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This paper develops the theoretical foundations for the ability of a control field to cooperate with noise in the
manipulation of quantum dynamics. The noise enters as run-to-run variations in the control amplitudes, phases,
and frequencies with the observation being an ensemble average over many runs as is commonly done in the
laboratory. Weak field perturbation theory is developed to show that noise in the amplitude and frequency
components of the control field can enhance the process of population transfer in a multilevel ladder system.
The analytical results in this paper support the point that under suitable conditions an optimal field can
cooperate with noise to improve the control outcome.
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I. INTRODUCTION

Control of quantum processes is actively being pursued
theoretically �1,2� and experimentally �3,4�. In practice, con-
trol field noise and environmental interactions inevitably are
involved. The present paper considers the influence of field
noise upon the controlled dynamics with the noise described
by shot-to-shot pulse variations, as in typical signal averaged
experiments. Recent studies considered several aspects of the
influence of laser noise �5–11�, and this work aims to further
explore the issue. The interaction between the noise and field
driven dynamics is generally a highly nonlinear process. The
impact of the noise can either be constructive �12–15� or
destructive �10� in the manipulation of quantum dynamics as
well as either improve �16,17� or reduce �18� the conver-
gence rate of control search efforts. These disparate behav-
iors make it difficult to precisely identify the role of noise
under various circumstances, but the many successful experi-
ments at least support the point that some noise can be tol-
erated �19–24�. Operating under closed loop �25� in the labo-
ratory will naturally deal with noise as best as possible. A
theoretical analysis �9� on the impact of field noise upon
optimal control indicated that an inherent degree of robust-
ness can be anticipated by virtue of the controlled observable
expectation values being bilinear in the evolution operator
and its adjoint. Some simulations of closed-loop experiments
also show that robust control is possible and that properly
designed control fields can fight against noise �8,11,16,17�.

Recent numerical simulations �11� of closed-loop control
in a model system showed that under suitable circumstance
the control field could cooperate with the presence of noise
to more efficiently reach the target state. The cooperation
was remarkable when seeking a modest yield �e.g., �10%�
in the target state. In this case the noise or the deterministic
field acting alone would each produce a small yield, but the
two acting together cooperatively produced a much larger
yield. The latter numerical simulations did not reveal the
underlying physical origin of the cooperative effect, and the

present paper will analyze the controlled dynamics of a mul-
tistate system in several limiting cases to explain the prior
findings. Similar cooperation in the classical system has been
studied in fluctuation control �26,27�. The cooperative be-
havior also leads to the phenomenon of stochastic resonance,
in which the response of a system to periodic driving can be
enhanced by noise, in a certain range of noise intensities.
Stochastic resonance has been studied in depth for classical
systems �28–30�, and has attracted interest in the context of
quantum systems �31–33�, too.

Section II presents a general control model of population
transfer in multilevel systems. The noise is modeled by run-
to-run variations in the control amplitudes, phases, and fre-
quencies with the observation being an ensemble average
over many runs as is commonly done in the laboratory. The
goal of the control is to maximally populate a highly excited
state. In Sec. III we develop a weak field perturbation theory
to provide an analytical solution to the outcome of the con-
trolled dynamics. We obtain the noise-average yield from
applying the control field in Sec. IV. It is shown that varia-
tions of the field phases from pulse-to-pulse play no role in
the dynamics but strong cooperation between the determin-
istic portion of the field and noise, in both the amplitude and
frequency, is possible. Finally, we draw some conclusions
and discuss general multistate systems in Sec. V.

II. THE MODEL SYSTEM

The effects of field noise on controlled quantum dynamics
will be explored in the context of population transfer in mul-
tilevel systems characterized by the Hamiltonian H,

H = H0 − �E�t� , �1�

H0 = �
n

�n�n�	n� , �2�

where �n� is an eigenstate of H0 with the associated energy �n
in the absence of radiation, and � is the dipole operator, �
=�n,n��nn��n�	n��. The control field E�t� has the form which
may be implemented in the laboratory �34�,
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E�t� = 2s�t��
l=1

M

Al cos��lt + �l� , �3�

where 
�l� are the frequencies of the radiation, and s�t� is the
pulse envelope function. The controls are the amplitudes 
Al�
and phases 
�l�.

