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The peaks in the conductivity of a two-dimensional electron crystal on the surface of helium, arising due to
the excitation of capillary waves with wave vectors close to the reciprocal lattice vectors G, are examined. It is
shown that at finite temperatures the conductivity in the wings of the peaks decreases as a function of the
frequency detuning according to an unusual power law. The exponent depends strongly on the parameters of
the electron system and on the order of the resonance (i.e., on the value of G/G ;). This power law is a result
of large long-wavelength fluctuations, which are characteristic for two-dimensional systems. In the case

examined, the wings of the absorption peaks are formed due to processes in which several long-wavelength

phonons of the electron crystal are created and annihilated.

Two-~dimensional (2D) electrons on the surface of
liquid helium at very low temperatures T and high den~
sities N become ordered and form a Wigner crystal. As
a result of the crystallization, the nature of the interac-
tion of the electronic excitations of the system with ex-
citations of the helium surface (ripplons) changes: The
electronic excitations with wave vectors k are compara-
tively strongly coupled with the ripplons, whose wave vec—
tors q differ from k by a reciprocal lattice vector of the
Wigner crystal G. As a result, resonance peaks appear
in the spectrum of absorption of long-wavelength (k <
Gmin) electromagnetic radiation by two-dimensional elec—
trons at frequencies corresponding to ripplons (q =G +k ~
G) (Ref. 1). The observation of such peaks? gave direct
experimental confirmation of Wigner crystallization.

In the interpretation of the experimental results? in
Refs. 1, 3, and 4, the main attention was directed toward
determining the frequencies of electron—ripplon reso-
nances. Inthis paper we examine the form of the wings of
the resonance absorption peaks., The unusual asymptotic
behavior of the absorption on the wings is related to the
specific nature of ordering in 2D systems. In such sys-
tems, as is well known (see, e.g., Ref. 5), at finite tem-
peratures the density-density correlation function in the
ordered phase decreases according to a power law. For
this reason, the law of conservation of the quasimomen-
tum is not strictly satisfied, so that phonoens in the Wigner
crystal with momentum hk interact directly noet with in-
dividual ripplons, but with entire groups of ripplons with
momenta 1q close to ik + G). The magnitude of the in-
teraction is determined by the Fourier transformation of
the density—density correlation function of the Wigner
crystal. This function in the static limit decreases ac=-
cording to a power law with increasing |q —k — G|, and
the exponent depends on the temperature and on G..

Below, we show that the absorption peaks corre-
sponding to electron—ripplon resonances also have a
power-law asymptotic behavior in the wings (as a func-
tion of frequency). However, in this case, it turns out
that due to the slowness of the ripplons the form of the
wihgs is determined by the form of the density—density
correlation function of the Wigner crystal in the region
of comparatively long times; i.e., processes in which
phonons of the Wigher crystal are created and annihilated
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make a substantial contribution to the absorption spec-
trum. Below, the calculation is carried out under the as~
sumption that the electron—ripplon interaction is very
weak, so that the width of the resonance peaks and their
displacement relative to the frequencies of the ripplons
with wave vectors q =G are small compared to these fre-
quencies.

1. THE GENERAL EXPRESSION FOR THE
CONDUCTIVITY OF A WIGNER CRYSTAL

The Hamijltonian of the electron—ripplon system in the
case when the electrons form a Wigner crystal has the
form

H =%+ K, 1)

Ho= X owadiay + X webgby (B==1);
i q

) 2
K, =Y VepoCar 0q = ; exp (iqr,), Cq = bq+ blq. @
q
Here ay; and bg are the annihilation operators of a phonon
in the Wigner crystal on branch 3 with momentum k and
of a ripplon with momentum q; wKj and wq are the fre-
quencies of the corresponding excitations. The interaction
of the phonons with ripplons arises due to the electron—
ripplon interaction, which is described by the Hamiltonian
X, (2). The coordinates of the electrons r, in (2) are
expressed in terms of the phonon operators in the standard
manner:

tr=R.+ ; ewixi; xp (( kRy), i = Awjary + Aoty (3)
i

R, is the position of a site in the lattice, and e =e_kj
is the polarization vector of the Wigner crystal phonon.
It is evident from (2) and (3) that the phonon—ripplon in-
teraction is significantly nonlinear with respect to the
phonon operators, which leads to specific features in the
relaxation or excitations in the Wigner crystal as com-
pared to relaxation of excitations of ordinary crystals
(see Refs. 6 and 7).

