'IL NUOVO CIMENTO VoL. 17D, N. 78 Lugtio-Agosto 1995

Stochastic Resonance in Perspective (*).

M. I. Dyeman(}), D. G. LUCHINSKY (3), R. MANNELLA (), P. V. E. MCCLINTOCK (%)
N. D. SteIN(*) and N. G. STocks (4) (**)

() Department of Physics and Astronomy, Michigan State University
East Lansing, MI 48824-1116, USA
(®) All Russion Research Institute for Metrological Service
Andreevskaye mab. 2, 117965 Moscow, Russia
(®) Dipartimento di Fisica, Universita di Pisa - Piazza Torricelli 2, 56100 Pisa, Italy
(*) School of Physics and Chemistry, Lancaster University - Lancaster LAl 4YB, UK

(ricevuto il 24 Aprile 1995)

Summary. — We outline the historical development of stochastic resonance (SR), a
phenomenon in which the signal and/or the signal-to-noise ratio in a nonlinear
system increase with increasing intensity of noise. We discuss basic theoretical ideas
explaining and describing SR, and we review some revesling experimental data that
place SR within the wider context of statistical physics. We emphasize the close
relationship of SR to some effects that are well known in condensed-matter
physics.

PACS 87.10 — General, theoretical, and mathematical biophysics (including logic of
biosystems, quantum biclogy and relevant aspects of thermodynamics, information
theory, cybernetics and bionics).

PACS 0540 ~ Fluctuation phenomena, random processes, and Brownian motion.
PACS 02.50 - Probability theory, stochastic processes, and statistics.

PACS 01.30.Ce —~ Conference proceedings.

1. - Introduction.

Over the last decade, stochastic resonance (SR), a phenomenon in which not only a
weak periodic signal in a nonlinear system, but often also the signal-to-noise ratio at
first increase with incfeasing noise intensity and then decrease again, has attracted
considerable attention from the scientific community, and about a hundred papers on
the issue have been published. The subject has been discussed at many meetings,
including a topical international conference whose proceedings[1] describe the state
of the art as at mid-1992. Since that time several interesting new results have
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emerged, or have been reported in greater detail, including the observation of SR for
a Brownian particle in a bistable optical trap[2], prediction and observation of SR in
an underdamped noise-driven monostable system [3], observation of SR in a bistable
SQUID loop[4] and in a crayfish mechanoreceptor [5], observation of SR in systems
with coexisting periodic attractors[6,7], theory [8a], and observation in conductance
fluctuations of a mesoscopic wire[8b], of SR for a quantum two-level system with
ohmic dissipation, theory and observation of SR for a monostable system with a cyclic
variable[9], SR in a tunnel diode[10], and noise-enhanced heterodyning in bistable
systems[11], a phenomenon closely related to SR.

Stochastic resonance was first discovered [12-14] in searching for an explanation of
the earth’s ice-age cycle (see subsect. 2°1, below), and then for a few years the analysis
was concentrated on SR in simple symmetric bistable systems. More recently the
context of SR within the larger scientific enterprise has become clear. It is the main
aim of this paper to explain how SR relates to standard statistical physies, to point
out that the phenomenon becomes analytically tractable when treated through the
traditional methods, in particular linear-response theory, and to emphasize the close
relationship of SR to earlier results in condensed-matter physics. The paper is not
intended to be a review in the conventional sense, and neither have we attempted to
cite every paper published on SR. Rather, we wish to propose a perspective in which
SR can be seen to take its place with other phenomena in physics.

Section 2 sets the scene by reviewing major events in the relatively recent history
of the subject, i.e. since the term stochastic resonance has been introduced. In sect. 3,
we go back in time to consider the prehistory of SR, showing how linear-response
theory (LRT) provides the simplest and most natural way of approaching the
phenomenon under most conditions, and discussing some precursors of SR in
condensed-matter physics. There are a number of interesting SR phenomena that lie
outside the range of linear response so that LRT is inapplicable, however. They can
nonetheless still be treated through applieation of standard methods of statistical
physics: some examples are considered in sect. 4. Finally, in sect. 5, we draw
conclusions and look at the future of SR.

2. — A historical overview.

For historical reasons, the term «stochastic resonance» is used for the two distinct
sorts of effects that arise in fluctuating systems driven by a periodic force A cos Qt:
i) fluctuation-mediated periodic modulation of the populations of the coexisting
stable states, in bistable systems[12-14], and ii) the increase, with increasing
fluctuation intensity, of the periodic signal in the system[12], and of the
signal-to-noise ratio R[15,16]—a phenomenon by no means limited to bistable
systems[3,9]. We briefly review the origins of the idea of SR in subsect. 21, and then
in subsect. 2°2 we describe the discovery of SR in a ring laser and how it resulted in
an explosion of interest leading to the observation of SR in different types of
systems.

2’1, Ice-ages prelude. ~ The term «stochastic resonance» was introduced by Benzi
et al.[12] in the context of the theory of ice ages. By the mid-seventies it had been
established that the data on the oxygen isotopic composition (relative amount of the
180.isotope) of planktonic foraminifera, and some other independent geological data
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revealing climatic changes (the ice ages), display periodicity, with a period of
~ 100 000 years[17]. This period is close to that of the variations of the eccentricity of
the earth’s orbit. As a result of the latter the power of solar radiation incident on
Earth (averaged over a period long compared to a year) varies correspondingly, and it
was. hypothesized that this might - be responsible for the global eclimatic
changes[18].
: A simple model that describes such effects is one in which the climate is described
by a single variable, which might be thought of as a global earth temperature 7,, the
equation for T, being the energy balance equation (cf. ref.[13, 14])

(1) G, % = uP[1 - a(T,)] - oT¢ .

Here, P is the average power of the incoming solar radiation, C, is the thermal
capacity of the Earth, a(T") is the average albedo, and ¢ is the average renormalized
Stefan constant that describes cooling of the Earth via infrared emission. The

parameter u characterizes the eccentricity of the Earth’s orbit: it depends on time
periodically with the period 27/Q = 10° years,

) p=ut)=1+Acost.