Noise in the laboratory could take on various forms and
arise from a number of sources �10�. In keeping with labo-
ratory practice, the achieved control will be measured as an
ensemble average over the outcome of many noise contami-
nated control fields, and the noise is modeled as shot-to-shot
uncertainties in the amplitudes Al, phases �l, and frequencies
�l in Eq. �3� �8,11�:

Al = Al
0 + x̃l, �4�

�l = �l
0 + ỹl, �5�

�l = �l
0 + z̃l, �6�

with 	x̃l�= 	ỹl�= 	z̃l�=0. The shot-to-shot field noises are cap-
tured in terms of zero-mean uncertainties x� = 
x̃l�, y� = 
ỹl�, and
z�= 
z̃l�. For simplicity we assume that the different noise
components are independent with distributions �l

�A� �x̃l�,
�l

��� �ỹl�, and �l
��� �z̃l�, respectively. In practice the field noise

in E�t� may have complex structures and origins. Besides the
uncertainties in the control field amplitudes 
Al� and phases

�l�, a potential source of additional uncertainties is in the
frequencies 
�l� due to laser frequency jitter from variations
of the refractive index �35�, or other sources �36�. The flex-
ible treatment of random variations in 
Al�, 
�l�, and 
�l� is
meant to represent all of these various possibilities. The net
outcome of the control experiments is the average,

Ō�E�t�,�� � = �
l
�

−�l

�l

�l
�A��x̃l�dx̃l�

−�l�

�l�
�l

����ỹl�dỹl

��
−�l�

�l�
�l

����z̃l�dz̃l�O�E�t,x�,y�,z��� , �7�

where O�E�t ,x� ,y� ,z��� is the control yield

O�E�t,x�,y�,z��� = �		 f�
�E�t,x�,y�,z��,T���2, �8�

produced by the field E�t ,x� ,y� ,z�� in Eq. �3� using the ampli-
tudes, phases and frequencies in Eqs. �4�–�6�. The target state
is �	 f�, and �
�E�t ,x� ,y� ,z�� ,T�� is the state of the field-driven
system at the final time T, which is a functional over time of
E�t ,x� ,y� ,z��, T�T. In what follows we assume E�t�→0 for
t→ ±�.

The objective function to be minimized with respect to

Al

0� and 
l
0� in the presence of noise has the form

J = �Ō�E�t�,�� � − OT�2 + �F0, �9�

F0 = �
l

�Al
0�2, �10�

where OT is the target value, and F0 is the fluence of the
control field whose contribution is weighted by the constant,
��0.

III. WEAK FIELD PERTURBATION THEORY

To illustrate the principle of how the deterministic portion
of the control field can cooperate with the noise, we consider
the excitation along a ladder �or chain� of nondegenerate
transitions and energy levels with each linked only to its
nearest neighbors. One could analogously think of the sys-
tem as a nonlinear oscillator �37–39� or a spin with S�1 and
nonequidistant energy levels. The transition elements are
taken to have the form

�nn� = �n�n�+1,n + �n��n�,n+1. �11�

The N+1 level system consists of an initially occupied
ground state �0� at t→−�, N−1 intermediate states �n�, n
=1,2 , . . . ,N−1, and a final target state �N�. The states are
coupled with an external laser pulse having the nominal form
of Eq. �3�. The wave function is expanded in the form


�t� = �
n=0

N

Cn�t��n�e−i�nt. �12�

The initial condition at t→−� specifies that C0=1 and Cn
=0 for 0�n�N. The goal is to maximize �CN�t��2 with
�
 f�= �N� for t→�, when the field is zero. The result of per-
turbation theory for CN to the lowest order in the control field
E�t� is

CN = iN
k=1

N

�k�
−�

�

dtNE�tN�ei�̄NtN�
−�

tN

dtN−1E�tN−1�ei�̄N−1tN−1
¯

��
−�

t2

dt1E�t1�ei�̄1t1, �13�

where

�̄n = �n − �n−1, n = 1, . . . ,N , �14�

are the transition frequencies. Utilizing the Fourier transform
of the field

E�t� =
1

2�
�

−�

�

f���e−i�td� , �15�

f��� = �
−�

�

E�t�ei�tdt �16�

in Eq. �13� produces
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CN = � i

