which characterize the distance to the
spinode point,

gy=B g d~V2 g, =@ Vg, d=14 (13.3.12)

In particular, at the spinode point itself (¢; = ¢, = 0) we have 4, ~ 1.374"/2. Tt s
seen from Figure 13.6 that the dependence of A, on g, is, generally speaking,
nonmonotonous and has rather sharp maximum for sufficiently large |, |. The
asymptotic expressions for 1, may be obtained in the explicit form (Dykman
and Krivoglaz, 1984).

Some other questions concerning fluctuations near bifurcation points were
considered by Mangel (1979). The fluctuation phenomena arising in the case
of a multiplicative noise were analyzed in detail by Horsthemke and
Lefever (1984).

134 Spectral density of fluctuations in underdamped systems

It follows from the results given above that the form of the spectral density of
fluctuations in a bistable system changes extremely strongly with increasing
intensity of a random force acting on a system. The features of the spectra
caused by the bistability are manifested most distinctly when the characteristic
frequencies of a system (in particular, the frequencies of vibrations about stable
states) exceed substantially the characteristic reciprocal relaxation times, i.e.
when dissipation is small. In this case the system motion is quasiconservative,
there is a certain quantity of the type of energy (or action) that varies in time
relatively slowly (the adiabatic invariant). Just this case is investigated in the
following.

Since the considered features of the spectral density of fluctuations are quite
general we shall analyze them within the simple model of a one-dimensional
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Figure 13.6. Dependence of the parameter A,, which determines the lowest
nonzero decrement A; %'/ in the immediate vicinity of the spinode point K,
on g,. Curves (a)~(d) correspond to the values g, =0, 2, 5, and 10 (Dykman
and Krivoglaz, 1980a, 1984),

oscillator performing Brownian motion in a static potential U{(g) which has
two minima and a local maximum between them (see Figure 13.7). The known
example of such a potential is the potential of the double-well Duffing
oscillator,

Up(@) = —3x2¢* + 1yg* (v>0). (134.1)

This potential is symmetric, its wells have equal depths and curvatures.
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U

AU,

Figure 13.7. The double-well potential. For an underdamped bistable oscillator
at low noise intensities the peak in the spectrum of fluctuations due to small-
amplitude vibrations about g, coincides in shape with that for an oscillator
moving in the single-well potential, whose part to the right of g, is shown as a
dot-dashed line.

In the general case the potential U(g) is asymmetric and parameters of the
wells are different. It is essential that, as a rule, near minima, g=¢, (i = 1,2),
and near the local maximum, q=0, the potential U(qg) is parabolic,

Ul@=U, +%wiz(q - ‘1:)2’ q=~q; U;=U(q),
Ulg)= —4x2¢% ldl <lqil- . (13.4.2)

Here w; are the eigenfrequencies of small-amplitude vibrations about the
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equilibrium positions. At the local maximum, ¢ = 0, the potential is supposed
to equal zero.

The Brownian motion of the oscillator with a potential U(q) is described by
(13.2.14). We shall suppose the friction coefficient to be small,

'k w;,w;,k. (13.4.3)
If friction and a random force are neglected the oscillator energy
E=4p*+U(9) ' (13.4.4)

is the integral of motion. Dissipation (friction) and fluctuations cause the
energy to vary in time, and as a result the stationary distribution wy, is worked
out in a system, .

Wy, = Wy (E) = Z~*exp(— 2ET"/%), (13.4.5)

= J‘qu dp exp(— 2ET, /.9;?).

If friction and fluctuations are due to coupling of a system to a thermo-
stat, then #=2I'T and the distribution (13.4.5) is Gibbsian, w,(E)=
Z lexp(— E/T).