Equation (1) can be rewritten in the form of an equation of motion of an
overdamped particle with the coordinate T, in a potential &(T,):
dr, A "

e 82 ry-= I dT! C1(—pPl1 - a(T.)] + GTH).
dt - oT,
The stable states of the system correspond to the minima of &(T,) (cf. fig. 1). The
model (1) can be relevant to the problem of the ice ages provided there are two stable
states coexisting for u = 1: one with the temperature T, = T, for which the Northern
Hemisphere is mostly free from ice, and the other with the temperature T, = T, for
which a substantial part of the Northern Hemisphere is covered by ice. In these two

(1a)

Uq)
N

Fig. 1. - The double-well potential U(g). The minima g,, g, correspond to the stable states of a
system with the dynamical variable ¢. In the model of climate (1) g is the effective temperature of
the Earth T,, and U(T,) = &(T,). '
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states the reflectivity of the Earth, i.e. the value of the parameter a in (1), is different,
and therefore they are both self-consistent (when T, = T, > T, there is no ice, less
energy is reflected, and thus the temperature is higher, whereas for T, = T < T
the ice is in position, hence more energy is reflected, and the temperature is lower; we
notice that the difference T — Ty ~ 10K).

In the model (1), switching between the states occurs provided the amplitude 4 of
the modulation of the parameter u is large enough, so that for |4 — 1] < A the system
has only one stable state. In other words, when u as given by (2) varies periodically in
time, the potential @ changes so that each of the two wells disappears in turn, and the
system is then forced to switch to the other one. However, estimates show that the
modulation amplitude A related to the oscillations of the eccentricity of the Earth’s
orbit is not large enough to provide such a deterministic switching.

It was suggested by Nicolis and by Benzi et al[13,14] that the periodic
modulation of the populations of the wells can be mediated by fluctuations. These
fluctuations, which have relatively short correlation times, result from atmospheric
and oceanic circulation, volcanic. eruptions (dust in the atmosphere can change the
albedo noticeably), ete. In the simplest model they can be assumed to be a white noise
driving the global temperature, in which case egs. (1), (1a) take the form

® = - tEO, (5O)=0, (E05E)=2D6¢-t)

- with
a= T., ' Ul(q) = #(¢),

where D is the characteristic noise intensity. It is assumed to be small so that the
fluctuations of ¢ (i.e. of T,) about the stable values ¢, =T, 2 (U'(q,2) =0,
U"(q,2) >0, cf. fig. 1) are small compared to g, — g,. Nevertheless, although the
noise is weak on the average, there can occur, occasionally, outbursts large enough to
cause switchings between the stable states. The probability W,,, of a switching from
the n-th to the m-th state for a white-noise—driven system was found by Kramers[19]
to be of the activation type,

@ W =a"'[U"(g,)|U"(q,)| 1/ exp[ AU, /D], AU, = Ulg,) - U(ga).

Here, AU, is the depth of the n-th well of the potential U(q) measured relative to the
value U(q,) of U(q) at its local maximum q, between the minima of U(q) at ¢; and ¢,
(U'(gy) =0, U"(g,) <0, see fig. 1).

If for 4 = 1 the depths AU, and AU, are nearly equal, as they are assumed to be in
the model of the climate (1), the populations of the stable states vary at random in
time, and their average values w,, w, are of the same order of magnitude:

) w; fwp = Wy, /Wy, « exp[(AU; ~ AU,)/D].

Let us assume now that the potential is slowly modulated in time so that AU, and AU,
oscillate in counterphase, and for a half of the period 27/ 2 one of the potential wells is
relatively deeper, while for the other half of the period it is shallower. Then the
average values of the populations w, , will oscillate in time as well, i.e. there will
occur periodic modulation of the populations for a modulation strength that is much
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less than that needed to change the potential from a double well to a single well. So, a
periodic redistribution of the system over the stable states in response to a periodic
forcing comes about wia noise. It was this interesting idea that was suggested
in[13,14] as a plausible explanation of the periodicity of the ice ages.

We notice that, in the very first paper where the term «stochastic resonance» was
introduced[12], an interesting question was raised: is it ‘possible for the
noise-mediated modulation of the populations to be so strong that the instantaneous
values of the populations, and not just their ensemble-averaged values, depend on
time periodically? If so, what are the necessary conditions? Obviously, such a
periodicity would arise in the absence of noise for sufficiently strong driving but, at
first glance, for a weak periodic driving in the presence of noise the transitions
between the states occur at random, although with a tendency towards periodicity. It
turns out, however, that even for a weak driving, provided that the driving amplitude
exceeds the properly scaled noise intensity and that the modulation frequency is
small enough, the redistribution over the states is nearly periodic in time: see
subsect. 4°1. .

22. SR in a ring laser. — The observation of SR in a bidirectional ring laser,
reported by McNamara, Wiesenfeld, and Roy[16], played an important role in
attracting the attention of the scientific community to SR. A bidirectional ring laser
is bistable: it can generate modes that propagate either clockwise or anticlockwise.
With the aid of a modulator (an intracavity acousto-optical modulator) it was possible
to switch the operation between the modes. The modulator was driven by a
broad-band (quasi-white) noise and by a sinusoidal voltage, and the intensity of the
radiation of the laser in one direction was detected. In the absence of the periodie
modulation this intensity. was fluctuating in time at random. When the sinusoidal
voltage was applied in addition to the noise there occurred a d-shaped spike in the
power spectrum of the intensity at the frequency 2 of the voltage (there were also
spikes at the overtones). Not only was the intensity of this spike found to increase
with increasing intensity of the input noise, but, quite counterintuitively, the ratio R
of the former to the height of the power spectrum at the frequency £ in the absence of
the periodic driving (the signal-to-noise ratio) was found to increase, too, as shown in
fig. 2. Similar behaviour had already been observed by Fauve and Heslot[15) in
analog simulations using a Schmitt trigger as the bistable system.

The theory of SR considered in[16] and also in the paper by McNamara and
Wiesenfeld [20] was based on the balance equation for the average populations of the
coexisting stable states of a noise-driven bistable system:

6) Wy (8) = Wo (B we () — Wip (B) w, (), wy @) +w(t) =1,

The transition probabilities W,,,(t) were evaluated in the adiabatic approximation:
t.e. it was assumed that the frequency Q2 of the sinusoidal driving was small compared
to the reciprocal relaxation time of the system. In this case the probability W,,, (¢) is
determined by the instantaneous value of the potential well depth AU, (A cos Qt)
where AU, (A) is the depth of the n-th potential well in the potential tilted by the
external force, U(q) — Aq. For small enough amplitude of the force only linear terms
need be retained in the potential well depth. Using eq. (4), one can then write W, (t)
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Fig. 2. — Signal-to-noise ratio vs. noise intensity as observed for a ring laser in[16]).

in the form[21]

() Wun(t) = Win explgn cos 2t),  gn=02A/D, gu="- [MBAU" @ J ,
' 9A A=0
where W is the value of the transition probability in the absence of the force.

