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In discrete systems the number density, defined as the number of particles 

per unit volume, is subject to fluctuations depending on the size and location of the 

sampling volume. Fluctuations in the local density or pair distribution function 1-4, 

as determined from X-ray or neutron diffraction experiments, die out quickly in 

disordered materials but persist in crystals. The Gauss circle problem 5, 6 is a 

classic unsolved problem in mathematics, that looks at the fluctuations in the 

number of points on a square grid that lie inside a circle as the radius increases. A 

connection between these two problems leads to new insights into both problems. 

Here we show that for a single atom at the origin, fluctuations persist out to very 

large distances and the pair distribution function does not decay, even in the case 

of a random system; only disappearing after ensemble averaging. This counter-

intuitive result means that structural information may be extracted from the pair 

distribution function at much larger distances in crystals giving valuable 

information about the size of nano-crystals and strained regions. 
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Measurements of the density of materials have been an important characterization 

method since the time of Archimedes. The atomic pair distribution function (PDF) has 

been used to study the local density in disordered materials since the 1930’s 1, 2. The 

PDF is experimentally accessible by Fourier transforming X-ray or neutron diffraction 

data 3. More recently it has been successfully applied to the study of disorder in 

crystalline and nanocrystalline materials; these developments being made possible by 

powerful modern x-ray and neutron sources and advanced computing 4. The technique 

has particular applicability for studying nanocrystals that do not have long-range order 

and cannot be studied using conventional crystallographic techniques. In this case, 

information about the size and shape of the nanocrystalline domains could be extracted 

from the decay of the PDF with distance, if it were known that in a crystal the 

fluctuations in the PDF persist indefinitely out to large distances. To our knowledge this  

 

(A)                                            (B) 

Figure 1. (A) a regular grid of points is enclosed by a circle, while in (B) there is 

a set of random points. To calculate the pair distribution function one point is 

chosen as the origin of a circle of radius r. Only those sites inside the red 

annulus of width σ  contribute to the value of PDF at a distance r. 

is the first report concerning such behaviour. We show that these fluctuations can be 

calculated analytically for the PDF of a single atom in a random structure. Only after 
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averaging the PDF over all the atoms in the sample do these fluctuations disappear. In 

the crystal case, we demonstrate this persistence numerically. 

In the first half of the nineteenth century, the German mathematician, Carl 

Friedrich Gauss put forward what has come to be known as the Gauss circle problem. 

This involves counting the number of points  on a square grid with unit spacing 

inside a circle of radius 

( )rN

r , as sketched in Figure 1(A). The result is expressed as  

( ) ( )rErrN += 2π  (1) 

where it has been shown 6 that  

( ) θArrE ≤       with    1 73/462/ ≤<θ  (2)  

with  being a constant. If the Gauss circle problem is generalised to a cubic hyper-

grid of points in d  dimensions, then instead of (1) we have 

A

( ) ( )rEdrrN d
d +Ω= /  (3) 

where  is the d-dimensional solid angle (dΩ ππ 4,2 32 =Ω=Ω , etc). The difficulty in 

solving this classic problem is that it focuses on the extreme and very rare fluctuations 

at large r. On the other hand, the root mean square (rms) fluctuations are easier to treat 

and give the result 

( ) ( 12 −= dBrrE )  (4) 

which can be understood by noting that fluctuations take place as points enter and leave 

the circle as it expands (Figure 1(A)), and so the square of the fluctuations is 

proportional to the surface area, with B  being a constant. For d , these rms 

fluctuations correspond to 

2=

2/1=θ , which is ruled out for the extreme fluctuations in the 

Gauss circle problem because of the strict inequality in (2). 
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It is difficult to measure and/or characterize extreme fluctuations, either 

experimentally or in a computer simulation, which makes the Gauss circle problem of 

lasting interest. However rms density fluctuations can be measured, and are important in 

PDF experiments. 

Different statistics, sketched in the two panels of Figure 1, lead to different 

fluctuations. For points that are thrown down randomly, as in Figure 1(B), the squared 

fluctuations are proportional to the volume 

( ) dCrrE =2   (5) 

where C is a constant. 

Fluctuations in  are related to the fluctuations in the PDF that can be 

measured experimentally using X-ray or neutron diffraction from powders with atoms 

arranged in a similar (crystalline) way to that envisaged by Gauss. This leads to the 

surprising insight that fluctuations that were assumed to be decaying in the PDF of 

crystals at large distances, are actually persistent when measured with high resolution. 

