Gudrun’s (NLO) List

- **2->3**
 - pp->WW jet
 - pp->VVV
 - pp->H + 2 jets

- **2->4**
 - pp->4 jets
 - pp->tT + 2jets
 - p->tT bB
 - pp->V+ 3 jets
 - pp->VV + 2 jets
 - pp->VVV + jet
 - pp->WW bB

From technology point-of-view

- start with massless cases such as
 - γγ + 2 jets
- then add progressively more difficult calculations (additional scales and/or subprocesses)
 - W + 3 jets
 - pp->4 jets
 - WW + 2 jets
 - tT + 2 jets
 - tT bB
 - WWbB

can be given to good student (at least one of Thomas’ students)
Experimental priority list

- Gudrun’s list
 - 2->3
 - pp->WW + jet
 - pp->VVV
 - pp->H + 2 jets
 - 2->4
 - pp->4 jets
 - pp->tT + 2jets
 - p->tT bB
 - pp->V+ 3 jets
 - pp->VV + 2 jets
 - pp->VVV + jet
 - pp->WW bB

- 1. pp->WW jet
- 2. pp->H + 2 jets
 - 1. Background to VBF Higgs production
- 3. pp->tT bB
 - 1. background to tTH
- 4. pp->tT + 2 jets
 - 1. background to tTH
- 5. pp->WWbB
- 6. pp->V V + 2 jets
 - 1. background to WW->H->WW
- 7. pp->V + 3 jets
 - 1. general background to new physics
- 8. pp->V V V
 - 1. background to SUSY trilepton
Experimental priority list

Note have to specify how inclusive final state is
- what cuts will be made?
- how important is b mass for the observables?

How uncertain is the final state?
- what does scale uncertainty look like at tree level?
- new processes coming in at NLO?

Some information may be available from current processes
- pp->tT j may tell us something about pp->tTbB?
 ▲ j=g->bB
- CKKW may tell us something about higher multiplicity final states

1. pp->WW jet
2. pp->H + 2 jets
 1. background to VBF production of Higgs
3. pp->tT bB
 1. background to tTH
4. pp->tT + 2 jets
 1. background to tTH
5. pp->WWbB
6. pp->VV V + 2 jets
 1. background to WW->H->WW
7. pp->VV V + 3 jets
 1. general background to new physics
8. pp->VV V V
 1. background to SUSY trilepton