It is evident from eq. (7) that the parameter which determines the effect of the
driving is proportional to the ratio of the amplitude of the force A to the noise
intensity D. Thus, in agreement with what was said above, for small D we can have
strong effects even for comparatively small A. Moreover, if A is so small that
|91, 2| <1, the probabilities W, (t) can be expanded in g, and eq. (6) can then be
solved analytically. To first order in |g; | the dependence of the populations w; 5 ()
on time is sinusoidal in the stationary regime.

The solution is particularly simple in the important case of a symmetric potential
U(q), for which AU, = AU,, g, = — gs. An important by-product of this solution is an
interesting behaviour of the spectral density of fluctuations Q(w) of the coordinate of
the system q(t):

4 2
® Q@) = Jim (4m)"} | [ atqttyexplivt| -

If the coordinate g(f) is approximated by the sum of its values in the stable states ¢, ,
‘weighted by the populations w, ,(f) (the two-state approximation), then, because of -
the sinusoidal dependence of the populations on time a d-shaped spike occurs in Q(w)
at the frequency w = Q. The ratio of its intensity (area) to the value of the power
spectrum Q'® (L) in the absence of the driving, i.e. the signal-to-noise ratio R, is
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given by the expression [16,20]
©® R= %gzwm , g=gi=—gs, WO=WP+WP=2wQ.

It follows from (7) and (9) that the signal-to-noise ratio increases exponentially
with increasing noise intensity for small enough D,

Rxexp[-AU/D], AU=AU, =AU, (AU>D),

t.e. SR occurs. As mentioned above, this result has stimulated much interest in the
phenomenon of stochastic resonance among physicists, biologists, and engineers.
In addition to ring lasers, optically trapped Brownian particles, and SQUIDs refer-
red to above, SR has been observed in various analog electronic circuits. (see
ref.[6,7,15,22-24]), in a passive.optically bistable system{25] and in a bistable laser
with saturable absorber[26], in a magnetoelastic ribbon[27], in a hybrid device that
included an ESR cavity[28], in single-domain uniaxially anisotropic magnetic par-
ticles[29], and in a magnetoresistive oscillator[30]. It has also been proposed [31, 32]
that SR may be relevant to the transmission of information by sensory neurons. SR
has been shown to occur in models of excitable neurons[33], and the effects on SR of
neuron. coupling in a neural network have been analyzed[34].

3. — Linear-response theory and the prehistory of SR.

3'1. Linear-response theory. — A simple theoretical approach to SR that makes it
possible to place the phenomenon in context within statistical physics and condensed-
matter physies, and to relate it to what had been done in these areas before, is based
on linear-response theory (LRT). According to LRT, if a system with a coordinate ¢ is
driven by a weak force AcosQt (the addition to the Hamiltonian function of the
system is of the form of —Agcosft), there arises a small periodic term in the
ensemble-averaged value of the coordinate, 6(g(?)), oscillating at the same frequency
2 and with amplitude a proportional to that of the force[35):

(10) { 8{q(t)) = acos (2t + ¢) = Re[y(2)Aexp[—ifN]l, A—0,

a=A|xQ)|, = ~ arctg[Im y(2)/Rex(2)].

The quantity x(£2) here is the susceptibility of the system. Equation (10) holds for
dissipative and fluctuating systems that do not display persistent periodic oscillations
in the absence of the force A cos 2t and where the correlations of fluctuations decay in
time. In the more general case of a system performing phase-locked oscillations with a
period 27/w g (this case is of particular interest for systems driven by strong periodic
fields with a frequency wr, e.g., by laser radiation) the linear response is described
by the expression :

(11) 5a) = Re S %@ Aemlithor - 1], A-0.
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In this case a weak force gives rise to vibrations not only at its own frequency, but
also at the combination frequencies |Q * kwy |, and y* (RQ) are the corresponding
susceptibilities.

The function x(22) (or the functions y*(£2)) contains all information on the
response of the system to a weak driving force. It gives both the amplitude of the
signal, a, and its phase lag with respect to the force, ¢ (or partial amplitudes and
phase lags for the vibrations at the combination frequencies). In fact, egs. (10), (11)
still hold even if the force is of a more general nature than just an «additive»
coordinate-independent force described by the extra term —AgcosQt in the
Hamiltonian. In particular, the force can be coordinate dependent (a multiplicative
foree), or it can be the intensity of the noise driving the system (e.g., the temperature,
if the noise is of thermal origin) that is modulated periodically. In any case, if the
amphtude of the modulation is weak enough the response of the system is linear and
is deseribed by (10), (11). The onset of SR in response to the modulation of the noise
intensity (temperature) was investigated in[36], and in[8] SR in response to the
modulation of the temperature was investigated for a mesoscopic wire with a
two-state dissipating defect. »

The periodic terms (10), (11) induced by the force give rise to d-shaped spikes in
the spectral density of fluctuations (SDF) Q(w) (8) at the frequency of the force 2 (and
at the combination frequencies |2 * kwy |). The intensily (i.e. the area) of these
spikes is equal to one fourth of the squared amplitude of the corresponding vibrations,
ie to (1/4)A%|2(2)]?%, or to (1/4) A% |x® (2)|2. The signal-to-noise ratio R is thus
expressed in terms of the susceptibility as

12) R= i—AB KD /Q@) (4—0),

and for periodically oscﬂlatmg systems the mgnal—to—nmse ratio R® at the
combination frequency |Q - kwp |

as) R = iAzlx""(Q)lz/Q“”(lQ ~ kop ) A -0).

Therefore, the evolution of the susceptibility and of Q®(w) with varying noise
intensity D show immediately whether or not SR (understood as an increase of the
signal-to-noise ratio with increasing D in a certain range of D) is to be expected at a
given frequency.

Describing SR in terms of the susceptibility is particularly advantageous for
systems that are in thermal equilibrium or in quasi-equilibrium. In this case
the susceptibility can be expressed immediately in terms of the SDF Q“(£)
in the absence of periodic driving via the fluctuation-dissipation relations[35]

2

14 Imy) =22 Q9w), Reyw)= =P [ 40,00 () —21 |
T T ; w? - w?

where P implies the Cauchy principal value and T is the temperature in energy
units. It follows from (12), (14) that the onset of SR can be predicted from
purely experimental data on the evolution of the SDF of a system with temperature
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without assuming anythmg at all about the equatmns that descnbe its dynamlcs
t.e. for a system treated as a «black box».

