
Chapter 4

Quantum correction to the Pair

Distribution Function calculated

classically.

4.1 Introduction

Recently, due to the subtleness of the protein folding problem especially, there

is a demand for different techniques that will allow an accurate study of molecular

structures and their dynamics, yet will not require time-consuming calculations, at

least for relatively small molecules.

The pair distribution function (PDF), that can be obtained by Fourier transform

of powder diffraction data, traditionally has been to describe short-range correlations

in atomic positions.

In recent years a technique has been developed that allows one to achieve an

extremely good agreement between calculated and experimental PDFs for crystalline

materials. [59, 36, 37].

Molecular Dynamics or Monte Carlo techniques are usually implemented in order
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to study molecular structures and their dynamics. Thus, quantum effects are usually

ignored. Other approaches, like the Car-Parinello method [60], that are based on

quantum mechanics, are more time consuming than classical approaches and only

feasible for a small number of atoms.

Accurate experimental PDFs can be obtained from X-ray or neutron diffraction

experiments. Thus, in order to use PDFs to compare modeled molecular structures

and their dynamics with real molecular structures and their motion, it is necessary to

calculate molecular PDFs accurately. It is possible that PDFs obtained in classical

calculations, in ignorance of QM effects, do not provide sufficient accuracy any more.

Thus, it is important to estimate the role of QM effects in calculations of PDF

for molecules. Further, we will see that the accuracy of PDFs calculated using clas-

sical methods can be significantly improved without switching to QM calculations

completely, but by implementing some quantum corrections to classically calculated

PDFs.

It is known, that even at zero temperature, if it would be accessible, atoms would

vibrate near their equilibrium positions due to the completely quantum effect that is

called zero-point motion [63, 64]. This effect is completely missing in classical MC or

MD calculations.

As was already discussed in the previous chapters, the width of the peaks in the

PDF of solid materials is determined by the mean square deviation of the distance

between a pair of atoms from its equilibrium value. Thus, at low temperatures es-

pecially, ignorance of zero point motion in classical calculations should result in a

peak-width that is (significantly) smaller than the one that occurs in reality.

In this chapter the role of atomic zero point motion is discussed. The size of the

effect is estimated by comparing the dependencies of the mean square displacements

of a particle in the Morse potential on temperature in QM and CM calculations. We

used a Morse potential because it was developed and proved to be useful in modelling
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the properties of diatomic molecules. This potential is also convenient because it

allows an exact QM solution. After that we develop a technique that allows to take

into account the effect of zero point motion in PDFs calculated classically for more

complex molecules. The same method is used to correct the classically calculated

heat capacitance.

Usually, even in very simple molecules, there are different energy scales associ-

ated with the bond-stretching, angle-bending, dihedral angles rotations and so on.

Although our correction can be applied to all pairs of atoms, it is the most important

for those pairs that strongly interact with each other so that the energy associated

with this pair (at a given temperature) is still almost the ground state energy of the

corresponding vibrational mode. Thus, our correction is most important for those

pairs of atoms that are close to each other, while the atoms that are further away

could be treated classically. It means that the correction affects mostly the shape of

PDF at smaller distances.

Molecules are usually in some environment that also contributes to the value of

PDF at a particular distance. Often there are many molecules that form a liquid.

Intermolecular interactions are usually much weaker than intramolecular interactions

and thus they can be treated mostly classically, i.e. with MC or MD technique. In

order to calculate accurately the PDF for a real samples it is necessary first of all to

be able to calculate accurately the PDF for a single isolated molecule. That is the

question that we address in this chapter.

Thus, our technique suggests the following algorithm for more accurate calcula-

tions of PDFs. The initial PDF can be extracted from classical MC or MD simulations

that provide coordinates of atoms in a molecule as a functions of time, i.e. molec-

ular trajectory. This modeled PDF already can be compared with the experimental

PDF. Then, in order to achieve a better agreement between modeled and experi-

mental PDFs quantum correction can be applied to the PDF obtained from classical
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simulations.

In this chapter, we at first consider the case of exactly solvable Morse potential

for a diatomic molecule. We use this example to demonstrate the precision of classical

calculations of PDF and the importance of the quantum correction. Another quantity

that can be corrected with our method is the heat capacitance that was calculated

by classical methods.

After that, in an attempt to use our correction for more complex molecules, we

apply our method to the C6H14 molecule. At first we study the role of quantum

corrections at very low temperatures when the molecule is in one of the equilibrium

configurations and it can be assumed that the atoms only slightly vibrate near about

their equilibrium positions. If the amplitudes of atomic vibrations are small enough,

it can be assumed that their motion is harmonic. In this case the problem could

be solved exactly using either classical or quantum approaches. Thus, the role of

quantum effects can be estimated at different temperatures. Finally, we calculate the

PDF for the C6H14 molecule at higher temperatures when the potential cannot be

considered as harmonic any more and at even higher temperatures, when the molecule

becomes flexible.

In our calculations we used the “TINKER” molecular dynamics simulation pack-

age that can search for equilibrium configurations and calculate eigenfrequencies and

eigenvectors of molecular vibrations in these configurations. It was also used to run

molecular dynamics simulations at a particular temperature. The obtained molecular

trajectories (coordinates of atoms as a function of time) were used in calculations of

PDF.
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4.2 Pair Distribution Function for a single molecule

The experimental PDF function Gex(r) is obtained from the powder diffraction

data via a sine Fourier transform of the normalized scattering intensity S(Q):

Gex(r) =
2

π

∫ ∞

0

Q[S(Q)− 1] sin (Qr)dQ (4.1)

where Q is the magnitude of the scattering vector. For elastic scattering Q =

4π sin θ/λ with 2θ being the scattering angle and λ the wavelength of the radiation

used.

On the other hand, the PDF is related to the structure of the material. The

PDF is simply the bond length distribution of the material weighted by the respective

scattering powers of the contributing atoms. It can be calculated from the structural

model using the relation:

Gc(r) = 4πr{[ 1

4πr2

∑
i

∑
j

bibj
< b2 >

δ(r − rij)]− ρo}, (4.2)

where the sum goes over all pairs of atoms i and j separated by rij within the model

sample. The scattering power of the atom i is bi and < b > is the average scattering

power of the sample. In the case of neutron scattering bi is simply the scattering

length, whereas in the case of X-rays it is the atomic form factor evaluated at a given

value of Q. For Q = 0 the value bi is simply the number of electrons of atom i.