2�
�N


k=1

N

�k� d�1 ¯ d�Nf��1� ¯ f��N�

��
−�

�

dtNei��̄N−�N�tN�
−�

tN

dtN−1ei��̄N−1−�N−1�tN−1
¯

��
−�

t2

dt1ei��̄1−�1�t1. �17�

In the above equation, the definite integrals over the frequen-
cies �k run from −� to �. To calculate the time integral in
Eq. �17�, we introduce a small imaginary part �k→ +0 in the
frequencies,

�k → �k + i�k, k = 1, . . . ,N − 1. �18�

It is seen from Eq. �13� that such a change will not affect the
result, since E�t�→0 for t→−�; we assume that E�t� decays
at least exponentially for t→ ±�, which is physically reason-
able. Evaluating the integrals in Eq. �17� with respect to
t1 , t2 , . . . , tN−1 yields

CN = � i

2�
�N


k=1

N

�k� d�1 ¯ d�Nf��1� ¯ f��N�

��
−�

�

dtNe−i��N−�̄N�tN

exp�− i�
q=1

N−1

��q − �̄q�tN�

j=1

N−1 �− i�
p=1

j

��p − �̄p�� , �19�

where all �k, k=1, . . . ,N−1, carry a hidden small positive
imaginary part as Eq. �18�. Integrating Eq. �19� again with
respect to tN and �N produces CN in the frequency represen-
tation,

CN =

i
k=1

N

�k

�− 2��N−1 � 
j=1

N−1
f�� j�d� j

�
p=1

j

��p − �̄p�

�� f��N����
q=1

N

��q − �̄q��d�N

=

i
k=1

N

�k

�− 2��N−1 � f��̄N − �
q=1

N−1

��q − �̄q��
j=1

N−1
f�� j�d� j

�
p=1

j

��p − �̄p�

.

�20�

An important property arising from Eq. �20� is that for the
state N to be populated by the pulse E�t�, the sum of the
transition frequencies should be equal to �N−�0. There is an
important difference with the work of Larsen and Bloember-
gen �37�, in which the condition �N−�0=N� leads to multi-
photon Rabi oscillations, not to an actual transition, as they
have a stationary periodic field, not a radiation pulse.

We will consider the case where M, the number of the
components in the pulse Eq. �3�, is equal to N, the number of
the transitions in the multilevel ladder system, so

E�t� = s�t��
l=1

N

Ale
−i�le−i�lt + c.c. �21�

f��� = �
l=1

N

�Ale
−i�lS�� − �l� + Ale

i�lS�� + �l�� , �22�

where

S��� = �
−�

�

s�t�ei�tdt , �23�

and each component is only resonant with the corresponding
system transition,

��k − �̄k� � ��k − �̄ j�k�, k, j = 1, . . . ,N �24�

with the function S��� assumed to be smooth, �dS /d��
� �S� /�k. The latter condition means that the typical duration
of the pulse significantly exceeds the transition periods
2� /�k, k=1, . . . ,N. Then the nearly resonant terms in Eq.
�20� are kept,

CN �

i
k=1

N

�ke
−i�k

�− 2��N−1 � 
j=1

N−1
AjS�� j − � j�d� j

�
p=1

j

��p − �̄p�

�ANS��̄N − �N − �
q=1

N−1

��q − �̄q�� �25�

=C̃N
k=1

N

�kAke
−i�k, �26�

where

C̃N =
i

�− 2��N−1 � 
j=1

N−1
S�� j − � j�d� j

�
p=1

j

��p − �̄p�

�S��̄N − �N − �
q=1

N−1

��q − �̄q�� . �27�

If each component of the pulse is exactly resonant with a
transition of the system,

�k = �̄k, �28�

then a simple form for C̃N,

C̃N =
iN�N

N!
, �29�

may be attained with
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� = S�0� = �
−�

�

s�t�dt �30�

being the effective pulse duration. It’s easier to prove Eq.
�29� in the time domain than in the frequency domain. Con-
sidering the control field in Eq. �21�, whose each component
is resonant with a particular transition, the neglect of all non-
resonant terms in the Eq. �13� yields