The relevance of this approach to SR has been demonstrated unambiguously in
analog experiments on electronic systems simulating Brownian motion in a
bistable[23] and in a monostable[3] potential. In[23] the signal-to-noise ratio for
quasi-thermal fluctuations of a particle with inertia and friction fluctuating in a
symmetric double-well potential was i) measured directly, with a weak periodic force
applied to a system, and ii) caleulated from experimental measurements of the power
spectrum in the absence of periodic forcing, using egs. (12), (14). The dependence of R
on the noise intensity exhibited the reversed-N shape typical of SR in continuous
systems (cf. fig. 5, 8 below), and the results of these two independent experiments
were in a perfect quahtatlve and satisfactory quantitative agreement with each other.

The data obtained in[3] show that, contrary to what had been commonly accepted, a - .-

noise-induced increase of the signal in a system does not require that it be a bistable -
one: the effect can arise in monostable systems as well. The particular mechanism
explored 3] is based on the fact that the frequency of vibrations in a nonlinear system
depends on their amplitude (energy). By varying the temperature of the system (the
noise intensity) one varies the distribution of the system over the energy, and hence
over the frequency. It is possible therefore to «tune» the system, and thus to increase
the response at.an. appropriate frequency. The strong and rather interesting
temperature dependence of the spectral density of the fluctuations Q®(w) of
underdamped systems was reviewed in ref.[37]. Recent results obtained for a special
class of underdamped systems where the dependence of the eigenfrequency of the
vibrations on the amplitude is nonmonotonic are reported in[38]; it is in this case that
the noise-induced increase of the signal-to-noise ratio, not of the signal only, was
observed in an underdamped monostable system[3]..

~ 8'2. Precursors of stoch,astzc resonance in condensed-matter physzcs — To the best
of our knowledge, analytical results for the susceptibility of a fluctuating symmetrical
system with two coexisting stable states, which traditionally has been of primary
interest in the context of SR, were first obtained by Debye[40]. Debye analyzed the
dielectric response of polar molecules in a solid (in ice—a material that is somehow
magic for SR!). He assumed that a molecule ean switch between two equivalent
positions within a unit cell, and that in these positions the dipole moment of the
molecule is pointing in opposite directions. The expression for the transition
probability W,,, he used was equivalent to eq. (7), with g, = — Ed,, /T, where E is
the amplitude of the electric field and d,, is the dipole moment in the n-th position
(n=1,2,;d, = —d,); he linearized W,,, in Ed, /T (however, he did not specify the
form of the transition probabilities- W in the absence of the external field).

-The -well-known - expression for the- susceptlblhty -Debye derived was, in the
present notation, of the form

_ d12 W(O)

ot A S— 0) = (0 (0) 0
T g WO =W+ W =2wg

(15) Ap(82) =

This expression made it possible to explain the experimental data on the dispersion of
the real part of the dielectric constant of ice. It is straightforward to see from the
fluctuation-dissipation relations (14) that the signal-to-noise ratio R that follows from
(12), (15) is precisely of the form (9) (cf.[23,39]).
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In the context of condensed-matter physics, the quantity of special interest is often
the phase shift between the force and the signal, since it is the phase shift that
determines the absorption of the energy from the force, in particular from the
electromagnetic field in the case considered by Debye. In the symmetrical two-state
model with thermally activated transitions. between the states the phase shift ¢ as
given by (10), (15) decreases monotonically with increasing temperature(13,20,40]:

(16) (¢)two~st.hte == arCtg(Q/W(o)) .

The phase shift is one of the characteristics used to describe the elastic properties
of solids: in this case the force is stress, the signal is strain, and the phase lag is
referred to as internal friction{41]. For finite frequency of the stress there arises a
phase shift between the stress and the strain, even though the stress is linear in the
strain (and thus reversible). In some metal alloys internal friction displays a strong
nonmonotonic temperature dependence as shown in fig. 3 taken from[42]. A simple
mechanism of this dependence for body-centered cubic metals with interstitial
impurity atoms was suggested by Snoek[43]. He assumed that an impurity occupies
one of the equivalent interstitial positions in an elementary cell thus forming an
elastic dipole. The dipole can reorient as a result of thermal fluctuations. Uniaxial
stress breaks the symmetry, like an electric field in the case of electric dipoles, and
the response to the stress is given basically by Debye’s theory, slightly modified to
allow for a different number of equivalent stable states.

The strain measured experimentally arises as a combination of the strain related
to the reorientation of the elastic dipoles and the strain due to the deformation of

temperature (°C) ‘ ‘.
30 10 0 -10
. \ L4 l\ Al ‘ ¥ ¥ ) “

10

internal friction (normalised)
2]
i

1 1 1 L )
3.2 - 3.4 3.6 3.8
1000/T,,,

0.0
2.6

Fig. 3. — Peaks of internal friction (normalized phase lag —¢) vs..temperature due to Snoek
relaxation in an Fe-C alloy; the curves A) to ) correspond to the frequencies 2.1; 1.17; 0.86; 0.63;
027 Hz (after Wert and Zener[42]).
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Fig. 4. — Phase lag ~¢ between the coordinate (g(¢)) of an overdamped Brownian particle
oscillating in a potential U(g) = — (1/2)¢* + (1/4)q* and the force of frequency 2 = 0.1 as
measured in the electronic experiment; the force amplitude A = 0.04 (circles) and 0.2 (squares).
The solid line represents the theoretical prediction based on LRT {44] (nonlinear corrections do
not change this curve strongly for the actual value of A). The inset shows the normalized
signal-to-noise ratio in the region of the minimum in R.

those cells that are free of impurities. This deformation is characterized by much
faster relaxation than the reciprocal reorientation rate 1/W® of the dipoles at room
temperature. For low temperatures the reorientation rate W® is negligibly small,
and the strain is equal to that for a crystal with immovable defects and is in phase
with the stress (Hooke’s law). Therefore the phase shift is equal to zero rather than to
—n/2 as given by (16). Only for higher T does the reorientation of the elastic dipoles
become «switched on» and the term described by (16) contributes to the phase shift.
As a result |¢| sharply increases with temperature and displays a clearly resolved
peak. The position of the peak (see the next subsection) may be used to determine the
activation energy for reorientation of the elastic dipoles[41].