The PDF does not measure the number of atoms inside a circle or sphere, but rather the 

number inside a spherical annulus whose width 

)(rE

σ  is determined by the thermal 

vibrational amplitude of the atoms in the solid. This width is indicated by the fuzzy red 

circumferences in Figure 1. 

We consider, for simplicity, the case of materials formed by atoms of a single 

type. We define PDF for a single atom in d-dimensional space as 

])([)( 2
1

oρρ −=
−

rrrG
d

, (6) 

where is the PDF, )(rG oρ is the (uniform) atomic number density and )(rρ  is the 

radial density centered about an atom at the origin. For crystals and glasses in 3d, we 
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assume that the same form is valid in d-dimensions, the radial density with respect to 

atom i  at the origin can be expressed as 7, 8, 9. 

) =

=
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exp[
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σπσ

ρ , (7) 

where ijσ  is the rms deviation of the distance between atoms i and j  from the 

equilibrium value ijr  due to the thermal atomic vibrations. The averaged radial density 

is obtained by averaging )(riρ  over all atoms in the sample 

∑
=

N

i
i r

N
r

1
)(1)( ρρ . (8) 

In simple perfect crystals there is no need to average over different atoms at the origin, 

since every atom has the same environment and hence )()( rri ρρ = . 

The thermal motion of atoms located far away from one another is uncorrelated 
and it can be assumed that σσ =ij  is the same for any pair of atoms more than ~ 15Ǻ 

apart. It is these larger distances that are of interest to us here. 

For the PDF of a solid material, the fluctuations in the annuli shown in Figure 1, 

always have the same r dependence, no matter what the statistics of the atomic structure 

(glass, crystal etc.). This is because in all cases, the rms fluctuations associated with the 

number of atoms in the annulus, scale as the square root of the surface area. Because of 

this, the fluctuations associated with the PDF as defined in (6) do not decay with 

distance, but rather persist out to arbitrarily large distances with constant amplitude. 

To understand this unexpected behaviour, it is convenient to explore the case of 

a completely random distribution of points, shown in Figure 1(B). This provides a 

model system that is exactly soluble in any dimension, and which we have found to be 

useful in giving insights to both the Gauss circle problem and the PDF behaviour at 
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large distances. In this model, the positions of two atoms or points can coincide. Since 

the PDF oscillates around zero, we calculate the square of the PDF averaged over 

different random distributions of the points. Denoting this statistical averaging by ...... , 

we have from equation (6) 

212

211
2 ])([

)(
σ

σρσρ
−

−−

Ω
>Ω−Ω<

=>< d
d

d
di

d
d

i r
rrr

rG o . (9) 

In order to estimate  we note that the actual number of particles in the spherical 

annulus of radius 

>< )(2 rGi

r  and thickness σ  is given by , while )(1 rrN i
d

d σρ−Ω= oσρ1−Ω= d
d rN is 

the expected or average number of particles. For such random systems 10, we expect 

NNN ≈>−< 2][ , and hence )(( 12
d

d
di rrG ΩΩ − σσρo ()() 212 d

d r ≈Ω − ρσ o) ≈><  does not depend 

on distance meaning that the fluctuations in the PDF with respect to single particular 

site at the origin do not decay at large distances. An exact calculation 11 shows that there 

is an additional factor π2  for all dimensions in the denominator giving 

d
i rG

Ω
=><

σπ
ρ

2
)(2 o . (10) 

This result is very helpful, as all rms fluctuations within an annulus give a 

similar result; with only the constant in (10) changing with the statistics, if say we 

transfer our attention from random points as shown in Figure 1(B) to a regular grid of 

points, as shown in Figure 1(A) for the Gauss problem. Although the random 

distribution of points fluctuates all over the volume, it is only the fluctuations in an 

annulus of width σ  that are relevant for the PDF. In the Gauss circle problem, there are 

only fluctuations near the surface, as the points inside the circle are not subject to  
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Figure 2.  The calculated PDF for a 100,000 atom model 12 of amorphous 

silicon with a mean Si - Si nearest neighbour distance of 2.4Ǻ and with a 

thermal width that approaches 1.0=σ Ǻ at larger distances. The panels A, B, C 

are for a single atom at the origin, averaged over 10 atoms at the origin, and 

averaged over 20000 atoms at the origin respectively. 

fluctuation, being fixed on a grid. Hence both problems lead to the same distance 

dependence of the fluctuations, and  does not decay in any dimension for any 

statistics. Of course this is only true for solids (crystals, glasses etc.), where each atom 

is constrained to vibrate about a fixed equilibrium site. In liquids the PDF associated 

with a single site would decay due to diffusion. 