The first term in square brackets in (4.2) represents radial density ρ(r) normalized

in such a way that the number of atoms in the spherical annulus of thickness dr is

given by 4πr2ρ(r)dr. In solid materials, where atoms vibrate near their equilibrium

positions δ(r − rij)–functions in (4.2) should be substituted with Gaussians, whose

width σ2
ij is determined by the mean square deviation of the rij from its equilibrium

value: σ2
ij =< (rij − r̄ij)

2 >. For our purposes it is convenient to define, instead of
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Gc(r), a different function g(r) to which we will refer to as the PDF. Summarizing

we can write:

g(r) ≡ 4πr2ρ(r) =
∑

i

∑
j

bibj
< b >2

exp [− (r−r̄ij)
2

2σ2
ij

]√
2πσ2

ij

(4.3)

In order to accurately calculate PDF it is necessary, in particular, accurately calculate

the peak width σ2
ij for the atoms that belong to the same molecule. That is the issue

that we discuss in this work.

Substitution of δ-functions with Gaussians occurs due to the time averaging of

the distances between atomic pairs. If vibrations would not be small, for example if

a molecule becomes flexible, δ-functions should be substituted not by Gaussians, but

by normalized probabilities to atoms in the pair at a given distance. For a particular

pair, the shape of the probability function can be rather complicated. For example, it

can contain several peaks that correspond to the different equilibrium configurations.

4.3 An example of Morse potential. The idea of

the method.

Assume, for simplicity, that we are interested in an accurate calculation of the

PDF for a diatomic molecule. Also assume that the only variable on which potential

energy U depends is the deviation x = r − ro of the distance r between the atoms

from its equilibrium value ro. If there is only one minimum in U = U(x) then the

molecule has only one vibrational mode.

In the center of the mass the Hamiltonian of the system can be written as:

H =
p2

2µ
+ U(x), (4.4)
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where µ = m/2 is the reduced mass.

In the limits of low and high temperatures, this problem could be solved approx-

imately. At low temperatures, when the deviation of the distance between the pair of

atoms from its equilibrium value is very small, instead of the potential U(x) we use

the harmonic approximation:

UH(x) ' Uo +
µω2(x− xo)

2

2
, (4.5)

so that we can write:

H =
p2

2µ
+
µω2(x− xo)

2

2
. (4.6)

(It can be assumed, without changes in the results that Uo = 0) The solution of the

problem in the harmonic approximation is well known. The energy levels are given

by:

En = h̄ω[n+
1

2
]. (4.7)

In the harmonic potential the average values of kinetic and potential energies are the

same: < Ekin >=< Epot >= Etot/2. Thus

<
p2

2µ
>=<

µω2(x− xo)
2

2
>=

1

2
h̄ω[n+

1

2
]. (4.8)

From this we get:

σ2
HQM(T ) ≡< (x− xo)

2 >=
h̄

µω
[n+

1

2
], (4.9)

where abbreviation HQM stands for Harmonic Quantum Mechanics. The Bose-
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Einstein function n(T ) is given by:

n(T ) =
1

exp [ h̄ω
kbT

]− 1
. (4.10)

Expanding this at high temperatures (h̄ω)/(kbT ) � 1 we get:

n(T ) ∼=
kbT

h̄ω
− 1

2
, (4.11)

Thus, at high temperatures:

< (x− xo)
2 >=

h̄

µω

kbT

h̄ω
=
kbT

µω2
(4.12)

If the spacing between the energy levels ∆E = h̄ω is much smaller than kbT (i.e.

h̄ω/kbT � 1) the problem could be solved classically. In the last case, the probability

to find the particle at some coordinate x is given by the Boltzman probability:

PCM(x, T ) =
1

ZCM

exp [−U(x)

kbT
], (4.13)

where

ZCM =

∫
exp [−U(x)

kbT
]dx. (4.14)

So that:

< x >=

∫
xPCM(x, T ), (4.15)

and

< x2 >=

∫
x2PCM(x, T ). (4.16)

94



Thus:

σ2
CM(T ) =< (x− < x >)2 >=< x2 > − < x >2 (4.17)

could be found. In the harmonic case, (U(x) = µω2(x − xo)
2/2): < x >= xo,

Z =
√

2πkbT/µω2 and σ2
HCM(T ) = kbT/µω

2, which is the same result as (4.12).

At higher temperatures, when the amplitudes of atomic vibrations are larger, it

may not be appropriate to use the harmonic approximation for U(x). Instead, it is

necessary to solve the problem for the original potential U(x). Again, as before, if

the spacing between the energy levels is much bigger than kbT the problem should be

solved quantum mechanically. In the opposite limit ∆E � kbT the classical solution

could be employed.

There is another potential U(x) that allows the exact QM solution. That is

the Morse potential[65], which is widely used to model the properties of diatomic

molecules:

UM(x) = −Umin + Uo{1− exp [−αx]}2 (4.18)

= (−Umin + Uo) + Uo[exp [−2αx]− 2 exp−[αx]]

In this potential there is a finite number of the energy levels in the discrete specter.

The values of the energies are given by:

En = (−Umin + Uo)− Uo[1−
αh̄√
2mUo

(n+
1

2
)]2, (4.19)

where n runs over the positive integer values from zero to the maximum value at

which the term in the square brackets is still positive.
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Figure 4.1: The blue curve shows the Morse potential for the N2 molecule. The red
curve shows the harmonic approximation to the Morse potential at small values of x.
The blue and red horizontal lines are the energy levels for the Morse and harmonic
potentials respectively.
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The non-normalized wave functions are given by:

ψn(x) = exp [−ξ
2

2
]ξswn(ξ), (4.20)

where

ξ =
2
√

2mUo

αh̄
exp (−αx), (4.21)

and

s =

√
2mUo

αh̄
− (n+

1

2
). (4.22)

Finally wn(ξ) = F (−n, 2s + 1, ξ) is the confluent hypergeometric function that can

be found by the series:

F (α, γ, z) = 1 + α
γ

z
1!

+ α(α+1)
γ(γ+1)

z2

2!
(4.23)

+α(α+1)(α+2)
γ(γ+1)(γ+2)

z3

3!
+ α(α+1)(α+2)(α+3)

γ(γ+1)(γ+2)(γ+3)
z4

4!
+ ...