3'3. Stochastic resonance in continuous dynamical systems. — In many cases, the
bistable dynamical systems where SR is investigated are comiinuous rather than
being two-state ones. For such systems, the dependence of the phase lag on the noise
intensity (temperature) is similar to that observed for internal friction in anelastic
solids. This is clearly seen from a comparison of fig. 3 and fig. 4. In the latter case, the
data[44] are from an analog simulation of overdamped Brownian motion (3) in a
simple symmetric bistable potential

1 1
1 = - ~qg%4 —gt.
amn Ulg) 2«1 4q

The explicit expressions for the phase shift and for the signal-to-noise ratio R of a



672 M. . DYKMAN, D. G. LUCHINSKY, R. MANNELLA, ETC. =

continuous system (3) for low noise intensities and for low frequency £ are of the
form ‘

= —arctg[(2/2,XQEW® + Q2D)/(2, W2 + Q2 D)],
18 ’
(18) R= sz (QEWOR2 + Q2D /(WP + 2°D), @,D«KR,, WO«D,

where Q. = 3! = U"(g,, ) is the reciprocal relaxation time for the intrawell motion
(correctlons to (18) of the order of .Q/Q,, wo/Q., D/AU have been dropped). It is
straightforward to see that the maximum of |¢| as given by (18) occurs at the noise
intensity D . ngen by the- equation '

WO (D) = XD /2

The value of D,,,, therefore depends on the frequency of the signal Q, as observed in
anelastic solids (cf. fig. 3; the model (3), (17), although similar, is not entirely identical
to the one used in the theory of anelastic relaxation, and the peak in fig. 4 for the
dynamical system is much broader than the corresponding peak in fig. 3).

The response of a continuous system differs markedly from that of a two-state one,
“not only in its nonmonotonic rather than monotonic variation of ¢ with D, but also in
the variation of its signal/noise ratio with D: for small D the function R decreases
rather than increases with increasing D[20,23] (see insert in fig. 4, and also fig. 5
where similar behaviour is demonstrated in a different system). Such behaviour has a
simple explanatlon (23]. For small D the interwell transitions are frozen out: the
susceptibility is then determined by the intrawell motion of the system, and is.
independent of noise, whereas the. .power spectrum is formed by the fluctuations
about the minima of the potential and increases proportlonal to the noise intensity, so

60 T T 1T T T T 1T
® ‘ |
P

40

20}~

oL
0.0
Fig. 5. - The response of a noise-driven underdamped nonlinear oscillator with coexisting
periodic attractors to an extra force A cos ot (after [7)). The equation of motion of the oscillator
for A =0 is of the form ¢ + 27§ + w3q + ¢° = Feoswpt. The quantities P and & represent
signal-to-noise ratios at the frequencies 2 and 2wy — Q2. The data refer to the kmetlc phase
transition range, (wp —w,)/I" = 0.236, 3F% /320w} (wp — @) = 0.0814.
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that R « 1/D, as seen from (18) for small W®, The analysis of the position of the local
maximum of R vs. noise intensity was performed by Fox and Lu[45].

In general, of course, the motion of a bistable continuous system will not be
described by the simple model (3) of overdamped Brownian motion in a symmetrical
double-well potential. Neither will the noise be white, nor will the system be moving
in a static potential. For example, the stable states of interest may be the states of
stable periodic vibrations in a strong external force (periodic attractors), as is of
interest in the context of optical bistability [46]. Analytic results for the fluctuations
and for the response to a weak external force can be obtained [47] provided the noise
intensity is small so that the probabilities, per unit time, of fluctuational transitions
between the states are very much smaller than the reciprocal intrawell relaxation
time, W9 «t5!, and the fluctuations occur mostly within narrow vicinities of the
stable states. The results hold for systems driven by an arbitrary Gaussian noise,
where, apart from special cases, the dependence of the transition probabilities on the
characteristic noise intensity @ is of the activation type, and in the absence of the
additional weak force

- (19) . W =const x exp[~ &, /D).

The activation energy of the escape from the state n, 92,, is given by the solution of a
variational problem [48]. For certain types of nonwhite Gaussian noise %, was found
in ref.[48,49).

For small enough @ in the case of period-one attractors there are two main
contributions to the susceptibilities ¥ *’ (R2) as defined by eq. (11) [47]. One comes from
the motion close to the stable states where the system spends most of the time. This
contribution is given by the sum of the partial susceptibilities ¥ (Q)(n =1, 2)
weighted by the populations of the stable states w,. The other contribution, 1 (),
is important in the case where the frequency { of the weak force is small or is close to
the frequency wy of the strong external force. In this case the weak force modulates
the probabilities of the transitions between the states and thus the populatlons of the
states (see below):

0 P = Z w,,x""(sz)+x£¢’(9>, wy =1-wp =W /W .

The partial susceptlblhtles %9 (2) can be easily found from the equations of
motion linearized about the stable states in the absence of noise (noise determines the
values of the populations w, via the transition probabilities). They display dispersion
on the frequency scale v, = min (tg', tor ), Where i, is the correlation time of the
noise, whereas in the range of interest for SR, Q <Kv, or |2 ~ wf| Kv,., they are
nearly frequency independent.

The characteristic frequency scale which determines the dispersion of ¥ (Q) is
given by the relaxation rate of the populations, i.e. by WO = WP + W. A simple
way to obtain 1B (Q) for QK v, or |Q— wyp| Kv, is based [47] on the fact that the
major effect of the additional weak force A cos Qf on the populations of the states
comes from the modulation of the activation energies of the transitions between the
states 92,. For small Q one can find this modulation just by evaluating' &, for a:
system blased by a constant force A, ie. by finding &2, = #,(A), and then by
replacing A by A cos Qt. In this case the escape probability can be written in the form
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similar to (7)

21) W, (@1t) = Wi explg, cos 22t],

39, (A)
- aA

In the case of periodic attractors correspohding to forced vibrations in a strong
periodic force Fcos(wrt + ¢r) the additional weak force A cos Qf with Q very close
to wy can be considered as a modulation of the amplitude of the strong force,

O =0nA]D, g = —[ ] (2Kv,).
A=0

Feos(wgt + ¢p) + Acos @t = ReF(t) explilwypt + ¢p)l,

Ft)=F + Aexp[#(Q — wp)t — ipg].