For the sake of concreteness we shall consider below the time correlation
function of the coordinates

Q) = Qyy() = <[9()) - <a>1[9(0) = <g>1> (13.4.6)

and the spectral density of fluctuations of the coordinates

Q'(w)=ReQ,(w)= %Re J: dtexp(iot)Q(2). (13.4.7)

The general structure of the function Q'(w) in the limit of low noise intensity
was considered in Section 13.3. It follows from the results of Section 13.3 that
for the potential shown in Figure 13.7 at

F»1, F=2AU,I'/®, AU,=U(0)-U(q)=—U(q,) (13.4.8)

Q'(w) has the distinct peak caused by vibrations about the equilibrium
position g, which corresponds to the lowest minimum of U(g). This peak is
located at frequency ~w;.

The shape of the peak in question within the range |w —o,| < w; at
exp(— F)«1 is determined by <relatively small displacements q-—gq,,
lg—q,|«]q;|, and therefore is determined by the form of the potential
U(q) near the equilibrium position ¢, . In fact, this shape coincides with that
of the peak of the spectral density of fluctuations Q(Q ) Qi =w—w,) of
the displacements g — g, of an oscillator moving in a single-well potential
coinciding with U(g) near the minimum (but differing from U(q) at large
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|g — g4}, cf. the dot-dashed line in Figure 13.7),
Q(w)~w, Q(QI)’ Q=0-0;, Q<o

B '
wy =alzwst(U1), (13.4.9)

where ,
0@, =~ Re f  drexploia® - 4,140) = 4,15,

Ql=w_a)1. (13.4.10)

({+++>, denotes statistical averaging for a single-well oscillator; in the
‘degenerate’ case of a double-well potential with symmetric wells the r.h.s. of
(13.4.9) should be doubled.)

The spectrum of fluctuations of a substantially nonlinear oscillator with a
single-well potential is of interest not only in connection with the problem of a
bistable oscillator, but is of great interest also in itself,

134.1 Features of the spectrum of fluctuations of a nonlinear oscillator
with a single-well potential

To analyze the spectral density of fluctuations §(Q,) of an underdamped
oscillator at not too low noise intensities the nonlinear in ¢ — g, terms in the
expansion of U(q) should be taken into account,

Ul@=U, +}0lg—a:? +3(q—01)?
+irg—a)t+... (13.4.11)

These terms result, in particular, in the dependence of the effective frequency
e Of eigenvibrations on the vibration amplitude (or energy):

 J—
71(‘1 9,)* >0, + 37,07 *(E—-Uy)

Wepe = W
‘ eff 1 40 W,

G, =7 -4 072). (13.4.12)

Here the bar denotes averaging over the period of vibrations.

Random-force-induced fluctuations of the oscillator energy are seen from
(13.4.12) to result in fluctuations of the vibration frequency. The characteristic
frequency spread dw is determined by the width of the distribution in energy,

= |3, /4w} |B/T according to (13.4.5).

The shape of Q(fQ,) is determined by competition between the two
spectrum-broadening mechanisms, the broadening due to friction and that
due to frequency modulation by a random force. Thus a9, depends on the
ratio of the modulational broadening dw to the friction coefficient I, i.e. on the
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parameter
p =571 8/Tw}. (13.4.13)

The quantity p is of the order of the ratio of two small parameters, F~! =
A2 AU, and I'/w,. Therefore even when (13.4.8) is fulfilled [p| may be
more or less than unity.

At |p| « 1 the spectrum broadening is due mainly to friction and the function
0(Q, ) is described by the Lorentzian distribution with the halfwidth I". The
corrections caused by nonlinearity can be treated here by perturbation theory
(Ivanov, Kvashnina and Krivoglaz, 1965; Krivoglaz and Pinkevich, 1970). The
perturbation theory in oscillator nonlinearity applicable for |p|« 1 was
developed by Sture, Nordholm and Zwanzig (1974) and by Rodriguéz and Van
Kampen (1976).

The analysis of the oscillator relaxation and of the spectrum of fluctuations
is most complicated in the region | p| ~ 1, where both broadening mechanisms
(damping and frequency modulation) make contributions of the same order of
magnitude. The spectrum Q(Q,) in this region is substantially non-
Lorentzian, and the time correlation function of the displacements from the
equilibrium position g — g, decays substantially nonexponentially.