In our case, when α = −n, the confluent hypergeometric function is a polynomial of

degree n.

If the energy levels and the wave functions are known, the probability to find the

particle at temperature T at position x is given by:

PQM(x, T ) =
1

ZQM

nmax∑
n=0

|ψn(x)|2 exp [− En

kbT
], (4.24)

where

ZQM =
nmax∑
n=0

exp [− En

kbT
]. (4.25)
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Then < x > and < x2 > could be found as:

< xQM(T ) >=

∫
xPQM(x)dx, (4.26)

and

< x2
QM(T ) >=

∫
x2PQM(x)dx. (4.27)

Finally from (4.26,4.27) we get:

σ2
QM(T ) =< (x− x̄)2 >=< x2

QM(T ) > − < xQM(T ) >2 . (4.28)

In these calculations the continuous spectrum was ignored. Thus, being exact at

low temperatures these QM calculations should fail at very high temperatures.

For the harmonic potential, the sums (4.24, 4.25) could be explicitly calculated

[64] with the following result:

PHQM(x, T ) = (
α

π
)

1
2 exp [−αx2], (4.29)

where

α =
mω

h̄
tanh [

h̄ω

2kbT
]. (4.30)

If the temperature is high enough, instead the Boltzman probability (4.13, 4.14,

4.17) with U(x) = UM(x) could be used to calculate σ2. MC and MD simulations,

being classical, produce σ2 that correspond to the Boltzman distribution at all tem-

peratures. Thus, their results are not valid at very low temperatures.
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Figure 4.2: The squares of the wave functions of the Morse potential for the N2

molecule. The little figures on the left from the top to the bottom show normalized
wave functions for n = 0, 1, 2, 3, 7. The figures on the right from the top to the bottom
show normalized wave functions for n = 10, 20, 30, 40, 50. There are 61 energy levels
for the chosen values of parameters.
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4.3.1 Molecule N2

As an example, we consider the Morse potential UM(x) parameterized for the

N2 molecule. The blue curve on Fig.4.1 shows the corresponding Morse potential.

It was obtained by performing calculations with the Gaussian98 [61, 62] program

that was approximately solving the Shrödinger equation for the electrons when the

distance between the nucleus of N atoms was fixed. The equilibrium distance ro =

1.0828 Åand the equilibrium energy Umin = 2947.0188 eV were found in a separate

optimization run. In the same way, the energies EN of the individual N atoms were

calculated. Double of this energy is 2EN = −Umin + Uo = −2936.6608 eV. This

information is sufficient to construct Morse potential (4.18). The red curve is the

harmonic approximation for the Morse potential at small values of x = r− rmin. The

blue horizontal lines are the quantum energy levels of the Morse potential, while the

red dashed lines are the energy levels of the corresponding harmonic potential. For

the used values of parameters, there are 61 energy levels in the Morse potential.

The squares of the normalized wave functions of the Morse potential for the N2

molecule are shown in Fig. 4.2. The wave functions corresponding to n = 0, 1, 2, 3, 7

are on the left and for n = 10, 20, 30, 40, 50 are on the right. Thus, for small n the

particle could be found only near the minimum of the potential ro. As n increases,

due to the asymmetry of the potential, the probability density, as well as < r >

shifts to the right, and thus the particle spends more and more time away from the

minimum.

Figure 4.3 shows probabilities to find the particle at a given distance in the Morse

potential and its harmonic approximation at different temperatures. For a diatomic

molecule these probabilities represent the pair distribution function. At very low

temperatures the CM results for Morse potential and its harmonic approximation

almost coincide. However, the QM results are different. In QM, the ground state

energies for the Morse and Harmonic potentials are separated from the bottom of the
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Figure 4.3: The Pair Distribution Functions or the probabilities to find the particle
at a given distance in the Morse potential or its harmonic approximation at temper-
atures 100K, 1000K, 2000K and 10,000K. The red and orange curves represent QM
(4.24,4.25) and CM (4.13,4.14) results for the Morse potential. The blue and green
curves represent QM and CM results for the harmonic approximation to the Morse
potential. The black curves represent CM results for the Morse potential corrected
by the convolution (4.34) with σ2

corr obtained from the harmonic approximation to
the Morse potential.
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potential by finite (slightly different) energy values. Because of it the anharmonicity

of the Morse potential is reflected even in the ground state of the particle. This

leads to the slightly different PDFs that were obtained using QM on the Morse and

harmonic potentials. At temperature 10,000K the non-Gaussian line shape of the

PDFs obtained on the Morse potential are well pronounced. The depth of the Morse

potential corresponds to ≈ 100, 000 K

Figure 4.4 shows dependencies of σ2(T ) on temperature T that were calculated

in four different ways. The red curve shows the result of the QM calculation for the

Morse potential, where the summation in (4.24,4.25) were performed (numerically)

over the 61 energy levels. At the temperatures plotted T < 10, 000 K this result

is not any different from the result that could be obtained by the summation over

the first 35 energy levels. Thus, it can be assumed that the range of integration in

(4.28) is (−∞,∞), while for the calculation the range (0.5, 2.5) Åwas used. The

orange curve shows the result of CM calculations of σ2(T ) for the Morse potential

(4.13,4.14,4.17). There is a subtle point concerning the range of the integration in

(4.17). This question is discussed in Appendix B. The blue and green curves show

QM (4.9) and CM (4.12) results for the harmonic potential.

Note that σ2
CM(T ) calculated classically for both: the Morse and Harmonic po-

tentials, converges to zero as T → 0. In contrast, σ2
QM(T ) calculated by QM methods

for both potentials converge to a finite non-zero value as T → 0. This is the effect

called zero-point motion. In other words, atoms in QM are not motionless even at

zero temperature.

Classical MD or MC simulations performed on the Morse and Harmonic poten-

tials would lead to the orange and green curves respectively. Thus, classical methods

lead, especially at low temperature, to significantly incorrect results. In order to

obtain the correct results, it is necessary to use the QM approach.