The activation energxes R, = R, (F) are independent of the phase ¢, and when the
weak force A cos {2t is apphed they take on time-dependent values corresponding to
the instantaneous value of the amplitude |F(t)|, so that

Won (8) = Wi, explg, co8 (2 ~ wp)t = 98], 0a = GuA/D,
_ &)
fu= ==

(22)
(12 - op| Ky, wr).

Equations (21), (22) can be inserted into eq. (6) for the populations. For small
amplitudes A, when |g, | <<1, one can expand the transition probabilities in g,.
Terms linear in g, are sinusoidal in time, and so also are the corresponding terms in
the populations w, »(2). If we write the expression for the coordinate in the n-th
period-one attractor as

g, (t) = E ¢® explikwpt],

then the expression for the susceptibility x&’ (R2) for |2 — wg | Kv, is of the form
(cf. [47])

W{O)Wé?) 51 52 q(k-— 1 _ q(k— 1

wo T WO -y - wF) exP[z¢F]

(23) v (k)(g) = —

The equation for the susceptibility with respect to a low-frequency force, QK Ves
is very similar:

0 =~ ~ 0 0
_WRWY g -5 of”—¢®

wo g WO-iQ
(0) —

It can easily be seen that in the symmetrical case, Wi = W“” §1= =02, ¢
= — g%, this expression goes over into Debye’s result (15).

Note that, for a simple model of overdamped Brownian motion in the bistable
potential (3), the expressions for the susceptibility (20), (23a) (and also the explicit
form of the partial susceptibility x,(£2)) can be obtained at low noise intensities
directly from an analysis of the eigenvalues and eigenfunctions[50] of the
Fokker-Planck equation, both in the case of a symmetric[5la] and an asym-

(QKv,).

(23a) e (Q) =
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metric[61b] potential. Alternatively, one can evaluate the power spectrum in the
absence of periodic driving Q‘® (w) and use the fluctuation-dissipation relations (14).
The function Q”(w) was found by Hinggi and Thomas [52]. However, they failed to
get the correct expression for the term y.. in the susceptibility which is responsible
for the onset of SR. A detailed numerical analysis of the Fokker-Planck equation for
the system (3), (17) is[53] in full agreement with the analytic results given above, and
in particular with those for the phase shift shown in fig. 4. Note also some earlier
numerical work on the Fokker-Planck equation for periodically dnven bistable
systems [54].

From (21)-(23) (cf.[47)) it is clear: i) that the susceptibility due to the transitions
between the states increases, for finite frequency, exponentially sharply with noise
intensity & in the range of very small &; ii) that this susceptibility is greatest within
a frequency range that is extremely narrow compared with the characteristic inverse
relaxation time £ ; iii) that the suseeptibility is proportional to the reciprocal noise
intensity, which is why it can become large, and iv) that it becomes large only within
the narrow range of the system parameters for which 9, ~ 9%,, and thus the
transition probabilities, WY and W{®, and the populations, 2, and wy, are of the same
order of magnitude (the range of the kinetic phase transition). All of these features
have been observed in experiments, and are immediately related to the onset of SR in
bistable systems. In particular, the feature iv) shows that SR in bistable systems is a
kinetic phase transition effect. Some results demonstrating SR in a system with the
periodic attractors, obtained from an analog electronic experiment[7], are shown in
fig. 5. The experimental data (points) exhibit an increase of signal-to-noise ratio both
at the frequency of the force Q and at the combination frequency 2wy — Q. The onset
of a strong signal at the latter frequency is a demonstration of a new phenomenon that
arises through the noise-induced interattractor transitions and may be called, using
the terms of nonlinear optics, a «giant noise-mediated four-wave mixing». The results
are clearly seen to be in a good agreement with the LRT theoretical predictions
(curves).

An interesting situation arises if a system displays period-doubling. when driven
by a strong enough periodic field. If, in addition, the system is driven by a stationary
noise, the stationary populations of the two coexisting period-two attractors are the
same: the only difference between the attractors is that they are shifted in time by
the period of the force 2w/wy and, because of the symmetry with respect to
translation in time by 27/wp, there is no reason for one of them to be occupied for
more of the time than the other. Such a system is therefore a perfect candidate for
observing SR and, indeed, SR in an analog electronic circuit that displayed period
doubling has been observed recently [6]. Strictly speaking, when the system is driven
by a weak force A cos (¢ in addition to the strong force Fcoswpt, persistent
vibrations at the frequencies |2 * (1/2)@y | do not arise because of the occurrence of
transitions between the period-two attractors. However, since the lifetime of the
attractors (equal to the reciprocal transition probabilities) is large, narrow peaks are
to be expected in the power spectrum of the system at |Q * (1/2)(2k + 1) wy |, with
a width ~ Wi,. The increase of the intensity of the peak at |2-Q /2)wF| with
increasing noise intensity as observed in[6] is shown in fig. 6.

Our outline of the history of stochastic resonance would be incomplete if we
forbore to mention that, in spite of being so well known in other areas of physics,
linear-response theory for the first few years after it was applied to SR [23] faced
strong arguments and encountered serious problems with gaining recognition in this
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| . Fig. 6. - Signal-to-noise ratio for the signals at the frequency of a comparatively weak driving

force 2 = 100 Hz (e) and at the combination frequency (1/2)wp — 2 = 265Hz(0) vs. effective
intensity of the chaotic signal driving a system that displays period doubling, as obtained in
analog electronic experiments [6].

context. The inapplicability of LRT would imply either that statistical physics as a
whole is fatally flawed, or that it does not apply to the systems that display SR. In
fact, the two statements are equivalent, because, generally speaking, there is nothing
special about the dynamics of the continuous fluctuating bistable systems that display
SR. We find it unsurprising therefore that the results for SR derived from LRT are in
good agreement with the experiments. ' ,

We would point out also that a corollary of LRT is that, for small-amplitude
signals, the signal-to-noise ratio at the output of a system driven by a stationary
Gaussian noise does not exceed that at the input, even if the system displays SR.