The displacement correlator and the spectrum of fluctuations were cal-
culated (Dykman and Krivoglaz, 1971) by the special method based on the
averaging method and some properties of the Gaussian random processes (we
note that the process g(t) itself at | p| 2 1 is essentially non-Gaussian; see also
Dykman and Krivoglaz, 1984). The time correlation functions were also
obtained by another method based on the solution of the Einstein-Fokker—
Planck equation for a nonlinear oscillator (Dykman and Krivoglaz, 1980b).
The same solution in a somewhat different form was obtained recently by Renz
(1985).

The resulting expression for §(£2,) takes on the form of an integral of an
elementary function,

0Q,) = ;lt-c;1 Rerc drexp(iQ,)0*(1), G,=#/4Tw?,
° (13.4.14)
O(t)=exp (Ce)y ~2(t), ¥ (1) = cosh at + g—(l — 2ip)sinh at,

a=T(1—4ip)'”* (Rea>0).

It is obvious from (13.4.14) that the shape of the spectrum G{‘é(Ql) as a
function of Q,/T" is determined by the single parameter p. At p—0 (13.4.14)
goes over into the Lorentzian distribution (G,/m) /AT’ 2+ Q). At small |p| the
maximum of §(Q,) shifts by ~4pT", while the asymmetric part of 0(Q,)is of
the order of p®. As |p| increases the deviation of §(Q,) from a Lorentzian
distribution becomes more and more pronounced. At |p| > 1 the shape of the
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peak of 0(Q,) is substantially asymmetric,

Q(Q1)zéo(g1)a l
o) =G, elesn( -5 Jo 5
pQ, »T'|p|*?; : . (13.4.15)

. 3/2
QEy)~ l(;)—: GL'2T2, |, S Tipl'%;

Q,=2oT, |p|>»1.

(6(x) is the step function.)

According to (13.4.15) Q(R,) near the maximum is determined at |p| > 1 by
only the mechanism of frequency modulation (it is evident in particular that
Q,=CE-U 10weg/OE). The terms due to dissipation are, however, essen-
tial in the wings of Q(Q,).

More detailed analytic expressions for the spectral density of fluctuations of
a single-well oscillator in the limiting cases, as well as the detailed numerical
results, are given by Dykman and Krivoglaz (1971); cf. also the computations
by Renz and Marchesoni (1985). The respective change of shape and shift of
the maximum of the peak in the spectrum with varying p were observed for an
underdamped single-well oscillator by Fronzoni, Grigolini, Mannella and
Zambon (1985, 1986) in analog experiments and were ascribed to the
modulational broadening mechanism.

134.2 Spectral distribution of a bistable oscillator in the absence of
dissipation

If the damping I" is much smaller than the characteristic modulational
frequency straggling dw, the spectral density Q' (w) near the maximum (or the
maxima, but excluding the maximum at zero frequency, see below) is
determined just by the modulational mechanism. In this case within a time
~ (dw) ™! needed to form a peak of Q'(w) the dissipation effects do not succeed
is manifesting themselves and may be neglected. The corresponding ‘dissip-
ationless’ approximation allows us to investigate the spectrum of both the
single- and double-well oscillators over a wide range of frequencies w and
noise intensities 4 (note that this approximation neglects the terms ~ I'/de,
while 4/T is regarded as finite).

In the absence of dissipation and noise a bistable oscillator performs
periodic (but, generally speaking, anharmonic) vibrations with a given energy
E either within one of the wells (j = 1,2) or over the barrier (j =0):

d0= ¥ aBexplin@B)i+9)], j=0,12  (134.16)

n= =
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Here w;(E) is the energy-dependent vibration frequency (in (13.4.2)
w; = w(U))), 2|q,l is the amplitude of vibrations at the nth harmonic.