Potentials that are used to model molecular motion for complicated molecules
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Figure 4.4: The dependencies of σ2 on temperature T that were calculated in four
different ways. The red and orange curves show QM (4.24, 4.25, 4.28) and CM (4.13,
4.14, 4.17) results for the Morse potential. The blue and green curves show QM (4.9)
and CM (4.12) results for the harmonic approximation to the Morse potential. The
black curve shows the CM results on the Morse potential with correction (4.31) that
comes from the harmonic approximation to the Morse potential.
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do not allow exact QM calculations. The harmonic approximation still could be used

to solve the problem at low temperatures. It can be employed if equilibrium configu-

rations, vibrational frequencies and vibrational eigenvectors are known. In this case,

it is possible to obtain both QM and CM solutions. But the harmonic approximation

is not valid in the most interesting regime when more complex molecular motions

appear due to the anharmonicity of the real potential. On the other hand, MD and

MC simulations allow to take into account the anharmonicity of the real potential.

Thus it would be valuable to find a way to correct the results of the CM calculation in

such a way that at very low temperatures the corrected results would reproduce the

results of low temperature QM calculations, while at high temperatures they would

track the anharmonicity of the real potential.

Consider the following expression:

σ2(T ) = σ2
CM(T ) + [σ2

HQM(T )− σ2
HCM(T )], (4.31)

where under σ2
CM(T ) we mean the CM results on some potential U(x) that could be

obtained from the Monte Carlo or Molecular Dynamics simulations and thus sensitive

to the anharmonicity of the real potential. Under σ2
HQM(T ) we mean the QM solu-

tion for the harmonic approximation to U(x) in the vicinity of ro. Finally σ2
HCM(T )

stands for the CM solution for the harmonic approximation to U(x). At very low

temperatures, σ2(T ) = σ2
HQM(T ), since σ2

CM(T ) ' 0 for the both potentials. As the

temperature increases, see Fig.4.4, the difference of the two terms in square brackets

in (4.31) decreases and thus becomes: σ2(T ) ' σ2
CM(T ). Thus, the form (4.31) repro-

duces the correct behavior of the real σ2(T ). It follows from Fig.4.4 that results that

were obtained using CM on the Morse potential, and corrected by (4.31), the correc-

tions that comes from the harmonic approximation to the Morse potential reproduce

the exact QM solution to the Morse potential in the whole range of the reasonable
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temperatures rather well.

In general the line shape of the PDF for a pair of atoms obtained in MD or MC

simulations is not Gaussian. Thus the correction (4.31) could not be applied directly

in order to correct (4.3) since the σ2
ij are not known. It is known that:

∫ ∞

−∞

1√
2πσ2

1

exp [−(r − r′)2

2σ2
1

]
1√
2πσ2

2

exp [−(ro − r′)2

2σ2
2

]dr′

=
1√

2π(σ2
1 + σ2

2)
exp [− (r − ro)

2

2(σ2
1 + σ2

2)
]. (4.32)

Thus, the convolution (4.32) of one Gaussian with another increases the width of the

original Gaussian. If instead of one Gaussian another function that has some peak

in it would be used, then the convolution still would increase the width of the peak,

while the height would decrease.

In MC or MD simulations, the distance between a pair of atoms would oscillate

around some average value, at low enough temperatures. Thus, the PDF obtained

from MC or MD simulations would represent some distribution with a peak. Thus

the correction (4.31) still can be applied by the convolution:

G(r) =

∫
GMD(r′)

1√
2πσ2

corr

exp
(r − r′)2

2σ2
corr

dr′ . (4.33)

where the correction width is given by:

σ2
corr(T ) = [σ2

HQM(T )− σ2
HCM(T )]. (4.34)

In (4.33, 4.34) GMD(r′) stands for the PDF (distribution of distances) of the atomic

pair obtained from the MC or MD simulations and G(r) stands for the corrected

PDF. The weighted sum over the different pairs leads to the corrected PDF (4.3).

The black dashed curves on Fig.4.3 show the CM results on the Morse potential

(4.13,4.14) corrected by the convolution (4.33,4.34).
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4.3.2 Correction to the heat capacitance

The same philosophy that was used to correct σ2(T ) could be used to correct the

classically calculated heat capacitance. According to QM, the average value of the

total energy of an oscillator (a diatomic molecule) in a potential (Morse or Harmonic)

could be found as:

< EQM(T ) >=
1

ZQM

nmax∑
n=0

En exp [− En

kbT
], (4.35)

where ZQM is given by (4.25).

In the classical approach, the average value of the total energy could be found

as the sum of the average values of kinetic and potential energies:

< ECM(T ) >=< K(T ) > + < U(T ) > . (4.36)

The value of the kinetic energy at temperature T is given by [64]:

< K(T ) >=
1

2
kbT, (4.37)

while the average value of the potential energy could be found as [64]:

< U(T ) >=
1

ZCM

∫
U(x) exp [−U(x)

kbT
]dx, (4.38)

where ZCM is given by (4.14). See Appendix (B) on the integration range.

If the average value of the total energy for a diatomic molecule is known as a

function of temperature, then the vibrational heat capacitance could be found as:

C(T ) =
dE(T )

dT
. (4.39)
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Figure 4.5: Average energies for a particle in the Morse potential and its harmonic
approximation as a function of temperature. The red and orange curves represent
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potential. The black dashed curve shows the CM solution for the Morse potential
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107



Figure 4.5 shows the dependence of the total average energy for a particle in the

Morse and Harmonic potentials. The values of parameters are the same that were used

to obtain Fig.4.4. The red and orange curves were calculated via the QM (4.35,4.25)

and CM (4.36,4.37,4.38) for the Morse potential. The blue (QM) and green (CM)

curves were calculated for the harmonic approximation to the Morse potential.

Again, as we did in (4.31), we can consider the correction of the CM results for

the Morse potential by using the results from the harmonic approximation to the

Morse potential:

E(T ) = EMCM(T ) + [EHQM(T )− EHCM(T )]. (4.40)

The fact that the corrected curve is very close to the exact QM solution obtained on

the Morse potential shows that this correction method also works well for the average

energy in a wide range of temperatures.

The heat capacitance can be obtained by the differentiation (4.39) of the energy

curves. Figure 4.6 shows how the heat capacitances found by the differentiation of

the energy curves on Fig.4.5 depend on temperature.

Since in the harmonic potential, the average values of the kinetic and potential

energies are the same and due to (4.37) the classical heat capacitance for the particle

in the harmonic potential is just kb or unity in units used on Fig.4.6. The behavior

of the QM solution for the harmonic potential is also well known [64]. Thus, we can

see that our correction method again leads to a very good agreement between the

approximate (corrected) and the exact (QM Morse) results.