CN � iN
k=1

N

�kAke
−i�k�

−�

�

dtNs�tN��
−�

tN

dtN−1s�tN−1� ¯

��
−�

t2

dt1s�t1� �31�

=iN
k=1

N

�kAke
−i�k

��
−�

�

s�t�dt�N

N!
�32�

=
iN�N

N! 
k=1

N

�kAke
−i�k, �33�

from which Eq. �29� follows.
If the pulse is not exactly resonant

�k = �k − �̄k � 0, �34�

then C̃N is not so simple, except for the case where �k=� is
independent of k, i.e., the detuning is the same for all fre-
quencies. In this case Eq. �29� still applies, but Eq. �30�
should be modified to become

� = S�− �� = �
−�

�

s�t�e−i�tdt . �35�

Introducing the following change of variable in Eq. �27�,

zj = � j − � j , �36�

yields

C̃N =
i

�− 2��N−1 � S�− �
q=1

N−1

zq − �N�
j=1

N−1
S�zj�dzj

�
p=1

j

zp + � j

,

�37�
where �k is the cumulant detuning,

�k = �
p=1

k

�p, k = 1, . . . ,N . �38�

Inserting delta functions in Eq. �37� produces

C̃N =
i

�− 2��N−1 
k=1

N−1 ��
−�

�

dzk�
−�

�

dzk��
�S�− �

q=1

N−1

zq − �N�
j=1

N−1
S�zj���zj − zj��

zj� + �
p=1

j−1

zp + � j

=
�− 1�N−1i

�2��2�N−1� 
k=1

N−1 ��
−�

�

dzk�
−�

�

dzk��
−�

�

d�k�
�S�− �

q=1

N−1

zq − �N�
j=1

N−1

S�zj�ei�jzj
e−i�jzj�

zj� + �
p=1

j−1

zp + � j

.

�39�

From Eq. �18� it follows that there is a small positive imagi-
nary part in each variable zk� in Eq. �36�, so the integration
over zk�, k=1, . . . ,N−1 yields

C̃N =
iN

�2��N−1 
k=1

N−1 ��
0

�

d�k�
−�

�

dzk�
�G�− �

q=1

N−1

zq − �N�
j=1

N−1

G�zj�ei�j��p=1
j zp+�j�. �40�

The same result can also be obtained directly from Eq. �17�
by changing from t1 , . . . , tN−1 to �1= t1, �2= t2− t1 , . . ., �N= tN
− tN−1 �or tk=�1+ ¯ +�k, k=1, . . . ,N� and from � j to zj given
by Eq. �36�. As illustrations of the general formulation
above, Gaussian and rectangular pulses are considered in the
following treatment.

A. Gaussian pulse

If the pulse envelope of the control field is Gaussian,

s�t� = exp�−
�t2

�2 � , �41�

S��� = � exp�−
�2

�2� , �42�

with � being the spectral width of the pulse,

� =
2��

�
, �43�

then substituting Eq. �42� into Eq. �40� leads to

C̃N =
iN�N

�2��N−1 
k=1

N−1 ��
0

�

d�k�
−�

�

dzk�exp�− ��
q=1

N−1

zq +
�N

�
�2

− �
j=1

N−1

zj
2 + �

j=1

N−1

i� j��
p=1

j

zj +
� j

�
��

=
iN�N

�2��N−1 
k=1

N−1 ��
0

�

d�k�
−�

�

dzk�exp�− �
k,j=1

N−1

zkAkjzj + �
j=1

N−1

bjzj + i�
j=1

N−1

� j
� j

�
−

�N
2

�2� , �44�
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where the elements of matrix A and vector b are

Akj = �kj + 1, �45�

bj = i�
p=j

N−1

�p − 2
�N

�
. �46�

Carrying out the Gaussian integrals in Eq. �44� with respect
to zk, k=1, . . . ,N−1 yields

C̃N =
iN�N

�2��N−1��N−1

det A

k=1

N−1 ��
0

�

d�k�
�exp�1

4 �
k,j=1

N−1

bk�A−1�kjbj + i�
j=1

N−1

� j
� j

�
−

�N
2

�2� . �47�

It is easy to verify that

�A−1�kj = �kj −
1

N
, �48�

det A = N . �49�

Performing some algebra produces the perturbative solution
for the Gaussian pulse,