To analyze the absorption of the electromagnetic field
it is convenient to express the diagonal component of the
conductivity of 2D electrons Oy (ks W) (» =X, y) in terms
of the two-time phonon Green's function of the Wigner
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crystal (see Ref. 6):

Re . (k, ©) = —0e*N>S ; (wex)? Im Qy; (@ + i0),

X—ki))as

Qxj (©) = (Xkji
Ry Ry = —i| dlet (X, (), X, O 0
o

Here e is the electron charge; N is the density; S is the
area of the system; and, ® is a unit vector in the corre-
sponding direction.

In the zeroth order approximation with respect to the
interaction the function @;(w) has a pole (and the conduc-
tivity has a 6 -like peak) at the characteristic phonon fre-
quency Wi When the interaction is taken into account,
the peak acquires a finite width Ty j (see Ref. 6). A finite
conductivity also appears far from Wkjs which varies
smoothly with frequency. Near the frequencies wg of
Bragg (4 =Q) ripplons peaks arising due to resonance ex-
citation of ripplons (electron—ripplon resonances) are
superposed on the smooth frequency dependence of o (k, w)
(k < Gnmin)- !

To anakyze the absorption peaks corresponding to the
electron—ripplon resonances and situated far from the
characteristic phonon frequencies (| w — Wi | > Tys), it
is convenient to put the function ij (w) in (4; into the form

0 [ A P (20| Ay Pl
Quto) = " (LT s+ Bwwar ato]

where

Fri(@)= S7Y (qew;) (@ e—x)) ((Ho (— k) Ha(¥))o,
aq
Ho(k) = X Vocqexp(iar, + (kR.);  Hq = Hq(0) = 3 Vacqexp (iar,)

[expressions (5) and (6) were obtained in Ref. 7 using the
Fourier transformation (with respect to time) of the equa-
tions of motion for xy., which follow from (1)-~(3)]. Taking
into account the fact ti\at in the absence of a magnetic field
]Akj[2 = (2mNSozkj)"1, from (4) and (5) we obtain

Re o, (k, 0) = z—e: z (e )2 (0* — op) 2 Im Fij (@ + i0), 0oy
! (7

The function Fkj(0) with k < Gy, as will be shown in
the next section, has peaks at frequencies ~wg in the
lowest nonvanishing order of perturbation theory, which
explains the convenience of expression (7). We note that
in obtaining (7) decoupling was not used, and this relation
is exact.

2. ELECTRON—-RIPPLON RESONANCES

Since the resonance absorption at the frequencies of
the Bragg ripplons is due to the electron—ripplon inter-
action, the integrated intensity of the corresponding peaks
varies quadratically as a function of the interaction pa-
rameters. This is evident directly from (5) and (7). As
already noted, we assume that the interaction is very
weak, so that the width of the peaks and their displacement
relative to wg are very small compared to wg (in the ex-
periment of Ref, 2 this condition is obviously well sat-
isfied for the high frequency G = V3Gpin peaks). In this
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case, for purposes of revealing the electron—ripplon reso-
nances, it is sufficient to decouple expression (6) for .
Fxi(®) inthe zerothorder approximation with respectto ¥,.

The result of the decoupling, with (1), (3), and (6)
taken info account, has the form

F (©) = —2N ¥ (qew)* | Vo 2 | dterot Im [2q (K, ) @ (0g, £)]. ®
q 0

Here gq(k, t) is the density—density correlation function of

the Wigner crystal:

Calk, )= Y expli(g — k)R, + Wo(R,, )],
Wo(Ry, t)=— ,\;} (qex))* | Aw; [* {(7i; + 1) [1 — exp (— iow;t + ikR,)]

-+ ﬁk,‘ [1— exp (i(uk,'t —_ lkRn)]},
M = i (ok), f(w) = [exp(o/T)—1]"% (9)

¢lwg, t) is the Green's function of the ripplon:

@ (o, 1) = [f(o0) + 1]exp(— iol) 4+ fi(o)exp (inf) (10)

fin deriving (8) it was assumed that the system is centro-
symmetric.]