4.4 Vibrations of large molecules

Let us assume initially that atoms in the molecule vibrate near their equilibrium

positions with amplitudes of vibrations that are much smaller than any interatomic
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Figure 4.6: The dependencies of the heat capacitances for the particle in the Morse
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potential. All these curves were obtained by the differentiation (4.39) of the corre-
sponding energy curves on Fig.4.5.
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distances. Thus for the moment we ignore the possibility of the large-scale atomic

motion that can be caused by the flexibility of the molecule. In order to calculate the

PDF it is necessary to calculate the mean square deviations of the distances between

the atoms from their equilibrium values: σ2
ij. Let the coordinates of atoms i and j

be ~ri = ~ro
i + ~ui and ~rj = ~ro

j + ~uj, where ~ro
i and ~ro

j are the equilibrium coordinates

of atoms i and j, while their instantaneous displacements are ~ui and ~uj. Let also:

~rij = ~rj − ~ri, ~r
o
ij = ~ro

j − ~ro
i and ~uij = ~uj − ~ui. Then it is easy to show, under the

assumption uij � ro
ij, that:

σ2
ij =< (rij − ro

ij)
2 >∼=< [r̂o

ij~uij]
2 > (4.41)

=
∑
α,β

r̂oα
ij r̂

oβ
ij < (uiαuiβ − uiαujβ − ujαuiβ + ujαujβ) >

where r̂o
ij = ~ro

ij/r
o
ij. The indexes α, β stand for the Cartesian coordinates of the

vectors.

We consider here the vibrations of a molecule that consists of N atoms with

masses mi. The potential energy of the molecule U(~x) is a function of the coordinates

~x of all the atoms. There are 3N components xi of the vector ~x. Thus the index i

runs over all the atoms and over all their Cartesian coordinates.

Let us assume that the atoms vibrate near their equilibrium positions ~xo and

that their instantaneous coordinates are ~x = ~xo + ~u. If vector ~u is small enough the

potential energy could be expanded near the equilibrium (~xo):

U(x) ∼= Uo +
1

2

∑
ij

Dijuiuj, (4.42)

where

Dij =
∂2U(~xo)

∂xi∂xj

(4.43)

110



is a real symmetric matrix. Thus for the Hamiltonian we have:

H =
∑

i

p2
i

2mi

+
1

2

∑
ij

Dijuiuj. (4.44)

It is convenient to introduce new variables

pi =
√
miπi, ui = qi/

√
mi (4.45)

that will transform (4.44) into:

H =
∑

i

π2
i

2
+

1

2

∑
ij

D̃ijqiqj, (4.46)

where D̃ij = Dij/
√
mimj.

Since D̃ij is a real and symmetric matrix it could be brought to the diagonal

form by the linear transformations of qi :

qi =
∑

λ

eλ
iQλ, (4.47)

where ~eλ could be chosen as real, orthogonal and normalized:

∑
i

eλ
i e

λ′

i = δλλ′ . (4.48)

In this case the transformation:

πi =
∑

λ

eλ
i Pλ (4.49)

will also bring to the diagonal form the first sum in (4.46). Thus we can rewrite
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Hamiltonian as:

H =
∑

λ

1

2
[P 2

λ + ω2
λQ

2
λ]. (4.50)

The second quantization:

Qλ =
1

2

√
h̄

ωλ

(a+
λ + aλ), Pλ =

i

2

√
h̄ωλ(a

+
λ − aλ), (4.51)

with [P,Q] = ih̄ so that a+
λ aλ′ − aλ′a

+
λ = δλλ′ transforms (4.50) into:

H =
∑

λ

h̄ωλ(a
+
λ aλ +

1

2
) (4.52)

as it should. Thus < ψ|H|ψ >=
∑

λ h̄ωλ(n+ 1/2).

From (4.45,4.47,4.51) follows that:

ui =
∑

λ

eλ
i

√
h̄

2miωλ

(a+
λ + aλ). (4.53)

Thus, separating the atomic and Cartesian coordinates, we get:

< ψ|uiαujβ|ψ >=
∑

λ

h̄

2ωλ

(nλ +
1

2
)
eλ

iα√
mi

eλ
jβ√
mj

. (4.54)

It is easy to show, using (4.54), that (4.42) transforms into:

σ2
ij =

∑
λ

h̄

2ωλ

[nλ +
1

2
] {

(~eλ
i r̂

o
ij)√
mi

−
(~eλ

j r̂
o
ij)√
mj

}2, (4.55)

where nλ is the Bose-Einstein function (4.10) that at high temperatures can be sub-

stituted by (4.11). It is easy to see that (4.55) in case of the diatomic molecules

(m1 = m2 = m) reduces to ( 4.9), if to take into account that µ = m/2 and

(~eir̂ij)− (~ej r̂ij) = 2.
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MD or MC simulations at low temperatures, when the anharmonicity of the real

potential can be ignored, would lead to (4.55, 4.11), while the correct result is (4.55,

4.10). It is clear from (4.7, 4.9, 4.10, 4.11, 4.12) and from (4.52, 4.55) that the formulas

(4.31, 4.40) used to correct the CM results in case of the diatomic molecule can be

modified in an obvious way in order to correct the CM results that were obtained on

a many-atomic molecule, i.e.:

E(T ) = (4.56)

ECM(T ) +
∑

λ

[EHQM(λ, T )− EHCM(λ, T )].

The width of the peaks can be corrected via

σ2(T ) = σ2
CM(T ) + σ2

corr(T ), (4.57)

where

σ2
corr(T ) =

∑
λ

[σ2
HQM(λ, T )− σ2

HCM(λ, T )] (4.58)

and the index λ runs over different vibrational modes.

From the result of MD or MC calculation only the total (not for the particular

vibrational mode) average values of the ECM(T ) and σ2
CM(T ) could be found.

4.5 TINKER package for molecular modelling and

the C6H14 molecule

In order to demonstrate the role of the quantum corrections (4.56, 4.57) for a more

complicated molecule, it is necessary to find the eigenfrequencies and eigenvectors of

molecular vibrations as well as the results of the classical MD or MC simulations.
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Figure 4.7: The sketch of the C6H14 molecule. The carbon atoms are shown as black
filled circles. The hydrogen atoms are shown as open circles. The numeration of the
atoms coincides with those used in the Fig.4.9 and Fig. 4.10.

