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The spectral distribution Q(w) of the coordinate fluctuations is studied for an oscillator
performing Brownian motion in a double-well potential at low damping. The most detailed analysis
is given for the Duffing oscillator with potential energy U(q)= ~4w3q®+ iyg®. The important
features of Q(w) are shown to be related to the slowing-down of the motion in the vicinity of the
local potential maximum. In a certain range of the noise intensity, Q(w) has three distinct peaks.
They are due to fluctuational transitions between potential wells and to vibrations near the minima
of U(g) and above the barrier. A typical feature of O(w) is the exponential tail in the region
w < wy passing into a plateau at still smaller » (but w > I'). The plateau depends on the friction
coefficient I nonanalytically (as VT).

1. Introduction

The Brownian motion of the oscillator whose potential energy has two
minima has been studied in many papers. The interest to the problem is due to
large effects that may result when the oscillator is subjected to even a weak
random force. In particular the noise causes transitions between stable states
(see ref. 1) as well as transitions from unstable stationary state (the local maximum
of the potential) to one of the stable states (see refs. 2 and 3 and references cited
therein). The transition probabilities depend nonanalytically on the noise
intensity.

In the present paper the time correlation function of the oscillator coor-
dinates

Q1) = (q(1)g(0)) ' ¢y

and its spectral distribution
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Q(w)=~21—77 f dt exp(iwt)Q(?) )]

are investigated for the oscillator with a double-well potential.

Analysis of the distribution Q(w) is of interest for a number of problems of
spectroscopy (in particular, for the spectroscopy of crystals with impurities that
have several equilibrium positions in the elementary cell) and for radiophysics.
The system under consideration is also of general interest from the viewpoint
of the investigation of the nonlinearity influence on the oscillator relaxation
and fluctuations. Such an investigation was fulfilled in detail for the van der Pol*)
and Duffing®) oscillators. For the Duffing oscillator whose nonlinearity is due to
the form of the potential (not of the friction force as in the case of the van der
Pol oscillator) the case of a single-well potential was studied.

The existence of two minima of the potential energy results in specific
features of the oscillator spectral distribution. They may be understood easily
by considering a simple double-well potential (that for the double-well
Dufting oscillator)

U(g)= —305q" + 374" . 3)

The function U(q) is shown in fig. 1. It has minima at

2
w
q=*q,, qo=\/7°- (4)

The Brownian motion in potential (3) is described by the generalized
Langevin equation

Ulg)

AU

Fig. 1. Potential energy U(g) of the double-well Duffing oscillator.
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G—woq +vq’ +20G = f(t), (F(OF()=2Bre(—1). )

Here I' is the friction coefficient, while the parameter B characterizes the
intensity of the white noise f(¢) (in the case when the random force f(¢) and
friction result from the coupling of the oscillator to a bath B = 2kT).

The stationary distribution of the oscillator for the model (5) is Gibbsian:

W, = Wy(E)=Z" exp(— 235) : ©)

The oscillator energy E and the statistical integral Z are given by the standard
expressions
12 2E
E=p"+Ug), Z= dpdqem(—;)- (7

g

The form of the distribution Q(w) in the model (3), (5) depends on the
parameter

B=——r=", AU=--2, ‘ @®)

(AU is the potential barrier height, see fig. 1). It is obvious from eq. (6) that at
B <1 the oscillator with overwhelming probability is located near one of the
minima and “jumps’ to another minimum very rarely. The spectral distribution
in the case of sufficiently small friction,

I'<uw,, )

has two sharp peaks. One of them is located at the frequency of the eigenos-
cillations near the potential minima w,V2 and is described by the Lorentzian
distribution with the half-width I at 8 <I/w,. The other peak is caused by
fluctuational transitions between the minima. It is placed at w = 0 and its width
is exponentially small (~ 1 exp —3—,,8'1)).

With increasing B (e.g. due to increasing noise intensity B) the form of Q(w)
changes substantially. For the case of small friction (9) the shape of the peak at
w = wo\/i is distorted already at relatively small B,

r
1>B=—,
o)
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due to specific modulational sp’ectrum broadening®). The latter is caused by the
dependence of the frequency of a nonlinear oscillator on its energy. The typical
frequency straggling due to nonlinearity 6w may be estimated allowing for the
width of the oscillator energy distribution being of the order of B (according to
(6)). We thus obtain

dw(E)
3E >Em, dw ~ w3, B<1. (10)

dw ~ B (
Here w(E) is the frequency of the vibrations at energy E in the absence of
friction and a random force, E,, is the characteristic energy (o (E,) coincides
with the position w,, of the spectral distribution maximum).

