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The validity of the theory of the linear response (the satisfaction of the standard
spectral relations ) during a stochastic resonance is demonstrated. A stochastic
resonance in relatively strong fields is studied. The reason for the appearance of a
stochastic resonance and the region of parameter values in which it is seen are
pointed out.

A fundamental new phenomenon in bistable and multistable systems is a stochas-
tic resonance: an increase and a subsequent decay of the signal-to-noise ratio R with
increasing level of the external noise. The signal-to-noise ratio here is the ratio of the
peak height on the spectral density of the fluctuations, Q(®), at the frequency of the
external field, Q, to the value of the spectral density of the fluctuations in the absence
of a field, 0® () (there are also other, essentially equivalent, definitions of a sto-
chastic resonance; see Refs. 1 and 2 and the bibliography there). Stochastic resonances
have been observed in ring lasers' and in numerical and analog simulations of various
bistable systems.'~* In studies of the stochastic resonance, its nonlinear nature is usual-
ly stressed.

In the present letter we show that in a weak periodic field a stochastic resonance
can be described completely by the theory of the linear response. It thus becomes
simple to see the reason for the occurrence of a stochastic resonance and to determine
how R depends on the parameters. For definiteness, an analysis is carried out for a
Brownian particle in a two-well potential U(g) (interest in this model has revived
because of, in particular, research on Josephson-junction systems*):

G+2Tg+ U'lq)=AcosQu +f(t), (flt)fit'))=4aTT8(t — ). ()

As a result of forced oscillations, which are determined at a small field amplitude 4 by
the linear susceptibility y (1), i.e., {(g(#)) =4 Re[y(Q)exp( — iQt)] + const, a &-
function peak arises at the field frequency € on the spectra fluctuation density of the
system,

Q(w)=lim (dar Y| [ deeltq(e)?. )
T—> o0 -7

The ratio of its integral intensity (the area under it) to 0 (Q), i.e., to the value of
the spectral fluctuation density at 4 =0, is evidently
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R= %Azl X(F/0(Q) )

[Q(w) in (2) is equal to the Fourier transform of the correlation function
(g(t+1t,)q(t,)), averaged over t; it corresponds to the spectral density of fluctu-
ations which is ordinarily measured experimentally ]. For a system which is at thermo-
dynamic equilibrium at 4 = 0 [or at a quasiequilibrium if the noise f (¢) is of a non-
thermal nature], y(w) can be expressed in terms of Q' (w) in the standard way:

2 : _ W
Rex(w)= = gdle“’(wl)wf(w%—wﬁ) L, Imqw)= —T—-Q‘°’(w)- (4)

The quantitative agreement between the values of R measured® through an analog
simulation of system (1), on the one hand, and the values of R calculated from Egs.
(3) and (4) with the help of the spectral density of fluctuations Q' (w) measured for
the same system at 4 = 0, on the other, is demonstrated by Fig. 1. These results show
that the fluctuation-dissipation theorem and the dispersion relations hold unger condi-

tions corresponding to a stochastic resonance. | due o
f e

The appearance of a stochastic resonanc‘e\swith/ﬁ)eriodic modulation® of the
probabilities for fluctuational interwell transitions W;; and of the populations of the
potential wells, w;, (i = 1,2), by an alternating field (cf. Ref. 1) [sic]. In the absence
of a field, fluctuational transitions at T<AU,, (AU, is the depth of well /) lead to a

narrow peak Q ?(w) in Q'” (@) (Ref. 7):

1
Q) (w)= ~Wiwa(@1 = @) W/ + ), W=Wiy + Wy (5)
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FIG. 1. Values of R = 6.51x 10 “R for the potential U(g) = — i¢” + 1g% @ = 0.0695, 4 = 0.1, T' = 0.125;
AU = 1/4. [1—Direct measurements; -+ —calculated from measured values of O'” (w).
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(g, are equilibrium positions). If only the term in (5) is retained in 0 (w), it is
clear from (3) and (4) that we have

1
R= Z“AZ(Ql ~ g2 wiw, W/T? xexp(—4 max/T) AU, —max(AUl,AUz).

(6)

In other words, the signal-to-noise ratio R increases exponentially with increasing T,
both for equal well depths'™ and for different well depths.

The range of applicability of (6) and of the existence of a stochastic resonance is
found from the condition that Q@ (w) is close to Q' ,,, i.e., the condition that the
parts of Q© (w) due to vibrations with respect to the equilibrium positions,
Q () =2/7TTw, [ (0* — w})? + 4T%w?] ~', where o, = TU"(g)]1'"*(T<AU;)
are small. Since W; cexp( — AU /T) €1, a stochastic resonance is clearly manifested
only at very low frequencies Q<m,,2,w%,2/ I". In systems with a slight damping,
I'<w,, the increment §Q ¥ =~ (4% + »*) ~'1/,,w, [ TU"(g,)w; *]* becomes im-
portant7 in the region w S 2I", even at comparatively small values of 7. This circum-
stance seriously limits the interval of ) and T values in which a stochastic resonance is
observed, as was verified in the present experiments. It is clear from this discussion
that for a given € and for very small values of T, under the condition W<, the ratio
R decreases with T (as 1/T at ' R @, , ). At large 7, an increase in R then occurs, as
was observed in Ref. 1 (cf. Fig. 1).

At low values of 7, the response of a bistable system to a low-frequency field
(Q<T, »?,/T) is very nonlinear even at small values of 4, under the conditions
AU,,>A4|q,, —g,|>T [g, is the position of a local maximum of U(g)], since the
modulation of the well populations due to the field is strong. Solving the balance
equatlons for the populations, and incorporating the periodic increment in AU; in the
expression for the transition probability W, < exp( — AU, /T), we can show that the
term associated with the transitions, {(g(#) )m in {(g(¢)) described by a nearly rectan-
gular crest. In the simplest case of a symmetric potential, U(¢q) = U( — ¢), ¢ = —q»
we would have

(A1) ~ 2 3 o1 2nn ) o m(2n+1) N-i

W qn=-°o[ ) Q ¢

- 27T w |Aq,|

g=q tanh\, A= 12 12 t , = (7
1 (lAq,I) ) exp ( T ) (Wi =Wy,).

Under the condition A>1 (note that we have 1 — tanh A <0.1 for 1>1.5), we have
G~q,, and g is essentially independent of T. The peak intensity Q(w) in (2) at the
frequency € is thus also nearly independent of 7. A stochastic resonance arises in the
region Q) < W = 2W,, (in which the condition 4> 1 definitely holds). It results from a
decrease in Q® () with increasing 7, as a result of a spreading of the peak in (5):

“”(Q) cexp(AU,/T) at Q< W. It can be seen from (2) and (7) that the Q(w)
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peaks at the overtones of ) were found to be small in the regime of a strong nonlinear-
ity in Refs. 2 and 3 because of a numerical reason: The intensity of the peak at the
frequency (2k 4+ 1)Q is proportional to (2k + 1) 2.

It follows from the results of the present study and those of Refs. 6 and 7 that a
stochastic resonance should occur both at low frequencies and at frequencies close to
the frequency of the strong field in systems with several stable forced-oscillation re-
gimes in an intense periodic field (optically bistable and multistable systems, electrons
excited by a field at the cyclotron frequency,® etc.).
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