There are many different potentials and programs developed for the different kinds

of molecules. One of the most developed potentials are those developed for hydrocar-

bons. One of them is the so called “MM3” potential [66, 67, 68, 69, 70, 71, 72, 73].

One of the programs (a package that includes several different programs) that can

use this potential to optimize the molecular structure, calculate the eigenfrequencies

(ωλ) and eigenvectors (~eλ) in a particular equilibrium configuration and to run MD

at given temperature is ”TINKER” [74, 75, 76, 77, 78, 79, 80]. As an output of MD

simulations (for a single molecule) at given temperature, TINKER provides the coor-

dinates of the atoms, the total energy, the kinetic and potential energies as functions

of time.

We use the C6H14 - molecule as a test example. Figure 4.7 shows the sketch of

the C6H14 molecule, while the Fig.4.8 shows the geometry of the C6H14 molecule in

Long conformation. At room temperature the C6H14 molecule is relatively flexible,
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Figure 4.8: The geometry of the C6H14 molecule in Long conformation.

as we will see. At normal pressure these molecules form a non-toxic and not very

flammable liquid and thus its PDF can be easily measured.

At low temperatures the C6H14 molecule can be in two different conformations,

as follows from MD simulations and structures optimizations with TINKER, which

we call Long and Short. The distances between some atoms in these molecular confor-

mations are shown in the table 4.1. The ground state tension energies (obtained from

Pair of Atoms i− j 1− 4 1− 5 1− 6

Distance between i and j (Long), (Å) 3.94 4.56 5.07

Distance between i and j (Short), (Å) 3.17 4.54 3.81

Table 4.1: The distances between some atoms in Long and Short conformations.
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TINKER) of the molecule in Long and Short conformations are slightly different:

EL = 6.3479 (kcal/mol), (4.59)

ES = 7.1293 (kcal/mol),

where L stands for the Long and S for the Short. The difference in the energies

between these two conformations per molecule in temperature units is:

∆E = ES − EL ≈ 393 (K). (4.60)

4.6 Calculation of PDF for C6H14 molecule

4.6.1 Low temperatures

The blue curves on Fig.4.9 show the probabilities for finding the pairs of atoms

1-2, 1-3, 1-4, 1-5, 1-6 at a given distance obtained from MD simulations at temper-

atures 150 K and 500 K. In the beginning of MD runs, the molecule was always in

an equilibrium Long conformation. At temperature 150 K the molecule remains in

Long conformations during the MD run. At temperature 500K the molecule con-

tinuously switches between different conformations (it is flexible). The time step in

MD simulations was ∆t = 1 femtoseconds. The coordinates of the atoms were saved

after every 1000 MD time steps. The blue curves represent the distributions obtained

from 10,000 different molecular configurations. Thus the total run time was 10,000

picoseconds. The red curves were obtained by the convolution (4.33,4.34) of the blue

curves with the Gaussian whose correction width σcorr that corresponds to the given

pair of atoms for the molecule is in Long conformation.

At low temperature, when the molecule is frozen in the Long or Short configura-

tion, atoms only vibrate slightly near their equilibrium positions. As the temperature
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increases, there can occur transitions between Long and Short configurations. This

behavior could be seen from the change in the peak shape for the pairs of atoms 1-4,

1-5, 1-6 when temperature changed from 150 K to 500 K. At 150 K those peaks are

relatively narrow and symmetric, while at 500 K the peaks become much broader and

their shape indicates that there are two conformations in which the molecule spends

most of its time.

If the molecule during the MD run remains all the time in Long or Short con-

formation it is clear what set of the correction σcorr should be used. If the molecule

changes its conformation during the MD run, it becomes unclear what σcorr set should

be used: from Long or from Short conformation. We will discuss this issue later.

The orange triangles on the Fig.4.10 show how the σ2
CM obtained in MD runs

depend on temperature. The blue and green curves show σ2(T ) that were obtained in

the harmonic approximation from the eigenfrequencies and eigenvectors of molecular

vibrations in the frame of QM (4.55,4.11) and CM (4.55,4.10) respectively. The red

circles were obtained by applying the correction (4.57) to the MD results. Thus

at very low temperatures the results of MD simulations agree with the CM results

obtained in the harmonic approximation, as it should be. However the correct results

at these temperatures are given by the QM results on the harmonic potential (the blue

curve). Thus our correction, if applied, shifts the orange triangles into the red circles

that fit QM results at low temperatures very well. As temperature increases the

anharmonicity of the potential usually makes potential softer, thus increasing σ2(T )

compared with the harmonic case. The sharp increase in the σ2(T ) with increase of

temperature that occurs for some pairs of atoms corresponds to the appearance of

flexibility. Thus the molecule becomes flexible between 200 and 300 K. It is easy to

see, from the numbers of the atoms, that it is the dihedral angles that become flexible.

If the molecular trajectory is known the PDF (4.3) could be found if the distri-

butions of lengths (the blue curves on Fig.4.9) for every pair of atoms will be used
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instead of the Gaussians in (4.3). The correction could be made by the convolution

of the distribution of distances for every pair of atoms with the gaussains (4.33,4.34).

The brown curves on the Fig.4.11 show the PDFs obtained in MD simulations when

the molecule remains in Long conformation before the correction, while the blue

curves show the corrected PDFs. Thus at low temperatures the correction signifi-

cantly changes the shape of the PDF. The role of the correction remains important

at small distances at all temperatures, while at large distances its role decreases as

temperature increases because the widths of peaks that correspond to the atoms that

are well separated become significantly larger in MD simulations.

It is not known in general how many molecules are in a particular conformation.

The relative contributions of different conformations to the total PDF depend on the

shape of the free energy surface. Since the line shape of the free energy is not known

the simplest way to combine the results obtained on different conformations is to

assign the Bolzman weights to the PDFs in different conformations. Thus the weight

for the molecule in Long conformation:

wL(T ) ∝ exp [− EL

kbT
], (4.61)

Thus for the C6H14 molecule at low temperatures the total PDF can be calculated

as a linear combination of the PDFs from Long and Short conformations with the

corresponding Boltzman weights.