When 8w is of the same order as the uncertainty in frequency I' due to
friction, the shape of the peak of Q(w) in the vicinity of w(,\/§ is determined by
competition between the frequency smearing mechanisms. To calculate the
peak shape for arbitrary Bw,/I" (but for g <1) one may use the results
obtained in ref. 7 for the low-damped single-well Duffing oscillator.

The vibration nonlinearity results also at finite 8 in the weak (for 8 <1)
peaks in the oscillator spectrum at the frequencies that are multiples of wOV§.

With a further increase in 8 the oscillator frequency straggling becomes of
the same order of magnitude as w,,. To calculate the shape of the broad peak
of Q(w) near the maximum in the case

Sw>T (11)

damping may be neglected (similar approximation was used in ref. 8 for the
single-well Duffing oscillator).

Let us consider now the spectral distribution Q(w) in the range 48 =1
(corresponding to temperatures kT = AU for the system coupled to a bath). In
this range Q(w) is formed both by vibrations near the potential minima and
those above the barrier. The features of the distribution are due to the following:
for small energies |F|<AU (the energy is measured relative to the local
potential maximum at g = 0) the oscillator motion is evidently slow near the
maximum and the period of vibrations is large (the classical oscillator *‘sticks”
to the point ¢ = 0), while the dispersion of the vibration frequencies w(E) is
strong. As a result the peak corresponding to the motion above the barrier may
appear in Q(w) parallel with the peak corresponding to the vibrations near
g==*q,. At 48<<1 the first peak intensity is exponentially small. When
48 =~ 0.4, the peaks are of the same order of magnitude, i.e. the spectrum has a
characteristic two-humped structure in the range w > I' (the “central” peak at
w = 0 with the width ~TI remains in Q(w) for 48 = 1). The peak caused by the
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overbarrier motion increases with increasing 8 and in the range 48 = 1.5 it
overlaps the peak caused by the vibrations near the minima. The slowing-down
of the motion near the local potential maximum results also in another effect,
the appearance of the characteristic low-frequency tail of Q(w) that decreases
as exp(—const. - @) in the range o < w,. _

In the range of still lower frequencies, v <€ w, (but w > I'), the shape of Q(w)
is influenced essentially by the motion aperiodicity due to dissipative and
fluctuational effects. These effects are of primary importance for the range of
small w(E) since the phase diffusion coefficient diverges at w(E)—0. The
aperiodic motion gives rise to the flatness of the spectral distribution (the
plateau) at < @y, the height of the plateau depending nonanalytically on the
noise intensity I'B at I"'— 0.

In section 2 the motion of the Duffing oscillator with a double-well potential
is considered neglecting dissipation. In section 3 the general expressions for
Q(t) and Q(w) are obtained in the form of series, the results of numerical
calculations of the spectral distribution at various 8 and analytical expressions
for Q(w) in the limiting cases of small and large B are presented. In section 4
the spectral distribution is obtained explicitly in the frequency range o < w, for
arbitrary B and its structure is analyzed. The results of section 4 are general-
ized to the case of an arbitrary double-well potential in section 5. In section 6
the plateau of Q(w) in the low-frequency range I' < w < 27w, In " (w, AU/T'B)
is investigated by analyzing the FEinstein-Fokker—Planck equation. In the
appendix the smallness of the dissipation-induced corrections to Q(w) at
w = w, is shown.

2. The motion of the isolated Duffing oscillator with a double-well potential

At sufficiently small friction (I' <€ 8w) one may neglect the damping of the
oscillator vibrations when calculating the spectral distribution peak shape in the
frequency range w = w,, because for the time (w)™' during which the peak is
formed, the motion is quasiconservative. Accordingly, to find the time cor-
relation function Q(¢) one may first solve the problem of the free motion of the
oscillator with a given energy E and then average over the energy and phase
with the weight (6) (this method is justified in the Appendix on the basis of the
Einstein—Fokker-Planck equation corresponding to the stochastic equation
©)).

The solution of the equation of free motion

j-wig+yg =0 (12)

in the range of positive energies is of the form
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2K
g = oy A+ bY en(T¢ ). ¢ =)= wE) +9(0),

-

1/4

T - E
o(E)=3 by, K= m =31+ b)), bE=(1+A—l7> , (13)

Here, cn u =cn(u|m) is the Jacobi elliptic cosine, k is the module (m is the
parameter), K = K(k) is the elliptic integral of the first kind, ¢(0) is the initial
phase.

For negative energies E the oscillator can vibrate with the same energy
either in the left or in the right potential well (see fig. 1). Therefore eq. (12) has
two solutions:

K
a(0) = (~ Do,y "2(1+ b2 dn<—; (p,) 0= et = w(E) + ¢,0),

o(E) = é w1+, K=m=2(1+b2", (14)

1/4

E
b, = <1+———> , E<0,1=1,2.
AU

Here, dn u =dn(u|m) is the amplitude delta, ¢,(0) are the initial values of the
phases ¢, of the vibrations in the left (/ = 1) and right (/ = 2) wells.