C̃N =
iN�N

2N−1��N−1�/2N1/2

�e−�N
2 /N�2

p=1

N−1 ��
0

�

exp�−
i

N�
�pDp�d�p�

�exp�−
1

4N
PN����� , �50�

where

Dk = k�N − N�k, k = 1, . . . ,N − 1, �51�

PN���� = �
k=1

N−1

k�N − k��k
2 + �

0�k�j�N

2k�N − j��k� j . �52�

When Dk�0 and �→0, the asymptotic behavior of tran-
sition probability �40�,

�CN� � �N−1

exp�−
�N

2

N�2�

k=1

N−1

�Dk�

, �53�

is obtained. The above equation shows that the yield expo-
nentially decays with the sum of the detuning of the indi-
vidual transitions, �N from Eq. �38�. This behavior can be
easily understood since, as pointed out previously, the sum of
the field frequencies should be equal to the sum of the tran-
sition frequencies of the system, which is the energy conser-
vation condition. A simple calculation shows that, for all
��i���, the most probable way of meeting the energy con-

servation constraint leads to �C̃N��exp�−�N
2 /N�2�.

B. Rectangular pulse

In the case that the pulse envelope of the control field is
rectangular,

s�t� = �1, 0 � t � T ,

0, otherwise.
� �54�

S��� =
ei�T − 1

i�
, �55�

the substitution of Eq. �55� into Eq. �37� leads to

C̃N =
i

�− 2��N−1 � IN−1
j=1

N−2
eizjT − 1

izj

dzk

�
p=1

j

zp + � j

, �56�

where IN−1 is an integral with respect to zN−1,

IN−1 =�
exp�− i��

q=1

N−1

zq + �N�T� − 1

− i��
q=1

N−1

zq + �N�
�

eizN−1T − 1

izN−1

dzN−1

�
p=1

N−1

zp + �N−1

=�
exp�− i��

q=1

N−1

zq + �N�T�
− i��

q=1

N−1

zq + �N�
�

− 1

izN−1

dzN−1

�
p=1

N−1

zp + �N−1

. �57�

This equation can be evaluated by the residue theorem �40�.
After checking the three poles in the lower half plane
Im zN−1�0, it can be shown that only the residue of the zero
pole is needed because those of the other two poles do not
contribute after integrating with respect to zN−2, so we have

IN−1 = − 2�i Res�zN−1 = 0�

=
2�i

�
q=1

N−2

zq + �N−1

exp�− i��
q=1

N−2

zq + �N�T�
�
q=1

N−2

zq + �N

. �58�

Integrating with respect to zN−2 ,zN−3 , . . . ,z2, similarly as
above, reduces CN to an integral with respect to only one
variable,
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C̃N =
�− 1�Ni

2�
� e−i�z1+�N�T


q=2

N

�z1 + �q�

eiz1T − 1

iz1

dz1

z1 + �1

=
�− 1�Ni

2�
� e−i�z1+�N�T


q=2

N

�z1 + �q�

− 1

iz1

dz1

z1 + �1
. �59�

This result finally produces a compact form for the perturba-
tive solution with a rectangular pulse:

C̃N =
�− 1�Ni

2�
� e−i�z+�N�T

z
q=1

N

�z + �q�

dz . �60�

If all of the transitions are resonant: �p=0, p=1, . . . ,N, then

C̃N �
�− 1�Ni

2�
� e−izT

zN+1 dz =
iN

N!
TN, �61�

which is consistent with Eq. �29�. If all �q, q=1, . . . ,N, are
different from each other, then from Eq. �60�,

C̃N = �− 1�N�
q=0

N

e−i��N−�q�T 
j=0�j�q�

N

�� j − �q�−1 �62�

with �0=0. In the case where all of the detunings are the
same, we have �q=q�, then

C̃N =
�− 1�N

N!
�−N�e−iT� − 1�N. �63�

This expression agrees with Eq. �29� derived earlier for a
pulse of an arbitrary shape.

An interesting consequence of Eq. �63� is that the transi-
tion probability is an oscillating function of T�,

�C̃N�2 =
22N

�N!�2�−2N sin2N T�

2
. �64�

In particular, for T�=2n�, n=0,1 , . . . , �C̃N�2 becomes zero.
Such an antiresonance is a result of destructive interference,
which eliminates transitions to higher states.

IV. COOPERATION BETWEEN A WEAK FIELD AND
NOISE FOR A MULTISTATE LADDER SYSTEM

From Eq. �26�, it is evident that, in a weak field driven
multilevel ladder system, the transition probability is inde-
pendent of the phases of the individual pulse components,
but is sensitive to their amplitudes and frequencies. This sec-
tion considers the noise-averaged transition probability over
the amplitudes and frequencies of a weak field, and shows
that the population transfer can be enhanced under suitable
conditions.