G(r, T ) = wL(T )GL(r, T ) + wS(T )GS(r, T ), (4.62)

where GL(r, T ) and GS(r, T ) are the corrected PDFs from Long and Short conforma-

tions. The Boltzman weights wL(T ) and wS(T ) are given by:

wL(T ) =
1

1 + exp [−∆E
kbT

]
(4.63)
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Figure 4.11: PDF for the C6H14 molecule in Long conformation at low temperatures.
The brown curves show the results of MD simulations before the correction is applied.
The blue curves show the results of MD simulations corrected by convolution (4.33,
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and

wS(T ) =
exp [−∆E

kbT
]

1 + exp [−∆E
kbT

]
. (4.64)

so that: wL(T ) + wS(T ) = 1. Table 4.2 shows wL(T ) and wS(T ) for temperatures

50, 100, 150, 200 (K).

Temperature T (K) 50 100 150 200
wL(T ) 0.9997 0.98 0.91 0.85
wS(T ) 0.0003 0.02 0.09 0.15

Table 4.2: Boltzman weights for C6H14 molecule in Long and Short conformations at
different temperatures.

The corrected PDFs for the C6H14 molecule in Long and Short conformations

at different temperatures are shown in Fig.4.12 as the blue and green curves respec-

tively. The red curves in Fig.4.12 show PDFs calculated according to (4.62) with the

Boltzman weights taken from the table 4.2.

4.6.2 High temperatures

In order to use the Boltzman combination of the PDFs in different conformations

to obtain the total combined PDF, the molecule should remain in one or the other

conformation during the MD run, or it is necessary to separate those times (parts of

the molecular trajectory) when the molecule is in one or in the other conformation.

It is necessary to do this because every conformation has its own set of σcorr that was

obtained using the eigenfrequencies and eigenvectors of the molecular vibrations in

the corresponding conformation.

In practice, however, it is impossible to say when the molecule is in one or in

the other conformation. For example even when the molecule remains in Long or

Short conformation the positions of atoms 8 and 9 can interchange during the MD

run. When it happens the molecule is already in a different conformation since atoms
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8 and 9 have different sets of σcorr with respect to the other atoms. Thus although

the geometry of the molecule did not change during the interchange of positions of

atoms 8 and 9, the sets of σcorr should be modified. It seems to be an impossible

task to track all such little changes. Another reason that does not allow separation

of different conformations at high temperatures comes from the observation that

the changes in the distances between some pairs of atoms, due to the vibrations,

become comparable with the changes in the distances caused by the changes in the

conformations. Thus basically it becomes impossible to say when the molecule is in

one or in the other conformation. Thus, at high temperatures, the approach that

combines PDFs in different conformations with the corresponding Boltzman weights

becomes unacceptable.

Instead another approach could be used. In order to obtain the corrected PDF

in Long conformation it is necessary to convolute the PDF obtained from the MD

trajectory in Long conformation with the set of σcorr that was also obtained on the

Long conformation. Assume that instead of convolution performed with the set of

σcorr from the Long conformation we will use the set of σcorr from the Short confor-

mation. How different would the corrected PDFs be when obtained with these two

different sets of σcorr from the same MD trajectory?

The brown curves on Fig.4.13 show PDFs obtained from the MD trajectory at

temperature 50 K when the molecule remains in the Long (top) or in the Short (bot-

tom) conformation depending on initial configuration. The blue solid curve originates

from the convolutions of the MD results from the Long/Short conformations with the

correct sets of σcorr from the Long/Short conformations. The red dashed curves were

obtained by the convolution of the brown curves with the incorrect sets of σcorr: the

MD results from the Long/Short conformations were convoluted with the σcorr from

the Short/Long conformations.

Thus we see that although there are very significant differences between the
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Figure 4.13: The brown curves on both figures show MD results obtained on the Long
(top) and Short (bottom) conformations. The figure on top also shows the corrected
PDFs obtained by the correction of MD results from the Long conformation with the
set of σcorr from the Long (the blue solid curve) and Short (the red dashed curve)
conformations. The bottom figure also shows the PDFs obtained by the correction of
MD results from the Short conformation with the sets of σcorr from Short (blue solid
curve) and Long (red dashed curve) conformations.
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non-convoluted and convoluted (corrected) PDFs the differences between the PDFs

obtained by the convolutions with different sets of σcorr are rather small.

The small differences between the MD results corrected with the different sets of

σcorr could be easily understood. Our correction is the most significant (large σcorr)

for those pairs of atoms that are tightly connected, i.e. by a bond or by an angle. Thus

the correction is significant for those atoms that are close to each other. The mutual

vibrations of such pairs (distance distribution) are slightly affected by the general

conformation of the molecule-they are almost the same for all of them. On the other

hand, if atoms in a pair are far away from each other then the corresponding σcorr are

small in general, independently from the molecular configuration. Thus the correction

is not that important for those pairs in principle. That means that in order to apply

the correction we can convolute the PDF obtained from the MD simulations with a

set of σcorr from any particular configuration. At higher temperatures the differences

between the curves obtained by convolutions with different sets of σcorr(T ) will become

even smaller since σcorr(T ) decrease with increase of temperature (see Fig.4.4,4.10).

Figure 4.14 show PDFs calculated for the C6H14 molecule at different tempera-

tures. The PDFs at temperatures 50 (K) and 150 (K) were obtained by combining

the PDFs from the Long and Short conformations with the corresponding Boltzman

weights. The PDF curves at temperatures 298(K), 500(K) and 800(K) were obtained

by the convolution of PDFs from the MD simulations with the Gaussians with the

correction widths from the Long conformations. It follows from the figure that the

PDFs in the region of r < 3 (Å) only slightly change in the considered interval of

temperatures. The inset that shows the region of 3 < r < 6.5(Å) on a bigger scale

shows how the flexibility of the molecule develops as temperature increases.

The region 3 < r < 6.5 (Å) is the most interesting if the large scale molecular

motion is under consideration. In this region our correction is not very significant

for a single molecule. However, in order to compare the results of calculations with

126



1 2 3 4 5 6

Distance r (Å)

0

500

1000

1500
P

ai
r 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

g(
r)

50 K
150 K
298 K
500 K
800 K

3 4 5 6
0

100

200

300

400

Figure 4.14: Corrected PDFs for the C6H14 molecule at different temperatures. The
inset shows the region between 3 Åand 6.5 Åon a bigger scale.
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the experimental results, it is necessary to calculate the combined PDF from many

different molecules. The PDF from the different molecules can overlap in the region

r < 3 (Å). Thus, in order to extract accurate information about the mutual orientation

of different molecules, (that in addition can put some constraints on a single molecular

motion), it will be necessary to accurately calculate the PDF at small distances, i.e.

in the region where our correction is significant.