The quantity w(E) in (13), (14) is determined in such a way that it equals the
eigenfrequency of the vibrations (this follows from the properties of the
functions cn u, dn u, see ref. 9. At |[E|—0 the frequency w(E) tends to zero
according to the inverse logarithmic law

mw[InG4AUE)", E>0,

E|<AU. 15
2mrwg[In@G4 AUJE])]™", E <0, Bl (15

w(E)%{

The divergence of the oscillation period at |E|- 0 is obvious from fig. 1.

3. Time correlation function of the coordinates and its spectral distribution in
the absence of damping

When damping is neglected the correlator Q(t) (1) is
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4

()= f j 44(0) dp(0) (g (O)W,(E) (16)

where W (E) and q(t) are determined by (6), (13) and (14) (cf. ref. 8). In
calculating the integral (16) it is convenient to transform to new canonical
variables: the action I and phase ¢, and then to the energy and phase (the action
depends only on the energy)

dpdg=dIdp, dI=w Y(E)dE. 17)

Thus the averaging over the initial coordinates and momenta in (16) reduces to
integration over E and over the initial phase ¢(0) (for E >0) or ¢,(0), ¢,(0)
(for E <0). The averaging over ¢(0) (¢,,(0)) may be easily performed using the
expansion of the functions cn(2K¢/) and dn(K¢/#) in the Jacobi parameter ¢,
(see ref. 9),

2K 2m
cn (7 ¢’> kK = Z Cons1 €O8(2n + g,

dn <-I£ ¢> 27IT{ 2}: z €y, COS Y, o
'(k)>

c=ck)=q"A+q5)", q= q;(k)—exp( 0

K'(k)= K(V1-k?).

Substituting expressions (13), (14), (18) into (16) and allowing for (6) and (17)
we obtain

Q)= Q,(1)+ Q1)

32 2E\ &
Qy(n)= y—; f dE w(E) eXp(—E) 23 2 . cosn + Dw(E)t, (19)
O)t)=— f dE w(E) exp(~273E—> {1 +8 2 3, cos nw(E)t}
--AU n=1

Taking into account egs. (6) and (17), the statistical integral Z may be
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presented also as the integral over the energy only. The terms Q,(#) and Qy(¢)
in (19) are determined by the ranges of positive and negative oscillator
energies, respectively.

The integrands in Q, ,(¢) present the series of harmonics. These series converge
fast in the energy range E > AU where the Jacobi parameter g, =~ exp(—7) <1,
and in therange E + AU <A U, where q,~ (E + AU)/64 AU)"? < 1. At small |E|
the series for Q,,(¢) are slowly convergent.

In the approximation adopted, when relaxation and fluctuations are not
taken into account explicitly, the oscillator with E <0 does not change from
one potential minimum into another and vibrates about one of the equilibrium
positions (4). This causes the time-independent term in Q(¢). This term
decays when the transitions are taken into account.

The spectral distribution of the time correlation function (19) is

Qw) = Q|(w) + Oy(w),

Q@)= X dpr(@) ., Qyw) = (@) +2 2, ¢y, (o),

n=0 n=1

(20)

0
) = i—; [ aBo@ew(-2),

-AU
167wc(k 2E,\ |dw(E,)| "
() = 272nhs) ”)exp(—-“~) dotB) = sy,
vZn B dE,

where k, = k(E,), while the energies E, are determined from the equations

w
w(Ean):Zn—-{»l (n=(), 1,2,...;E2"+1>0),

21)
w(Ezn)=% (n=1,2,...;E,, <0)

(it may be shown that dw(E)/dE does not vanish anywhere, hence, ¢,() in
(20) are finite).

The terms Q,(w) and Q,(w) in eq. (20) describe the contributions to the
spectral distribution from the vibrations with positive and negative energy,
respectively. According to (8), (13), (14), yw,'Q(w) depends only on the
dimensionless parameter 8 and the variable w/w,. The distribution Q(w) is
expressed in (20) by special functions and may be found with the aid of a
computer. The results of calculation for several values of the parameter 8 (8)
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are presented in fig. 2. It is not hard to obtain Q(w) in a simple analytical form
for the ranges of small and large values of .

At B <1, as already mentioned, the oscillator motion presents mainly the
weakly nonlinear vibrations about the potential minima (E + AU <€AU) with
frequencies »(E) =~ w,V2. The dominant contribution to Q(w)= Q,(w) in the
range of the peak (& =~ wyV/2) is made by the term 2¢s(w) in (20). Taking into
account only terms linear in (E+AU)/AU in the expressions (14), (18) for
w(E), ¢, we obtain from eqs. (20), (21)

0w)~ 02<w>-%—20 exp(-2)0(22).