The function () (0) was actually analyzed in the non-
resonant frequency range in Ref. 6 in an investigation of
the polarization operator entering into the phonon Green's
function of the Wigher crystal. It was shown that both at
temperatures exceeding the Debye temperature of the
Wigner crystal and at lower temperatures, but at high fre-
quencies w,

® 2> Omin (‘Dmin = OJGmm)

the term with Ry, = 0 and gq(k, t) sin%Ie-site" scatter-
ing) makes the main contribution to §i; (®), while the
sum over ¢ encompasses a large region greatly exceeding
N!/Z (Gmin ~ N1/2).

In the resonance region, where w =~ wg, terms with
large Ry, in (9) make the main confribution to (8), while
the values of q lie in a narrow region about the vectors G
(for k « NV?), In particular, at T = 0 the function
exp[Wq(Rn, t)] can be expanded in a series with respect
to those terms in Wq Ry t) that explicitly depend on time
and R,,. The zeroth order term in this expansion gives

1)

i

Zo.a (K, t) = NS exp(—ng*) gk, 0, B ="/, )kl F A ]

Substituting (11) into (8), taking into account (10), we ob-
tain
Im F{) (0 + i0) = ‘é Dy; (G) exp (— nG?) & (0 — @641q),
Dy (G) = niN*S (Gex)* | Vo ?

(12)

(strictly speaking, the substitution G — G +k should be
made in the expression for ij and in the exponent, but
there and below corrections of order ~k/G are ignored).

It is evident from (7) and (12) that in the lowest order
approximation with respect to Vg at T = 0 the peaks in the
conductivity of the Wigner crystal are situated at ripplon
frequencies w g +k| ® “G and are 6 -like. We note that
in this approximation the same result is obtained if the
approach in Refs. 1'and 4 is used. The intensity of the
peaks, as indicated above from general considerations,
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behaves quadratically with respect to the matrix elements
"Vq of the electron—ripplon interaction.

The presence of the time-dependent terms in Wq(Rn,t)
+leads to the appearance in ;<) (@) of a background
varying smoothly with frequency, corresponding to ab-
sorption of light with the creation of a ripplon and several
phonons in the Wigner crystal. At T =0 this background
is small in the region w ~ Wmins Since the Debye fre-
quency of the Wigner crystal

Op ~ w, = (2ne®N3/2/m)u/?

usually greatly exceeds Wppnin» 80 that the density of states
of the phonons with frequencies €Wy is small. On the
other hand, at high temperatures (T > @), the low-fre-
quency phonon conductivity of the Wigner crystal turns out
to be comparatively large: It is close to the conductivity
of an ideal electron gas interacting with the ripplons (com-
pare Ref, 6).

3. FORM OF THE WINGS OF CONDUCTIVITY PEAKS
AT FINITE TEMPERATURES

For T = 0, the function exp[Wq(Ry, t)] cannot be ex-
panded in a series, because taken separately the terms in
Wq®Rp» t) which depend and do not depend on Ry, t diverge
(as in the mean-square displacement of the electron at
T = 0). At the same time the function Wq(R n» t), neglect-
ing corrections related to quantum fluctuations, is de-
scribed by the expression

9:T
4umeiN
(APR: + Cit®)V2>> N=172, o715 A = M(et/R,) ~ 1,

A=, for ¢t <R,

Wq(R,, t) = In (AR}, +- cit?)2a5 "),

(13)

where ¢; is the velocity of transverse sound in the Wigner
crystal: ¢ ~ (€2N!/2/m)!/?; the parameter a, is of the
order of N=!/2for T > @p and of the order of c;/T for

T < @p. In obtaining (13), only the most "dangerous"
contribution of long-wavelength (wyy = ctk < @p) trans-
verse (j =t) acoustic phonons was included; the longitudinal
(i =1) phonons are much stiffer than the transverse pho-
nons (in a thick helium film wyycc k172 down to very small
k), and their contribution is dropped.