4.6.3 Correction to the Heat Capacitance for C6H14 molecule

Figure 4.15 shows the dependencies of the total energy (top panel) and the heat

capacitance (bottom panel) of the C6H14 molecule on temperature.

At low temperatures (T < 150K), the change between the Long and Short con-

formations does not occur. In the beginning of every simulation run the molecule was

in one of the equilibrium conformations. Solid curves are for the molecule in the Long

conformation, while dotted curves are for the molecule in the Short conformation.

Solid and dotted curves are nearly identical.

The MD simulations were performed with the time step 1 femtosecond. The

results of the MD simulations are shown in Fig. 4.15 as the orange curve on the

top panel. The Tinker MD package provides the energies values averaged over 100

MD steps (0.1 picosecond). The total simulation time used to calculate the average

energy values, was 1000 picoseconds. Thus, the average energy values were found

by averaging over 10,000 different energy values, that are themselves are the average

values over 100 MD steps. The MD simulations were performed at temperatures

between 10 K and 1000 K with the temperature at different temperatures with the

step in temperature 10 K .

To obtain the heat capacitance from MD simulations (the orange curve on the

bottom panel), the derivatives of the energy curves (4.39) were calculated numerically

with a temperature step 20 K. As follows from the figure, the precision with which heat
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orange curves and cyan dots represent the result of the MD simulations. The red
curves show the corrected MD results. See more detailed description of the figure in
the text.
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capacitance is calculated significantly decreases when the molecule becomes flexible

(i.e. when temperature is above 200 K).

In another approach the heat capacitance can be calculated from the energy

fluctuations using the formula:

C =
1

T

(< E2 > − < E >2)

kbT
. (4.65)

However, it cannot be applied directly to the results of the MD simulations that we

have because the “TINKER” MD program produces as an output the energy values

averaged over the 100 MD steps. Since at high temperatures the distribution of the

energies for the C6H14 molecule is clearly non-Gaussian, we can not easily correct the

width of the distribution by multiplying it by some constant factor.

One way to overcome this difficulty (besides modifying the code of the program)

is to run MD program for a very long time with a very small time step. In this case,

averaging over 100 consecutive energy values should not have an effect.

It was verified that the time step 0.01 femtoseconds is sufficiently small for T =

100K. Additional simulations were made starting from the molecule in the Long

conformation. The total simulation time was 3000 and 2000 picoseconds that was

sufficient to obtain smooth energy distribution curves. The average energy values,

obtained from these runs are shown as cyan circles in the top panel of Fig. 4.15.

The values of the heat capacitance, obtained from the fluctuation formula (4.65),

turn out to be unreasonably small, approximately two orders of magnitude smaller

than expected.

The values of the heat capacitance, obtained by differentiation (4.39) from these

longer MD runs, are shown as cyan circles in the bottom panel. The corrected data

for the energy and the heat capacitance are shown as violet dotted curves with circles

in both panels.
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The natural way to overcome the disagreement between the heat capacitances

obtained by the differentiation (4.39) and from the fluctuation formula (4.65), would

be to modify the code of the program in such a way that it would provide the energy

values after every MD step. It would allow us, at least, to avoid ambiguities associated

with the different tricks like multiplication by a constant factor or enormous decrease

in the time step.

4.7 Conclusion

In this work in an attempt to develop an accurate technique for the calculation

of PDF for flexible molecules we studied the role of quantum effects that are usually

ignored in traditional Monte Carlo or Molecular Dynamics simulations. We found

that it is very important to take into account the effect of zero-point motion, if an

accurate PDF at small distances is desired. We developed a method that allows us

to incorporate the effect of zero-point motion into the PDF, calculated classically

from Monte Carlo or Molecular Dynamics molecular trajectories, and thus correct

the classical PDF. We found that at large distances, especially when the molecule

becomes flexible, its motion is almost classical.

In calculations of the total PDF for a conglomerate of molecules that are nec-

essary to make the comparison with the experimental measurements, interactions

between different molecules can be treated classically, since inter-molecular inter-

actions are much weaker than intra-molecular interactions. Thus, the situation with

inter-molecular interaction is analogous to the intra-molecular at large distances. Our

correction is important if an accurate PDF in the whole range of distances is desired.

It can help in reconstruction of the mutual orientations of different molecules, and

thus to determine possible constrains that can be caused by the intermolecular inter-

actions.
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Appendix B

Cut-off for the Morse potential

In order to find σ2
MCM and < U(T ) > for the Morse potential, it is necessary to

perform integrations (4.14, 4.17, 4.38) with the Morse potential used as U(x). For the

Morse potential as r →∞ the value of potential goes to const, i.e. exp [−U(x)/(kbT )]

also goes to const. Thus the integrals under consideration diverge as r → ∞. This

divergence means that in infinite time, a particle would escape from the potential at

any temperature. Due to this divergence it is unclear what should be the upper limit

of the integration. However, if temperature is low enough, there is a range of upper

cut-offs (sufficiently big, but not too big) that would lead to the same results with

respect to σ2
MCM(T ) and < UMCM(T ) >.

Figure B.1 shows dependencies of σ2
MCM(T ) and < UMCM(T ) > on temperature

for different values of cut-off. Thus, we see that if T ≤ 10000 K any reasonable value

of cut-off leads to the basically the same results. Thus for the curves on the Fig.4.4,

4.5, 4.6 cut off 2.5 (Å) was used.
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Figure B.1: Dependencies of σ2
MCM(T ) on temperature (see Fig.4.4) for different

values of the upper cut off in the integrals (4.14, 4.17). Thus, if T ≤ 10000 (K) any
cut-off in the interval (1.5:3.0) Åwould lead to basically the same result. The inset
shows how < UMCM(T ) > (in temperature units) depends on temperature. Thus for
the potential energy any upper cut off (see (4.38)) in the interval (1.5:3.0) Åis also
suitable.
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