PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10

Topics Covered: Tensor product spaces, change of coordinate system, general theory of angular momentum

Some Key Concepts: Angular momentum: commutation relations, raising and lowering operators, eigenstates and eigenvalues.

- 1. [10 pts] Consider the position eigenstate $|\vec{r}\rangle$. In spherical coordinates, this state is written as $|r\theta\phi\rangle$, where $\vec{R}|r\theta\phi\rangle = r\vec{e}_r(\theta,\phi)|r\theta\phi\rangle$. In cartesian coordinates, the same state is written $|xyz\rangle$, where $\vec{R}|xyz\rangle = (x\vec{e}_x + y\vec{e}_y + z\vec{e}_z)|xyz\rangle$. Evaluate the following:
 - (a) $\langle r\theta\phi|r'\theta'\phi'\rangle$
 - (b) $\langle r\theta\phi|xyz\rangle$
 - (c) $\langle r\theta\phi | p_x p_y p_z \rangle$
 - (d) $\langle r\theta\phi | \vec{R} | r'\theta'\phi' \rangle$
 - (e) $\langle r\theta\phi|Z|r'\theta'\phi'\rangle$
 - (f) $\langle r\theta\phi|P_z|r'\theta'\phi'\rangle$
- 2. [10 pts] Consider a system consisting of two spin-less particles with masses m_1 and m_2 , and charges q_1 and q_2 .
 - (a) Write the quantum mechanical Hamiltonian that describes this system.
 - (b) Define a suitable tensor-product-state basis to describe the system.
 - (c) Evaluate the expression $\langle b|H|\psi\rangle$, where $|\psi\rangle$ is an arbitrary state of the system, and $|b\rangle$ should be replaced by one of your basis states.
 - (d) Do the same for N identical particles of mass m and charge q.
- 3. [20 pts] Let $\vec{L} = \vec{R} \times \vec{P}$, where \vec{L} , \vec{R} , and \vec{P} are the three-dimensional vector operators for angular momentum, position, and linear momentum, respectively. For $\mu, \nu \in \{x, y, z\}$, evaluate the following expressions:
 - (a) $[R_{\mu}, R_{\nu}]$
 - (b) $[P_{\mu}, P_{\nu}]$
 - (c) $[R_{\mu}, P_{\nu}]$

Use these results to prove explicitly that $[J_x, J_y] = i\hbar J_z$, then use a symmetry argument to obtain similar expressions for the commutators $[J_y, J_z]$ and $[J_x, J_z]$.

- 4. [10 pts] Show explicitly that $J^2 = J_x^2 + J_y^2 + J_z^2$ commutes with J_z , then use a symmetry argument to show that J^2 must also commute with J_x and J_y . Then, answer the following (be sure to explain your reasoning):
 - (a) Do simultaneous eigenstates of J_x and J_z exist?
 - (b) Do simultaneous eigenstates of J^2 and J_z exist?
 - (c) Do simultaneous eigenstates of J^2 and J_y exist?
 - (d) Do simultaneous eigenstates of J^2 , J_z , and J_y exist?
 - (e) Do simultaneous eigenstates of J^2 and J^2_x exist?
 - (f) Do simultaneous eigenstates of J_z and $J_x^2 + J_y^2$ exist?
- 5. [20 pts] With $J_{\pm} = J_x \pm i J_y$, express J_+J_- and J_-J_+ in terms of the operators J^2 and J_z , then compute the following commutators:
 - (a) $[J_+, J_-]$
 - (b) $[J_+, J^2]$
 - (c) $[J_+, J_z]$
 - (d) $[J_{\pm}, J_x]$
 - (e) $[J_+, J_u]$
- 6. [20 pts] Let $|j,m\rangle$ be the standard simultaneous eigenstate of J^2 and J_z . (a) What are $J^2|j,m\rangle$ and $J_z|j,m\rangle$ in terms of j and m? (b) What are the allowed values of j? (c) For a given j-value, what are the allowed values of m? First, re-write your answers to (a), (b), and (c) ten times, then compute the following matrix elements:
 - (d) $\langle j, m | J^2 | j', m' \rangle$
 - (e) $\langle j, m | J_z | j', m' \rangle$
 - (f) $\langle j, m | J_+ | j' m' \rangle$
 - (g) $\langle j, m | J_x | j'm' \rangle$
 - (h) $\langle j, m | J_y | j'm' \rangle$
- 7. [10 pts] Consider a system described by the Hamiltonian

$$H = \Delta J_z + U(J_x^2 + J_y^2) \tag{1}$$

where J_x , J_y , and J_z are the three components of a generalized angular momentum operator, and Δ and U are constants. What are the energy levels of this system?