The calculation of F1i7 (o) taking into account (8), (9),
and (13) reduces to summation with respect to R, q and
integration over t. As a result of the smooth variation of
WqCRn, t) as a function of R, the function gq(k, t) has
singularities at ¢ —k =G. At the same time, | Vq|* and
wq in (8), just as the function Wq®Rp» t), depend smoothly
on q. For this reason, in analyzing the peak in .} (o)
near the frequency of Bragg ripplons with some G =Gy

O = Oy = 0g,.

In these functions we can make the replacement q — Gy

(k < Gy), while the summation over q can be replaced by
integration over Q =q — G ; (where Q < Gmin) and sum-
mation over the vectors G, of equal length., This approxi-
mation is justified if the main contribution to £\ ()
indeed comes from the region Q < Gmin.
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The actual values of Q and Ry ~ Q™! are determined,
as is evident from (13), by the characteristic time t, over
which the structure of the absorption peak forms (i.e.,
the function Im %1} () is generated). The wings of the
peak, where |w —w,| greatly exceeds the width and dis-
placement of the peak relative to wgs form over a time
t ~]w=—wyl™l. For this reason

Ql~R,~c]o—ay|™, (13a)

Since we are examining resonant absorption, the quaatity
|w — wy| is very small, and we assume that the condition

.|t —12
Cilo— @y |1 > N1, (14)

is satisfied. From here it follows that
Q_l -~ Rn > N—IZ2,

This inequality not only justifies the assumption made
above concerning the smallness of the actual values of
Q/ Gmin, but also permits transforming from summation
over Ry, to integration. The result of integration with
respect to R, and Q in (8) and (9) has the form

Im .?f(oj) (0) = %] 86, 6,Dx; (G) Y6 (0, @ (G)), © =~ 0, = wg,, (15)

where
1 {a af _ — 1.
Pg (o, a)=—(——) Sdtt % cos [(0 — wg) ] = Pg (@) | © — wg =1+,
0

1 Ct gor (16)

P () = nl T (1 — o) sin (m0e/2) (ap/c))*, o= a{G) = TM%N—

[see Ref. 8; I'(x) is the gamma function)].

It is easily verified that the substitution of G, for q in
D (@) and in WqCRn, t) in making the transformation to (15)
is valid if the corrections of order

e o — @y || @ 1n Di; (Go)/9G, |;
@ (Gy) Go'ei™" | @ — @] In (@5 "¢, @ — 0| ™).

are small. Due to the power-law character of the depen-
dence of Dy; on G this reduces to the inequality ctGy °
| @ = wy|=1 > 1, which follows from (14).

Another condition for the applicability of (15) and (16)
is related to the possibility of making the substitution
go(w? »t) — ¢lwg, t) in (8). This is possible if | Qdwg *
dG~1|t « 1, whence it follows, taking into account (13a)
and (16), that

| doe/dG| L ¢y amn

This inequality in the case of 2D electrons on the surface
of helium holds for several lowest G with a reserve of two
to three orders of magnitude.

4. DISCUSSION

According to (7), (15), and (16), on the wings of peaks
corresponding to electron—ripplon resonances the ab-
sorption decreases with frequency according to the power
law |w=wg|™ *+a(G), The factor a(G) in the exponent
is propoxtional to the temperature, and the square of the
reciprocal lattice vector G, and is inversely proportional
to the square of the velocity of transverse sound Ct.