4 w-wV2 1, x>0,
0=- 927NV gxy= { * 22)
3V2  Bw, 0, x<0,

- I
wxwo\/2, 'w—<ﬂ<1
0

The spectral distribution (22) is strongly asymmetric. Its maximum lies at the
frequency

W= wV2(1-3B) 23)

and its integral width is

an Y Qlw)
6Hrrw0/6
10 +
5 -
0 ‘ 1 ‘ 2 3 W

Fig. 2. Spectral distribution Q(w) for the Duffing oscillator in the range @ > wo In"(wo/I") > I'. The
curves 1 to 6 refer to the parameter values 48 = 0.1, 0.3, 0.5, 0.8, 10.0, 40.0. Curve 1 is reduced
along the y-axis by a factor of 2.
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dw, = Q'l(wm)j do Q(w) = i? Bw,e . (24)

Both the width of the peak and the shift of its maximum relative to w,V2 are
proportional to intensity of the random force acting upon the oscillator (to
temperature, for the case of coupling to a bath). For very small 8 when Bw,<TI
expression (22) is not valid and to calculate the peak shape one should use
the theory’) that takes into account the spectrum broadening due both to the
frequency straggling of the nonlinear oscillator and to the dissipative pro-
cesses”™.

For B> 1, the main contribution to the broad peak of the spectral dis-
tribution Q(w) comes from the range of high positive energies (E>AU,
E ~ B) and the shape of the peak for the double-well oscillator under con-
sideration appears to coincide with that for the single-well oscillator studied in
ref. 8§,

1/4

s, s (2
0(w) = 5% 3 exp(-£,0%), nz(—B) .

£,~0.60, &~0.49, w ~ (yB)* ~ 1/4%’ B> 1

(cf. curve 6 in fig. 2 and curve 5 in fig. 1 of ref. 8 obtained for the same 8). Note
that the distribution (25) is independent of w,.

The analytical expression for Q(w) in the frequency range w,In *(w,/I") <
o < w, may be obtained for arbitrary B. It is presented in section 4 and allows
one to understand the ‘“‘two-humped” structure of the curves 2-4 in fig. 2
corresponding to the range 48 < 1.

4. Structure of the low-frequency wing of the spectral distribution in the
absence of damping

The spectral distribution Q(w) in the range of relatively low frequencies
w <w, is formed mainly by vibrations with small |E|, |E|<AU. Since the
vibration frequency w(E) decreases with decreasing |E| as In~'(64 AUJ|E|)
according to (15), the effective density of states for low-frequency vibrations is
small, |dE/dw(E)|~ 7|E|ww X(E)<AUw, (E|<AU). It decreases with

* When using the results of ref. 7 (see also ref. 5) for the description of the peak at frequency
woV'2 one should take into consideration that in the expansion of the oscillator potential energy near
qo there are the terms « (q — go)°. Therefore the fourth-order anharmonicity parameter in the expres-
sions for correlators given in ref. 7 should be renormalized (as well as wg): @y = woV2; ¥ =—4y.
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decreasing |E|. This provides fast convergence of the series (20) in the range
w < w, since for the nth overtone at small |[E| we have according to (21) and

(15)

do(E,)| <_zv_on> 26)
dE, PU |
If the conditions
£ Eexp<—7rg)9><1, 27)
w
B>16 exp(—ﬁ i)g) 2 » (28)
w/ T,

are fulfilled the main contribution to Q(w) comes from the term with n =1 in
(20) which corresponds to the over-barrier motion. At & < 1072, allowing for
(15) we obtain

2 5

Q(w)~ Q|w)~= (—8;77:) % z! ch'z(g—ui> exp(—w %— 1687! exp(—w %)) .

(29)

It is seen from eq. (29) that at 1687'>1 in the wing of the spectral
distribution Q(w) in the range w < w, the additional peak is manifested. This is
due to the competition of two factors forming the spectral distribution, namely
to the decrease in the state population with increasing E and the simultaneous
increase in density of the vibrational states. This peak is sharp at 8 <0.1 since
these competing dependences are exponentially sharp (in energy and
frequency, respectively). ‘

It follows from eq. (29) that when the conditions (27), (28) are fulfilled the
peak is located at

@, = mw,/In(16/B8), In(16/8)>1. (30)

Eq. (30) within an error <10% describes the position of the left maximum of
the curves 2 to 4 in fig. 2. For the curves 2, 3 the left to the right peak
amplitude ratio calculated according to eqs. (29), (30), (22) is also in good
agreement with the results of numerical calculations. This ratio grows as
increases. For sufficiently large 8 (when B = 0.3) the peak caused by the
intrawell motion cannot be separated. At the same time eq. (29) becomes
inapplicable in the range where the maximum of the distribution (29) is located.
To calculate the shape of the peak of Q(w) near the maximum in this range of
B the complete expression (20) should be used.