The determination of the coordinate correlator (13.4.6), neglecting dissip-
ation, reduces to the averaging of the product [¢(t)—<¢>]-[q(0)—<g)>],
calculated by (13.4.16), over the phase and energy with the weight
w;j ' (E)wg(E) and to the subsequent summation over j. Performing then the
Fourier-transform (13.4.7) we get the following expession for Q'(w) = Q¢ (w) in
this approximation:

Qo(w) = an 0" w) + M(w),
Q"M (w) = 210~ Wy ()l (Ey)*[d0oy(E, )/dE, | 7F, (13.4.17)

where the energies E,; are determined by the equation

nw;(E,;) = o, ) (13.4.18)
while

M=2nY f dEw,(E)w; *(E)q3,(E)
J

- [mz JdE wa(E)o; 1 (E)qo ,(E)]z. (13.4.19)
J

Equations (13.4.17)—(13.4.19) may be easily understood: in the absence of
dissipation the contribution to the spectral density of fluctuations at a
frequency w is made only by those vibrations whose eigenfrequency w;(E) or
its overtones are equal to w. This contribution is proportional to the squared
amplitude of the corresponding vibrations |g,;(E,;)|?, to the occupation factor
wg(E,;) and to the spectral density of vibrations at w/n, |dw;(E,;)/dE,;| ™!
(if it diverges, additional peaks of Q'(w) appear: Soskin, 1987) The singular
term .//lé(w) in (13.4.17) is connected with the terms g,; in (13.4.16) that do
not vary in time but depend on E and j. The term #d(w) is smeared when
relaxation is taken into account (see below; it should be noted that if (13.4.18)
has several solutions for given j, n, the summation over these solutions ought
to be carried out in (13.4.17)).

At F=2I'AU,/#>1 the oscillator performs mainly small-amplitude
vibrations about the equilibrium position ¢,, and the main contribution to
(13.4.17) in the range w ~ w, is made by the term Q* V() which is due to the
fundamental tone of these vibrations (if {U, — U,| < %/T, and w, and w, are
closely spaced, the term Q''?)(w) is also essential). For small @ ~ @,(U;) in
solving(13.4.18) w,(E, ,) = wit suffices to retain only the linearin E — U, term
in the expansion of w,(E). To the lowest order in F ~1, the expression for
0"Y(w) goes over into that for w; Qo (L,) (see (13.4.9), (13.4.15); apparently,
the result of the dissipationless approximation (13.4.17) is valid near the
maximum of Q'(w) provided |p| > 1). However, in contrast to (13.4.14) and
(13.4.15), the expressions (13.4.17)—(13.4.19) are not limited to the range of
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A L®

0.5 1.0 wfk 1.5
Figure 13.8. Spectral density of fluctuations of an underdamped Duffing
oscillator performing Brownian motion in the double-well potential (13.4.1).
The low-frequency parts of the spectra, which contain the zero-frequency peak,
are not plotted. Curves (a)-(¢) correspond to the values F ™! =2y#/T'x* =0.02,
0.06, 0.24, 0.6, 1.6; I'/x = 0.01. The ordinates of curves (a) and (b) are decreased
by a factor of three.

small F~1,|w — w, |/w,, and thus give the essential corrections to (13.4.14) and
(13.4.15) when these parameters are not too small.

For many actual double-well potentials @, = w,(U,) is the highest eigen-
frequency of the vibrations in well 1. Respectively, Q" V(w) vanishes for
o > w,. The important contribution to Q'(w) in this frequency range is due to
the effects of dissipation. In particular, at | — | S T'|p|*/?, according to
(13.4.15), Q' (w) depends nonanalytically on the noise intensity £ (and on the
friction coefficient I for fixed 2/T), Q'(w) oc (8/T")~1/2I"/2, On the whole the
fluctuation spectrum Q’(w) near the frequency w, at F > 1 may be shown to be
described accurately up to terms of order I'/w,; by the expression

- ~ _ -2
Q’(w)=Q6(w)+wl[Q(ﬂx)—Qo(ﬂl)J<l+w “") ,

20,
o — ;| < w,. (13.4.20)

In the case of the double-well Duffing oscillator the second addend in the r.h.s.
of (13.4.20) should be doubled. For this case the evolution of the considered
peak of Q'(w) (it is located at w >~ w, = k/2) with increasing #/I" AU | is seen
 from Figure 13.8 (cf. in particular curves (a)—(c)). Curve (a) is close to the
Lorentzian (p ~ — 0.25 here). Curve (b) (0 =~ — 0.75) has a considerably higher
width and is slightly asymmetric. Curve () (p ~ — 3) is strongly asymmetric in
the range of the considered peak.
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1343 Features of the spectral density of fluctuations due to motion
near the local maximum of a potential

Bistable systems with stable stationary states have, as a rule, an unstable
stationary state. For an oscillator with a double-well potential U(q) the
unstable state corresponds to the point (¢ =0) in which U(g) has a local
maximum (see Figure 13.7).