. Indeed, the Fourier components of:the noise are statistically independent and the '~

total power of the noise Z(£2)dR in a small spectral interval dQ about the frequency
of the signal Q is small. The signal-to-noise ratio at the input is gi'ven' by
(1/4)A2/E(R2), whereas that at the output is (1/4) |x(£2)|2 A%/[|x(2)|* E2(2) +
+Q'O(Q)). The quantity Q'V(R) gives the value of the spectral density of
fluctuations in the system at frequency Q as it would be if there was no signal and the
spectral components of the noise at frequency Q were suppressed, i.e. the power
spectrum of the input noise had a hole at frequency Q. By construction Q¥ (£) = 0,
which proves the statement (in linear systems, on the other hand, which do not mix
frequencies, @ (R2) = 0 and the signal-to-noise ratio at the output must be the same
as at the input). : '

Another corollary concerns the problem of the response to an incoherent signal
fug(t), t.e. to a signal which itself is a narrow-band noise, which was addressed
recently in[55). Again, if this noise is stationary and Gaussian, so that different
Fourier components are statistically independent,

Fa®) = [ dofig(@remi—0tl, (fiq(@)i(@") = Pug(@)d(w + '),

the response to this signal in the presence of an independent external noise is
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described by LRT, and for small @, (w) the addition to the power spectrum of the
gystem ' _

3Q(0) = |x(0)|* Pgy(w).

This term may increase with the intensity of the «independent» noise provided
|x(w)|? increases in the appropriate frequency range.

4. — Nonlinear effects in stochastic resonance.

Although, as shown above, the LRT approach to SR is immensely fruitful and
enables the phenomenon to be described, qualitatively and quantitatively, under a
wide range of conditions for small values of A, there are other parameter ranges lying
beyond the regime of linear response which are also of interest. In one of these, the
low-noise limit, analytic results can still be obtained even when A is not particularly
small. It is discussed in subsect. 4'1. A second example of an interesting nonlinear
regime for which analytic results can be derived, the SR-related phenomenon of
noise-enhanced heterodyning, is discussed in subsect. 472.

4'1. Nonlinearity in the low-frequency response of a bistable system. — In the
publication where the term «stochastic resonance» was originally introduced[12] it
was pointed out that the response of a bistable system to external driving can display
strong nonlinearity. Indeed, according to (7), (21), (22) the probability W,,,(f) of
escape from a metastable state » can change strongly when the amplitude A of the
driving force, properly weighted, exceeds the noise intensity, i.e. when |g, | > 1. For
small noise intensities this can occur even when the force is «dynamically small» so
that it does not change the number or character of the steady states and nor
does it move them significantly in the space of dynamical variables[21,23,56]. The
nonlinearity is at its strongest for frequencies Q wery much smaller than the
reciprocal relaxation time of the system 5!, or for  very close to the frequency of the
strong field wy in cases where one is present; in what follows we limit ourselves to
systems that are not subject to such a strong periodic field, and only the case of small
Q will be considered.

The mechanism of the nonlinearity for |g; o | > 1 is easily understood because the
transition probabilities then vary by orders of magnitude within a period 27x/0Q,
according to (7). This variation may result in a strong modulation of the populations of
the stable states w, ;(t), particularly when the probabilities Wy, (2), Wy (t), depend on
time in counterphase, g, g, < 0 (as in (7)). Indeed, for |g, 2 | > 1 the transitions from a
given stable state n are most likely to occur within a short part of the period 2r/Q
when W,,, (t) is close to its maximum. At this time W,,, (¢) is close to its minimum, for
9192 < 0. One half-period away from this time, W,,,(¢) will in turn be close to its
maximum, and it is then that transitions fo the n-th state will be most likely to
oceur. o '

The population of the n-th state is close to its maximal value, w, . , before g, cos Qtf
has reached its maximum at ¢ = ¢;, and then, within a short time interval about i,
where the system is most likely to switch, w, (t) drops to its minimal value, w, ..
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The evolution of w,(t) within this time interval 8t, is described -by - the
expression (21, 23}
t
w, () = w, > exp[w I dt’an(t')], lg.1>>1, §18:<0, |t—t]| K=/2,
ty— 8ty , ‘
to=2nk/Q for g,>0,. ty=a(2k+1)/Q forg,<O0.

24)

The integral (24) can be evaluated by the steepest-descent method, yielding
26)  w, () =wy> exp[—A,[1+erft, (D], 1, =W expllga |1 (2]g.] R%/n)7'2,

where %,(t) = (t — t,)/7,. The quantity t, = 27'(2/]g,])*/* gives the characteristic
time interval over which w, () varies from its maximum value w, . to its minimum
value w, < = w, , exp[ —24,]. We are assuming that xQ ~1>>8¢,>> t,, in which case
the integral (24) is independent of the value of &t,.

The parameter A,,-in (25) characterizes [23,56] the nonlinearity of the response. It
gives the probability of the transition from the state n over the time r, where the
transition probability is at its maximal because of the periodic driving.

The values of w, ., w, . can easily be obtained from (25) by noticing that w, ., +
+wWp=1, n,m=1,2(n=m). On a time scale coarse-grained over 7, , the
dependence of the populations 1w, »(t) on time takes the form of a square wave, with
the jumps between the smaller and larger values occurring every half-period of the
force. The amplitude of the jumps

_ L _ 1 _ sinh4, sinh 4,
(26). Aw* 2(’wl> W) = 2(‘wz> Wy <) M_sim(11+lz) .

This amplitude is large when both parameters 1, and 1, are of the order of, or exceed,
unity. Obviously, this may occur at small noise intensities provided the frequency Q is
small enough. On the other hand, if 1,, 4, > 1.5 the value of Aw exceeds 0.45, i.e. it is
close to the limiting value 0.5. This means, in particular, that for such A, » the
switchings between the states occur nearly every half-period of the force, ie. the
instantaneous values of the populations of the states depend on time nearly
periodically. The interesting effect of the periodicity of switchings between the states
was nicely demonstrated by Zhou et al[66] through measurements of -the
distribution of escape times in a periodically driven system (3), (17).

The above arguments provide an answer to the question formulated in[12] about
the possibility of a «quasi-deterministic» periodic switchings, promoted by noise, in
response to a weak periodic dnvmg and establish the range of the parameters where
such switchings occur.

Strong modulation of the populations gives rise to a strong modulatlon of the
coordinate of the system. For a dynamically weak force the intrawell response is still
described by linear-response theory, and the ensemble-average value of the
coordinate

@n (o) = 3 w, (£)(gs + A Rey, () exp[ —i 28D,

where ¢, are the equilibrium positions in the states n =1, 2 and x, () are the
intrawell susceptibilities. The coordinate {g(t)) of a fluctuating bistable system driven
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(q@)

Fig. 7. — The results of a digital simulation of the ensemble average coordinate of a fluctuating
overdamped symmetrical system (8), (17) with Q =3-1074, A =0.12, D = 0.03 (full curve)
compared to the sinusoidal force scaled to the same amplitude (dashed curve) (after[21]). The
dotted line describes the theory based on (25), (27).

by a relatively weak sinusoidal force A cosQt as obtained from (27) (dotted curve) is
compared to the result of a digital simulation (full curve) in fig. 7 taken from ref.[21].
It is obvious from fig. 7 that the time dependence of the coordinate is close to a square
wave, as expected. A convenient numerical algorithm for investigating the
redistribution of the system over the stable states induced by a comparatively weak
force valid for arbitrary |g; o| was considered in[21].