A remarkable feature of the distribution (29) is its exponential decrease at
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low frequencies:

Qw)=A exp(—wﬂ> , A= const ﬁ, w<w,. (31)
w w
For small 8 the tail of Q(w) is located in the range w < &,,, but as B grows it
spreads over the entire range of w where the criterion & <107 (0 <0.7w,) is
fulfilled.

5. Structure of the low-frequency wing of the spectral distribution in case of
oscillator with an arbitrary double-well potential

It is seen from (29) that the shape of the spectral distribution wing in the
region w < w, for the Duffing oscillator depends only on the parameter w,,
while the nonlinearity parameter y enters only the constant coefficient y>Z".
The parameter —w, is equal to the curvature of the potential at the local
maximum (see fig. 1). We shall show that for an arbitrary oscillator whose
potential U(q) has a local maximum where U(g)= —jw2q” (the coordinate ¢
is counted off from the maximum position) the spectral distribution in the tail of its
broad peak is proportional to exp[—mw,/w — 67" exp(—mw,/w)] (8 is given
below).

In the general case the cyclic frequency w(E) of vibrations with E >0 (the
energy E is measured relative to the value U(0)) is

q
2 -1

w(E)=7([ dgl2E-20@I ™) | (32)

91
where g, and g, are the turning points that limit the motion, U(g,)=E
(i=1,2), q,<0, g,>0. For low energies the main contribution to the integral

(32) comes from the range |q| < E"*/w, (|q,,> E"*/w,), where the integrand is
large. As a result of integration we obtain

c
w(E)zmom-l(E>, C~wlq®, E—»0 (E>0). (33)

When relaxation is neglected the time correlation function of a Brownian
vibrating particle may be put into the form similar to (19),

Q)= J dE exp(— %) i ¢, (E) cos nw(E)t, 34)

n=0
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where the functions ¢,(E) depend on details of the potential. Let us perform
the Fourier-transform over time in (34) and change from integration over E to
that over w(E). Then at small E there appears the factor

dE
dw(E)

zmocwﬂ(g)exp(_w%), E=0 (E>0) (35)

under the ‘integral sign. Keeping only the term with n=1 in (34) at
exp[—7mw,/w(E)] <1 (as was done in deriving (29)) and taking (35) into account
we obtain

O(w)=C exp[—vr%))—o— 6! exp(—w%)] , 0=— exp(—vr f) <1
(36)

(the term with 67" should be allowed for only if 8 <1). The coefficient C' in
(36) depends on a power of w,/w. In (36) just as in (29) the corrections
~exp(—nmwy/w) with n>1 are neglected. Such corrections are caused in
particular by the motion with E <0.

Just as the distribution (29), the function Q(w) (36) has the maximum at
w=w,=7mwy/ln ' if §<1, and in the tail it decreases exponentially with
decreasing frequency (cf. (31)). Thus, the low-frequency structure of the
distribution of the oscillator with an arbitrary double-well potential is universal
and is determined by the curvature of the potential near the local maximum.

The results obtained above may be easily extended to the case of a potential
with N local maxima. If the height and curvature of the maxima are identical,
relationships similar to (36) are valid with the only difference that w,/N should
be substituted for w,, and C, C’ depend on N. If the heights or curvatures of the
local maxima are different the pattern is somewhat more complicated. Q(w) is
then represented by a superposition of expressions similar to (36) with the
appropriate weight factors. In this case, additional in Q(w) maxima may appear.

6. Analysis of the effects caused by dissipation and motion stochasticity

It follows from eq. (31) that in the range of very small frequencies w < w, the
spectral distribution Q(w) calculated with neglect of dissipation and motion
stochasticity is exponentially small. The main contribution to Q(w) in this
range is due to the vibration periodicity breaking by the dissipation processes
and random forces acting on the oscillator. To analyse Q(w) at w < w, and to
substantiate the approach used above in calculating the peak of Q(w) at w = w,

&
\
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(it allowed for the friction and random forces only as for the cause of the
Gibbsian energy distribution formation) one may apply the Einstein-Fokker—
Planck (EFP) equation.

The estimate of the corrections to Q(w) at w = w, that are due to dissipation
is given in the appendix. They are proportional to the friction coefficient I and
are as small as max[I'o ™ (Q(w), I' 8Q(w)/dw] at I < dv, , w,.