>< )(2 rGi

The key is that if sufficient randomness is present, then the fluctuations associated 

with the annuli in Figure 1, have the same r dependence, and are in the same 

universality class. If some other shape were used, instead of a circular annulus, for 

example a square annulus with the square grid of lattice points, randomness would be 

absent, and there would be much larger fluctuations at large distances, as whole lines of 

atoms could pass in and out of the square annulus. 

The PDF can be used to extract information about the atomic geometry in solids 

with the peak-widths being determined by thermal atomic vibrations 7,8. Although, to 
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the best of our knowledge, there have been no calculations of a PDF for a solid at really 

large distances, it seems that there has been a belief that the amplitude of the peaks in 

the PDF should decay as the distance increases even for perfect crystals. Such reasoning 

goes as follows: since the value of )(riρ  is determined approximately by the number of 

atoms inside the spherical annulus of radius r  and fixed thickness σ , one can expect 

that )(riρ  converges to oρ  as the volume of the annulus increases with r  and this leads 

to lack of any structure in the PDF at large distances. Such reasoning is quite misleading 

as the fluctuations do indeed persist. 

The PDF calculated with respect to a single atom in amorphous Si using )(riρ as 

)(rρ  in (3) is shown on panel A of Figure 2. Panels B and C show PDFs corresponding 

to )(rρ  that was obtained by averaging )(riρ  over 10 and 20000 different atoms 

respectively. This PDF is calculated for a model structure 13, 14 of amorphous silicon 

with thermal widths corresponding to room temperature. Figure 2 clearly shows that the 

increase of the volume of the annulus with r  does not lead to the decay of the PDF – 

rather it is the averaging over the atom at the origin that leads to such decay. As all 

atoms are equivalent in a crystal, there is no averaging and hence no decay in the 

fluctuations which persist as in seen in Figure 3 for the computed PDF in crystalline 

nickel.  

When a single atom is at the origin, the fluctuations persist out to large distances. 

When an average is performed over a sufficient number of atoms at the origin, as shown 

in Figure 2, then the amplitude of peaks quickly decays as the distance increases. This 

averaging occurs naturally in X-ray and neutron diffraction experiments, so that the 

behaviour shown in the bottom panel of Figure 2 is ubiquitous in all amorphous and 

glassy materials 15. Thus, traditionally there has been an interest in the behaviour of 

PDF at small distances, while behaviour at large distances is rarely discussed. 
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Figure 3.  The pair distribution function for crystalline nickel at 15K shown over 

various distance intervals of 20Ǻ. The blue lines are calculated using a force 

constant model for the thermal widths that approach 06.0≅σ Ǻ at large 

distances. The nearest neighbour nickel separation is 2.5Ǻ. Notice that the 

fluctuations in the lower panels are statistically self-similar and do not decay. 

The red lines result from high resolution neutron diffraction data taken 15K on 

the NPDF diffractometer at Los Alamos National Laboratory. 

It can clearly be seen that the PDF, calculated for crystalline nickel at room 

temperature (Fig. 3), does not decay at large distances. The experimental results for 

crystalline nickel match the computed results well up to 20Ǻ and even to 50Ǻ, but do 

eventually decay as seen in the second panel of Figure 3. This is due to instrumental 

resolution and is not an intrinsic feature. With improved experimental techniques it 

should be possible to see structure in crystalline materials up to 100Ǻ and eventually 

even further.  

We emphasize that the PDF with respect to particular atom can not be measured 

by any presently known technique. In any experimental measurement, the averaging 
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which places all at the origin is automatically performed. However even for perfect 

crystals the experimental PDF obtained from the diffracted scattering intensity will 

eventually decay at large distances due to the finite instrumental resolution, as shown in 

the second panel of Figure 3. 

The pair distribution function only decays at large distances if different atoms at 

the origin have different atomic environments. Therefore for perfect crystals the pair 

distribution function does not decay. This means that the measured rate of decay of the 

measured pair distribution function for very good crystals could be used to test 

instrumental resolution. The decay of the PDF at large distances can also be used to 

investigate the sizes of nano-crystals and strained regions. The persistence of 

fluctuations in the pair distribution function has a connection to a value of the rms 

fluctuations for the Gauss circle problem in d-dimensions, which gives a lower bound 

( ) θ<− 2/1d  to the possible range of extreme fluctuations. 
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