Near an unstable stationary state an underdamped system suffers a
characteristic slowing down in the absence of fluctuations. For an osciliator
this slowing down manifests itself in the period of vibrations diverging while
the frequency w;(E) tends to zero as the vibration energy approaches the value
of a potential in the unstable state U(0) = 0. In particular, for the overbarrier
vibrations (E > 0)

e -t
aut®)=n{ [ darze 2917}
9
~mrln~}(Co/E), E—0, (13.421)

where g, are the turning points, U(g{*'?) = E, C, ~ k%q2 ,.

It is evident from (13.4.17), (13.4.18) and (13.4.21) that in the dissipationless
approximation at e ¥ « 1 the features of the oscillator motion near the
unstable stationary state give rise to the specific quite universal form of Qg (w)
in the range w < 7k, @,:

o) = ma0Cyerp| -2 -T2 |

K
exp( — ~c—0—) «1, (13.4.22)

. C} AU
0= o(w)“‘a%, Wsz(O)OCCXP<’"7—1> «1

(the detailed derivation of (13.4.22) and the explicit form of C,, Cj for the
Duffing oscillator are given by Dykman, Soskin and Krivoglaz, 1984).

The intensity of the spectrum (13.4.22) is proportional to the population of
the oscillator states near the top of the barrier and thus oc exp(— F). The shape
of the spectrum is determined by the competition between two factors, the
reciprocal density of vibration frequencies |dwo(E)/dE|™! and the state
occupation factor wg(E) (see (13.4:17)). With rising frequency wq(E) = w the
former increases exponentially (see (13.4.22)), while the latter decreases
extremely sharply (cf. (13.4.5); E ocexp[ — nx/wo(E)]).

As a result of this competition a quite narrow peak of Qp(w) is formed. The
position of its maximum is given by

0, = 1k[InQTCo/B)]~", InQI'Co/B)> 1. (13.4.23)
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Such a peak for the double-well Duffing oscillator is seen in Figure 13.8(c) (the
dissipation was neglected when calculating the spectral curves (c)~(¢) in the
range o < ).

As the noise intensity % increases the intensity of the peak of Q'(w) due to the
overbarrier motion increases exponentially (see (13.4.22)). The width of the
peak increases rapidly also. For sufficiently high 8/I’AU, this peak practically
overlaps the peaks of Q'(w) due to vibrations about the minima of U(g) and a
common peak is formed in Q’(w) (see Figure 13.8).

The spectral density in the dissipationless approximation Qg (w) for the
Duffing oscillator was calculated by Onodera (1970). In Onodera’s paper the
term . 8(w) in (13.4.17), which describes the peak of Qy(w) at zero frequency
was omitted; see Dykman, Soskin and Krivoglaz (1984). In the latter paper it
was shown also, in particular, that the slowing down of the motion near the
local maximum of a potential means that the combined influence of a weak
random force, together with friction, is able to substantially modify the
character of motion; the corresponding additions to Q’(w) in the low-
frequency range are proportional to I''/?(%/I)'/?w,(0). The numerical
calculation of Q'(w) for the Duffing oscillator for several values of Z/T'AU,
and I'/k was carried out by Voigtlaender and Risken (1985).

134.4 The range of very small frequencies

As mentioned in Section 13.3.2, one of the features of bistable systems driven
by low-intensity noise is the extremely narrow peak of Q' (w) at zero frequency.
This peak is due to fluctuational transitions between stable states. For
an oscillator moving in a double-well potential it has noticeable intensity
when |U(q,) - U(g,)IT/# <1 and its width ~ [ exp(— F) (see (13.3.8) and
(13.4.8)).