A peculiar situation arises in the low-frequency range w < w, (but w>1T).
The main contribution to Q(w) at these frequencies is due to the oscillator
motion with small |E|. The perturbation theory given in the appendix cannot be
applied here. This is obvious formally if one substitutes the expression (A.8) for
VD calculated by the perturbation theory into expression (A.S) for Q(w).
According to eq. (A.1) V" contains terms o«I'B 8*w(E)/dE? which are due to
the diffusion terms in the EFP-equation. At w(E) < w, these terms are propor-
tional to E™* and thus cause the divergence of the integral over energy in eq.
(A.5).

The inapplicability of the perturbation theory at w(E)=< w(E,)< w,, i.c. at
|E|<E,.

12 4
E, = (£> (BAU)?, AU=2, (37)

Wy 4y
follows directly from eq. (A.1) since the term ['Bw,(E)[d(p, 9g,/0E)/dE]X
dW,;/d¢ in the operator FI:WU in eq. (A.1) at |E|~ E_ appears to be of the
same order as the term w,(E)dW,/d¢ describing the conservative motion (to
obtain this estimate, (A.9) and (35) were used). It is essential that E, depends

nonanalytically on the random force intensity I'B.

In the region |E| < E, the oscillator motion is complicated. This is due to a
strong frequency dispersion at |E|-0 (cf. (33)). At |E|<E,, the oscillator
moves near the local potential maximum so slowly that the energy change
caused by random forces over a run is sufficient for changing w(E) by an order
of magnitude. Therefore, the motion becomes absolutely nonperiodic. The
time scale characterizing such motion is determined by the time f, needed for
the oscillator to leave the region |E|< E,.

The quantity ¢, may be estimated as the diffusion time, ¢, ~ E2Dgp, where
Dy is the characteristic value of the energy diffusion coefficient, Dy = I'Bp?
(it follows from (A.1) that the drift over energy in the range |[E|< E, is much
slower than the diffusion). If we use for the estimation of Dy the value of p?
averaged over phase at E~E,, p*~ 1w(E) (I is the action, I ~ AU/w,), then,
taking (37) and (15) into account, we obtain

4, AU :
t,~ w, In E ; (38)

[
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According to (15), (37) t,~ o '(E,). In fact, the typical energy E, itself may be
defined as the energy for which the time ¢, is of the same order of magnitude as
the period of vibrations of the oscillator with energy E,.

The aperiodic motion with the typical time of correlation decay ¢, leads to
the appearance of a plateau in the spectral distribution Q(w) at frequencies
w < t;'. The height of the plateau depends on the probability that the absolute
value of the initial oscillator energy E does not exceed E,. Consequently,

tE.~ 11 /I'\"
o(w)~uq2~——4(—) (BAU)?AU, I'<o=<r', 48=1. (39)
wyZ Z wy \o,

0

Here q” denotes the squared amplitude of the vibrations with small E, T~q

(see eq. (4)). We have omitted in (39) the logarithmic factor In(A U/E,) (the
allowance for this factor is beyond the accuracy of the present approach). The
inequality w > I' in (39) is connected with the presence of the peak of Q(w) at
w =< T due to interwell transitions.

According to (39), the low-frequency plateau of Q(w) depends nonanalytic-
ally on the random force intensity I'B (in fact it was the friction coefficient I
that was supposed small in deriving (39)). Just the nonanalyticity in I" makes
the perturbation theory inapplicable for the analysis of the plateau. At B<AU
the statistical integral Z o« exp(2 AU/B) in (39), and the nonanalytical (in I)
correction to Q(w) in the range I' < w < w, is exponentially small.

The nonanalytic (square root) dependence of Q(w) on I' was obtained also’)
in the problem of the single-well Duffing oscillator for the frequency range
lw — wy| < (Bw,I')"* (at T'w,' < B <1). For the Brownian particle moving in a
periodic potential the square root (in I') correction to the mobility was
obtained in ref. 10.

The fluctuation plateau (39) restricts the range where the exponential tail
(31) is manifested by the inequality

@A

U
© >27rw0/ln<r ?) L Qe >0t (40)

(The expression (40) contains a weak inequality since the distribution (31) is
exponentially sharp.)

7. Conclusions

It follows from the results of the present paper that the presence of a local
parabolic maximum in a potential energy curve gives rise to a number of
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specific features of the spectral distribution Q(w) of classical oscillator. Some
of them are caused directly by the motion near the maximum and are
determined by the character of this motion and by the curvature of the
potential at the maximum —w}, while their dependence on the shape of the
potential near the minima is weak.