A. Noise in the amplitudes of the control field

From Eq. �26�, it is easy to determine the dependence of
the control yield on the amplitudes of the field pulses,

O�E�t�� = �CN�2 � �N
2 

l=1

N

Al
2, �65�

where

�N = �C̃N
k=1

N

�k� �66�

is independent of the amplitudes. If each amplitude Al is
contaminated with random uniform noise distributed over
�−�l ,�l�, as in Eq. �4�, then the noise-averaged outcome of
the control process is

Ō�E�t�,�� � = �N
2 

l=1

N

	Al
2� , �67�

where 	Al
2� is the mean square amplitude of the lth radiation

component,

	Al
2� =� �Al

0 + x̃l�2�l
�A��x̃l�dx̃l = Al

02
+ 	x̃l

2� . �68�

It is instructive to compare this expression with the outcome
from the control field not having amplitude fluctuations,

O�0��E�t�� = �N
2 

l=1

N

Al
02

. �69�

The ratio

Ō/O�0� = 
l=1

N 	Al
2�

Al
02 �70�

becomes appreciable for a large number of states N, even

when the ratio 	Al
2� /Al

02
is close to 1.0 for each individual

transition. For example, if 	Al
2� /Al

02
=1+� with ��1, then

Ō /O�0��1+N�.

To find the optimal field amplitude, we set 	Al
2�=Al

02

+ 	x̃l
2� and minimize the functional

JN�An
�0�� = ��N

2 
l=1

N

�Al
02

+ 	x̃l
2�� − OT�2

+ ��
l=1

N

Al
02

�71�

over Al
0. Assuming that 
	x̃l

2�� are independent of 
Al
0�, the

optimal value of Al
0 satisfies

Al
02

+ 	x̃l
2� = constant, �72�

independent of l. An important consequence is that, for given

	x̃l

2��, the contribution from noise can beneficially serve to
decrease the required amplitude Al

0 of the optimal control
field leading to a given yield, provided that the yield is small.
Cooperation with noise can be extended to modest control
yields beyond the perturbation approximation, as shown in
numerical simulations �11�. Although the presence of strong
noise can considerably reduce the coherent nature of the dy-
namics, modest target yields can still be reached, including
in a very efficient manner. However, when attempting to
achieve high control yields, a different mechanism is gener-
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ally operative involving competition between the determin-
istic portion of the control field and the noise �11�.

B. Noise in the control frequency spectrum

Here we consider a weak control field with a Gaussian
envelope �Eq. �41��� and frequency noise having Gaussian
distribution

fk��k� =
1

dk���
exp�− ��k − �̄k

dk�
�2� , �73�

where the random variables are the noise contaminated de-
tunings

�k = �̄k + z̃k = �k
0 + z̃k − �̄k �74�

with 
z̃k� being uncertainties in the laser frequencies 
�k� in
Eq. �6�. An additional source of the detuning noise can be
from the transition frequencies 
�̄k� due to the Doppler or
phonon-induced shift in the control medium. Recalling Eq.
�50� yields the noise-averaged transition probability,