The shape of the zero-frequency peak of the spectral density of fluctuations is
determined, however, not only by fluctuational transitions, ie. by large
fluctuations, but also by fluctuations with other scales. In particular in the
wing of the peak, o ~ I" » I"exp(— F), where the contribution to Q'(w) made
by fluctuational transitions is exponentially small, the spectrum is formed by
the small fluctuations about the equilibrium positions, namely by the
comparatively slow (with a characteristic time scale ~T'~!» w; ') fluctu-
ations of the oscillator coordinate averaged over the vibration period, go;(E)
(see (13.4.16)). Such fluctuations are connected with the energy fluctuations.

This mechanism yields the following term in Q'(w):
, 1 r )
A

) 13.4.24
D= <§%> Y. w;[(dgo;/dE)g=y,1%, ( !
j=1,2

w;,»>w»Texp(—F), exp(—F)«1,F=2I"AU,/%.
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The spectral density (13.4.24) is of the form of the Lorentzian peak with a
halfwidth 2. This peak is much less intensive than that at w ~w,, the ratio
of their intensities D/G ~F~ !« 1 (see (13.4.24), (13.4.14)). In essence the
emergence of the peak of the type (13.4.24) was shown by Krivoglaz and
Pinkevich (1966) in considering the single-well quantum oscillator with an
asymmetric potential. It is just the asymmetry of the potential U(q) near the
minima g = ¢,(j = 1,2) that gives rise to the dependence of g,; on E.

At|U(gq,)— U(g,;)l S %/T the spectrum Q'(w) in the intermediate frequency
range I'exp(— F) < <T goes over from the extremely narrow peak to the
function (13.4.24). With rising noise intensity 4 the width of the peak increases
sharply and the shape of the peak changes as a whole. The integral intensity of
the peak is determined by the parameter .#, see (13.4.19). ’

Thus, depending on the noise intensity # and the relation between the
parameters of the potential wells, the spectral density of fluctuations can have
different number of peaks. At small # and different well depths (U{g,) —
U(g,)>»%/T)Q' (w) has a peak near the frequency w, of the vibrations
about the lowest minimum of U(g) (and, generally speaking, weak peaks with
relative intensities oc 4 at frequencies ~nw,; n=0,2,3,...). At close values of
the well depths Q'(w) has an intensive extremely narrow peak at zero fre-
quency. At somewhat larger values of & the function Q'(w) has also a distinct
peak at the frequency (13.4.23) which is caused by the overbarrier vibrations.
With increasing & the intensity and width of this peak increase, and it shifts -
and coalesces with the peaks due to the intrawell vibrations. Experimentally
such transformation of the spectrum with rising 4, including the emergence of
three distinct peaks of Q'(w) in a certain interval of I'AU, /%, was confirmed
recently by Mannella, McClintock and Moss (1987; see also Chapter 9 of
Volume 3) using the analog electronic circuit which simulated an under-
damped double-well Duffing oscillator.

Finally, we note that in terms of quantum theory an anharmonicity of a
vibration subsystem results in nonequidistance of the energy levels and
therefore in a difference in the Bohr frequencies. If this difference exceeds the
damping the spectral density of fluctuations has a fine structure (Ivanov,
Kvashnina and Krivoglaz, 1965). For an oscillator coupled to a bath, Q'(w)
may be calculated in the explicit form with allowance for a fine structure
(Dykman and Krivoglaz, 1973). In bistable systems quantum effects lead
also to a change of the form of Q'(w) at small w. In particular, the narrow
peak of Q' (w) turns out to lie at a finite frequency which depends on a tunneling
probability. The tunneling in a subsystem also causes transitions between
stable states. The probabilities of such transitions in the case of a nonlinear
oscillator in a strong, resonant field were obtained by Dmitriev and Dyakonov
(1986) neglecting relaxation. The quantum theory of transitions between the
stable states of a nonequilibrium nonlinear oscillator coupled to a medium
is developed by Dykman and Smelyanskii (1988).
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