One of these features is the formation of the maximum of the function Q(w)
at frequency w <uw, for relatively low noise intensity B (for relatively low
temperatures in case of oscillator coupled to a thermostat; in this case B =
2kT). This peak is connected with the exponential decrease of the oscillator
state population with increasing energy on one hand and with the growth
(exponential in frequency) of the vibrational state density for the overbarrier
motion with increasing energy (and frequency) on the other hand. Therefore
the maximum appears to be sufficiently narrow for small B/AU.

Another feature of the spectral distribution Q(w) is the presence of the
exponential tail in the frequency range w < w, (see (27), (40)) for AU < B. The
shape of the tail reflects the exponential (for w(E) < w,) form of the vibrational
state density for the overbarrier motion.

High sensitivity of the oscillator moving slowly near the potential maximum
to external random force results in a nonanalytic (square root) dependence of
Q(w) in the range of the low-frequency (I' < @ < 27w, /In(w, AU/BI")) plateau
on the friction coefficient I" at AU < B.

Appendix

It is convenient to write the EFP equation corresponding to the Langevin
equation (5) in variables energy and phase,

oW, A
_[l—:_wl(E) ”+FLW/$
ot 177
. o d 3g, OW,
LW, = w/(E —[ YE 2(2+B—>W,— —’—‘L}
i = @l )aE w; (E)p; aE) Y Bp, oF o (A1)
d 32 oW,
+—=]- w,(E)p, (z+B o5 Wi+ BolE) (3 "’) =],
dp dp

W, = W,(E, ¢, t; E(0), (0),0).

Here indices I, j run over the values 0, 1, 2. The value 0 refers to the
overbarrier motion with energy E >0 (the energy is relative to the local
potential maximum), whereas the values 1, 2 refer to the motion in the left and
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right potential wells (see fig. 1) with energy E <0. The energy E, phase ¢ and /
determine unambiguously the oscillator coordinate g = g,(E, ¢) and momen-
tum p = p,(E, o).

The function W, in (A.1) is the probability density for the oscillator
transition from the point g;(E(0), ¢(0)), p;(E(0), ¢(0)) to the point g,(E, ¢),
p,(E, ¢) for the time . The initial condition for eq. (A.1) is

Wj(E, ¢, 0; E(0), ¢(0), 0) = &, (E)8,;8(E — E(0)8(¢ — ¢(0)) -

In fact for each j=0,1,2 eq. (A.1) presents the set of three equations
(1=0,1,2). In addition to the initial condition it should be complemented with
the conditions of continuity of the functions W, and their derivatives over
pl(E’ (P)’ CI1(E, (P) at E=0.

It is easy to see that the stationary solution of eq. (A.1) is of the form (6).

The time correlation function of the oscillator coordinates (1) is expressed in
terms of the functions W, by the relation

0= 3 [ [ 4E do o' ®)a(E ) V/E. 0.1),

VAE ¢,1)= 3 [ [ dE©) do(0) 0] EO)qEO). ¢ OWLEO)  (A2)

X Wy(E, ¢, t; E0), ¢(0), 0)

(in fact (A.2) is a definition of the procedure of averaging denoted in eq. (1) by
the brackets (- - +)). The auxiliary function V,(E, ¢, t) introduced here satisfies
evidently eq. (1) with the initial condition

‘/I(E’ P, 0) = q[(Ea @)Wst(E) (A3)

and the appropriate joining conditions at E = 0.

The influence of dissipation and fluctuations on the oscillator motion is
described by the operator I I:W,,- in (A.1) for W, (or I. LV, in the corresponding
equation for V). To analyse the spectral distribution Q(w) in the range o = w,
with allowance for dissipation and fluctuations it is convenient to perform the
Fourier transform over  and ¢ in the equation for V, (obviously, the function
V/(E, ¢,t) as well as g(E, ¢) is periodic in ¢). Then one obtains from
(A.1(A3)
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~i(w — nw,(E))V,(E, n, a))— ! q,(E nYW(E)+ (I'LV/(E, ¢, ®)),,

1
VAE, ¢, ©) = ;J dt expn) V,(E, ¢, 1),
0

2m

1 .
Vi n,0) = [ do expl-ing) V/(E. ¢. 0), (Ad)

2m
" 1 A
(TLVAE, ¢, 0)), =5 | do expl-ing)[LV(E. 6. 0),
T

0
27

I |
a(E.m) =5 [ de exp(-ine)a(E, ).