42, Noise-enhanced heterodyning. — In heterodyning, two high-frequency fields,
one of them a signal and the other a reference field, are mixed nonlinearly to generate
a signal at their difference frequency. The frequency-selective response and the
increase of the signal-to-noise ratio with increasing noise intensity in bistable
systems make it interesting to apply the idea of stochastic resonance to heterodyning
S0 as to obtain a new form of the phenomenon, noise-enhanced heterodyning (NEH),
which will be also highly frequency selective. In other words, the idea behind
NEH[11] is to mix the signal and the reference field via a «dynamical» nonlinearity of
a bistable system, and then to single out the signal at the difference frequency and to
enhance its signal-to-noise ratio via fluctuational transitions between coexisting
stable states.

We shall illustrate the effect of NEH on a simple model of an overdamped
fluctuating bistable system (3) driven by high-frequency forces that stand for the
reference and input signals. In the presence of such forces the equation of motion (3)
is modified to ‘

(28) G=—U'(q) + Amrqeoswot + Ay, cos (2 + wo)t + ¢yl + E@).

Here, the term « A, is the reference signal of a given frequency w, (the.
corresponding force being applied multiplicatively), and that « 4;, is the
high-frequency input signal (applied additively). In the general case the amplitude
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Ay, and the phase ¢, depend on time, but to characterize heterodyning one can
assume them to be time independent and investigate the heterodyne signal in the
system at the difference frequency Q, with Q Kw,.

Simple analytical results can be obtained provided that the frequency wg is high
compared to the reciprocal relaxation time of the system, w,>>¢,o'. In this case the
motion of the system consists of fast oscillations at frequency w, (and its overtones)
superimposed on a slow motion. The equation for the slowly varying (on the time
scale ~ wg') component of the coordinate g™ (t) can be obtained by the standard
methods of nonlinear mechanics [57], which yield

@9) ¢ = —U'(q"™)+Acos (Rt +$y) +E(t), A= 2A_ref-A,,,, P = b -;-n.
Wo

We shall assume that the noise £(¢) in (29) is Gaussian, with correlation time
ooy K Q71 [WD]7! where W3 is the probability of the fluctuational transition n —
— m for A, = 0. In fact, the noise £(t) contains both the low-frequency and the rectified
high-frequency components of the noise &(f) in (28) (the latter components are shifted
in frequency by w, and multiplied by A,¢/2w,; in practice there is often
high-frequency noxse superimposed on the mput signal, so that these components are
important).

Equation (29) is of preclsely the same form as the equation of overdamped
periodically driven motion in a double-well potential considered above. Therefore all
the arguments of sect. 1, 2 apply, and the signal-to-noise ratio for the mgnal in the
system at the frequency Q <ty should increase with the lncreasmg noise intensity
in a certain range of the latter. In particular, if the noise Z(f) is white with mtens1ty
D, the dependence of the signal-to-noise ratio on D for small enough amplitudes A in
the case of a symmetric double-well potential U(q) should be given by eq. (18).

The above arguments have been tested by means of analog electronic
experiments [11]. In fig. 8 measurements of the signal-to-noise ratio in heterodyning
are presented for the two types of noise &(): a broad-band (white) noise and
a noise with a comparatively broad band centered at the frequency w,. In both
cases a strong enhancement of the heterodyne signal, and of the signal-to-noise

6 3 w ,_4
3 0
B mmfg ) t:m N
4_53; & . . -
-5 o @O o e
2—%11 _[u;‘,g’g'°°°°°°° o .
3 o i
0 Leabh| L1 | i { { 1
0.0 0.1 : 02 D

Fig. 8. ~ Noise-induced heterodyning for white (circles) and high-frequency (boxes) noise
(after[11]). The dashed and dotted lines are theory. The potential simulated is the symmetrical
double-well potential (17). The data refer to the reference frequency w, = 1.885. The heterodyne
frequency £ = 0.008.
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ratio, induced by the noise is clearly seen, and is in good agreement with the
theory.

5. = Conclusions.

It follows from the results discussed above that stochastic resonance may be
understood and described in terms that are traditional for statistical physics,
including linear-response theory in particular, and that SR has its well-known
counterparts in condensed-matter physics. In fact, of course, the possibility of
increasing the response of a system to an external forcing by increasing the intensity
of its fluctuations (temperature) is well known from daily experience: e.g., materials
are often heated up prior to processing; light absorption in semiconductors and
dielectrics increases with increasing temperature, in certain frequency ranges, and
there are many other examples of the same kind. However, when thought in terms of
signal processing, and particularly when one considers the noise-induced enhance-
ment not only of a signal, but also of the signal-to-noise ratio, one can understand the
interest SR has attracted.

The use of noise to control the response of a system is particularly effective when
the dependence of the response on the noise intensity is exponentially sharp, as in the
case of bi- and multistable systems where the noise intensity determines the
probabilities of transitions between the states. It is in such systems that a sharp
increase, not only in the signal (by orders of magnitude), but also in the
signal-to-noise ratio (by more than an order of magnitude) has been achieved. This
paves the way for the application of SR-displaying systems to signal processing, and
also for revealing the role such systems may play in signal processing in biological
systems.

One of the most interesting problems related to SR is the problem of large
fluctuations, in particular the fluctuations that give rise to transitions between .
coexisting stable states. Although this is a traditional problem of condensed-matter
physies (it includes nonadiabatic transitions, small-polaron transport, reorientation of
defects and quantum diffusion, etc.), many questions have not been resolved yet and
are under active discussion (cf. ref.[58]). Even more questions arise when this
problem is considered for systems away from thermal equilibrium (cf. ref.[59] and
references therein). Here, many important problems are to be found that have not
even been addressed to the best of our knowledge, e.g., the possibility of the onset of
SR in systems driven by shot noise. We believe that the investigation of these
problems and, more broadly, the analysis of the interplay of nonlinear dynamics and
fluctuations will constitute an important direction in physics at least until early in the
next century.
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