In contrast to the present work, in Ref. 3 a difference
absorption spectrum on the wings was obtained, which in
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the limit of weak coupling has a Lorentzian asymptotic
form Im % (©) © (0 —we)™. This is related to the use
in Ref. 3 of the assumption that translational symmetry
exists in the 2D crystal at finite temperatures., On the
other hand, formulas (15) and (16) were obtained as a re-
sult of a systematic inclusion of long-wavelength fluctua-
tions of the Wigher crystal, which, in particular, lead to
suppression of translational symmetry.’ It is significant
that the electron—ripplon resonances themselves, in this
case, do not vanish.? As is evident from (13a), the spec-
trum on the wings is formed due to vibrations of the Wigner
crystal with wavelengths ~cy| w — wg |™ (it is this quantity
that should be compared to the dimensions of the system).

It is evident from formulas (8), (9), (13), and (16) that
the wings of the resonance peaks are essentially formed
by two mechanismg: nonconservation of quasimomentum
@ = k +@) and combined absorption processes, in which
together with the creation of a resonant ripplon many
(~a (@) In (@ 4] o —oc|™) phonons of the Wigner crystal
are created and annihilated. Combined processes arise
as a result of the fact that the resonance absorption spec-
trum is determined by the dynamic [gq(k, t)] and not the
static [zq(k, 0)] density— density correlation functionof the
Wigner crystal [see (8) and (9)]. If the combined pro-
cesses could be neglected and we could set t =0 in (13),
then the wing of the peak in Im #{ (») would form only
as a result of the nonconservatmn of quasimomentum and
the frequency dispersion of ripplons. It is not difficult to
show that the expressions (15) and (16) in this case would
remain valid, and only the form of the coefficient V¢ (@)
would change:

y = a/2) a

o (@)= o (@), o) = v LGS af | dagidGl—e. () o

The formulas (15), (16), and (18) describe the wings of
the absorption peaks, if the surface vibrations of the sub-
strate with which the two-dimensional electrons interact,
have a high group velocity |dws/dG| > ¢;. The energy of
the electromagnetic field in this case is entirely trans-
ferred to the surface wave. The power-law decrease of
absorption at the frequency w — wpq reflects the power-~
law decrease with respect to Q = | ~k —G| of the Fourier
transform of the static density—density correlation func-
tion of the Wigner crystal. Corrections for processes
with creation and annihilation of phonons are small with
respect to the parameter c;|dws/dG|™t. For 2D electrons
on the surface of helium, as already indicated, this pa-
rameter is very large, the inequality (17) holds, and the
wing is formed due to combined processes in which pho-
nons of the Wigher crystal participate.
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Experimentally, the sharp power-law frequency de-
pendence of the absorption near the resonance peaks must”
be manifested quite distinctly; at the same time, we note
that the decrease ~ |o — o| 1@ is smoother than on the
wing of the Lorentzian peak (where absorption drops off ag
the inverse square of the frequency detuning). Since
@(G) « G?, as G increases thewings of the peaks (and the
peaks themselves) must be smoothed. The smearing of
the peaks of electron—ripplon resonances with increasing
G was observed in Ref, 2. From the results of the pres-
ent work it is clear that the analysis of the wings of peaks
could make it possible to determine directly the important
characteristic of the 2D crystal: the velocity of transverse
sound ct.

NOTATION

Here # is the Hamiltonian; r), is the position vector
of the n-th electron; W is the frequency of the phonon
in the electron crystal; ekJ is the polarization vector of
the phonon; wq is the ripplon frequency; Vg is the matrix
element of the electron—ripplon coupling; ok, w) is
the electronic conductivity; N is the electron density;
Qk (w) is the phonon Green's function; #;(®) is the
aux111ary Green's function describing coupled phonon-—
ripplon resonances; tq (k, t) is the Fourier transform of
the time-dependent electron-density correlation function;
<p(wq, t) is the ripplon Green's function; G is the recipro-
cal lattice vector of the Wigner crystal; and, ¢ is the ve-
locity of transverse sound.

D1n Refs. 1 and 4 the broadening of the resonance peaks was not taken into
account, and only their position was examined. However, if the imaginary
part of the polarization operator for phonons of the Wigner crystal found in
Ref, 4 is taken into account, then calculations analogous to those per-
formed in the present work yield the nonstandard asymptotic behavior (15)
and (16).
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