	�CN�2� = 
q=1

N ��
−�

�

fq��q�d�q��CN�2

=
�2N

�4��N−1N

p=1

N−1 ��
0

�

d�p�
0

�

d�p��LN���,����

�exp�−
1

4N
�PN���� + PN������� . �75�

Here, LN is

LN���,���� = 
q=1

N ��
−�

�

fq��q�d�q�
�exp�−

2

N�2�N
2 −

i

N�
�
k=1

N−1

��k − �k��Dk�
=

1

�N�N/2
k=1

N

dk


q=1

N ��
−�

�

d�q�

�exp�−
1

�2 �
k,j=1

N

�kBkj� j + �
k=1

N

�kck − �
k=1

N
�̄k

2

dk
2�2�

�76�

with the elements of the matrix B and the vector c being

Bkj =
1

dk
2�kj +

2

N
, �77�

ck =
2�̄k

�2dk
2 −

i

�
�V̄ − Vk� , �78�

and the parameters Vk and V� specified by

Vk = �
j=k

N−1

�� j − � j��, k = 0, . . . ,N − 1; VN = 0, �79�

V̄ =
1

N
�
k=1

N

Vk. �80�

Integrating Eq. �76� with respect to �q yields

LN���,���� =
1


k=1

N

dk

� 1

det B
exp��2

4 �
k,j=1

N

ck�B−1�kjcj

− �
k=1

N
�̄k

2

dk
2�2� , �81�

with the elements of B−1 �inverse matrix of B� and the deter-
minant of B being

�B−1�kj = dk
2��kj −

2dj
2

N�1 + 2d̄2�
� , �82�

det B =
1 + 2d̄2


k=1

N

dk
2

, d̄2 =
1

N
�
k=1

N

dk
2. �83�

The expression for the scaled transition probability is sim-
plified in two limiting cases. The first case is that of nearly

resonant driving, where ��̄k���dk. In this case ck=−i�−1

�V̄−Vk� and the term proportional to �̄k
2 in Eq. �81�, can be

neglected. However, it is easy to see that LN ��� ,�����1 be-
cause of the noise in the frequency spectrum, and LN rapidly
decreases with the increasing noise intensity parameters dk.
Therefore, the transition probabilities 	�CN�2� with noise are
smaller than without noise when the control field frequencies
are reliably tuned to be resonant with the system transition
frequencies.

The role of the noise is reversed in the case of compara-

tively strong detuning, ��̄k���dk. In this case we have ck

�2�̄k /�2dk
2, then Eqs. �75� and �81� produce

	�CN�2� � exp�−
4�̄N

2

N�2�1 + 2d̄2�
� �84�

with �̄N=�k=1
N �̄k. In this region, it follows from Eq. �84� that

increasing the noise intensity parameter d̄2 leads to an expo-
nentially strong increase in the transition probability. This
finding shows how noise can play a constructive role in a
controlled quantum system. This result may be understood
from the fact that for strong detuning, spectral noise can lead
to some pulses actually being closer to resonance. For these
pulses the transition probability is exponentially higher than
for nonresonant pulses. As a result, the noise averaged tran-
sition probability is also strongly increased.

Noise-induced enhancement of the transition probability
occurs also for rectangular laser pulses. This is most easy to
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see when the detunings of all the frequency components in
the pulse are the same and the scaled transition probability is
given by Eq. �64�. As noted earlier, the transition amplitude
into the target state is completely eliminated if the detuning
satisfies �=2n� /T. Pulse-to-pulse variation of �, or pulse-to-
pulse variation of the duration T will suppress the antireso-
nance and lead to a nonzero transition probability even when

�C̃N�2=0 for the average values �= �̄, T= T̄. If the width of the

distribution over � is small compared to �̄, but largely

exceeds � /T, then from Eq. �64� we have 	�C̃N�2�
���2N�! / �N!�4��̄−2N.

V. CONCLUSIONS

This paper explores the dynamics of population transfer in
a multistate ladder quantum system driven by noisy control
pulses, with particular emphasis on identifying circum-
stances when cooperation between the field and noise may
occur. The noise enters as run-to-run uncertainties in the con-
trol amplitudes, phases and frequencies with the observation
being an ensemble average over many runs as is commonly
done in the laboratory. If the rotating wave approximation is
valid, the quantum dynamics in the weak field limit is greatly
simplified and independent of the control phases. Further-

more, if the objective yield is modest, the control field can
cooperate with amplitude noise to reduce the applied fluence.
Frequency noise in the control field is shown to be capable of
enhancing the transition probability when the detuning is
large. In the laboratory implementation of closed-loop con-
trol, the optimal field will be deduced to extract as much
beneficial value as possible from the presence of noise. This
paper presents a theoretical foundation showing that ample
opportunity exists to take advantage of noise.

The above conclusions are fully consistent with recent
numerical simulations �11�. Although the analytical treatment
in this paper only applies to ladder-configuration systems,
the basic conclusions on the prospects for cooperating with
noise should be applicable for optimal control of many mul-
tistate systems. This point is confirmed with a nonladder sys-
tem �11� where a high degree of cooperation was found be-
tween the noise and the deterministic part of the field.
Regardless of whether it is dynamically beneficial to fight or
cooperate with noise, the optimal field will appropriately em-
phasize the dynamical pathways that correspondingly either
work with or circumvent the influence of the noise �11�.
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