0
According to egs. (2), (A.2) and (A.4),
O)=47ReS S f dE o7 (E)q/(E, —n)V/(E, n, ). (A.5)
[
The solution of (A.4) to zeroth order in I' is of the form

VI(E, n, w)— — (B )W, W(E) (@ = noy(E)y" . (A.6)

In case of the Duffing oscillator

qO(Ev 2n— 1) 2\/2 aiﬁ—) Con-1> qO(E’ 2”) =0 ’ qO(E’ 0) =0 ’
qo(E, —n) = q(E, n) (E>0)

w(E) (A7)
g(E,2n—1)=0, q(E 2n)=(-1)V2—=rg,,,

Vy

qI(E’ O) = (_1)10)(E)(27)_1/2 > ql(E’ _n) = ql(E’ I’l) » l= 1’ 2 (E <0)
n=12,...

(see (13), (14), (18)). Egs. (A.5)~(A.7) result in expression (20).
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Below when estimating the corrections we imply the Duffing oscillator model
although the analysis may be generalized easily to the case of oscillator with an
arbitrary double-well potential. We consider the case also when the noise
intensity parameter B is of the same order or greater than the potential well
depths (B8=1). This case is of the most interest for the analysis of the
low-frequency plateau of Q(w).

To the first order in I' the correction to V/(E, n, w) is

V,('l)(E’ nw)=i(w-— nwl(E))_l(FI:V(IO)(E’ @, ),
(A.8)
VIAE, ¢, )= 3, expling) VIE, n, w).

To calculate the contribution of the correction (A.8) to Q(w) at w > w, it is
expedient to single out in (A.5) the range of small |E| where w(E) < w,< w.
Out of this range the functions w,(E), ¢,(E, n) are seen from (13), (14), (18),
(A.7) to depend smoothly on the energy. As a result of the term-by-term action
of the differential operator L on the terms V”(E, n, w)exp(ing), the
coefficients (@ — nw,(E))? and (w — nw,(E))” appear. After integrating over
energy in (A.5) with allowance for the well-known path-tracing rule (Im w -
+0) the corresponding terms give the corrections ~I 3Q(w)/dw ~
I'(6w) 'Q(w) where 8w is the characteristic width of the spectral distribution
(see for details ref. 11). The term-by-term calculation of the right-hand side of
(A.8) in the range w(E)= w, appears to be convenient due to fast decrease of
VO(E, n, w) with increasing n in this range.

The range w(E)<w, needs special consideration since |dw(E)/OE|~
w*(E)(w,|E|)"" - % at | E| > 0 according to (15), (35). The derivatives 8g/d E, 9¢/d E
diverge also at |E|—0. According to (13), g,(E, ¢) is asymptotically at E—0
(E >0) of the form

172

o= () af 2 (o2 o3 =1

v (A.9)
w(E)<w,, E>0.

Eq. (A.9) is written for ¢ such that the oscillator is near the local potential
maximum. This equation is valid for an arbitrary double-well potential. It is
obvious from (A.9) that |ag/0E| = |q/E|.

The divergence of dw/dE, 3¢q/dE at E — 0 with allowance for (A.1) and (A.6)
causes the divergent terms in the functions (I'LVY(E, ¢, »)), in the right-hand
side of eq. (A.8). However at o > w, the correction to Q(w) due to the range
w,(E)< w, appears to be small as a whole. Indeed, taking into account (A.6)

*
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one may put the function V(E, ¢, ) at w > w,, w(E) into the form

-wl(E)_a_

1
w 0@

VIE, ¢.0)= 57— W(E) 3 (- ) aE o). (A.10)
w m=0

The first terms of the expansion (A.10) are respectively

i
S W) (a -2 ).
27w w

In fact the expansion (A.10) is seen from (A.9) to present the series in wy/w for
the most “dangerous” range, the vicinity of the local potential maximum.
Writing the operator L as

K
op

) 5
I <2p+B——),
op

one sees from (A.9) and (A.10) that LVY(E, ¢, ) presents the series in w,/w
also; this series does not contain the divergences at E — 0.

It is easy to verify, taking (A.10) into account, that the contribution of
VI(E, n, w) to the integral (A.5) over the range E where w(E)<w, is finite
and ~Tw ' Q(w).

Thus the whole correction to Q(w) at = w, due to dissipation and
fluctuations is ~max[['w 'Q(w), I' 3Q(w)/dw]. This justifies the above cal-
culation of Q(w) neglecting dissipation and fluctuations.

Note added in proof

After the present paper was submitted for publication, we learned of the paper
by Y. Onodera (Prog. Theor. Phys. 44 (1970) 1477) where in the zero-friction limit
the general expression for the spectral distribution Q(w) of the Duffing oscillator
similar to eq. (20) was obtained using another approach and its numerical analysis
was carried out. In this paper, however, the peak at zero frequency was missed, the
explicit asymptotic expressions for Q(w) (see egs. (22)-(25), (29)-(31)) were not
obtained and the above analysis of the features of Q(w) for the general case of
systems with a double-well potential was not given as well.
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