PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 10
Topics Covered: Tensor product spaces, change of coordinate system, general theory of angular momentum
Some Key Concepts: Angular momentum: commutation relations, raising and lowering operators, eigenstates and eigenvalues.

1. [10 pts] Consider the position eigenstate $|\vec{r}\rangle$. In spherical coordinates, this state is written as $|r \theta \phi\rangle$, where $\vec{R}|r \theta \phi\rangle=r \vec{e}_{r}(\theta, \phi)|r \theta \phi\rangle$. In cartesian coordinates, the same state is written $|x y z\rangle$, where $\vec{R}|x y z\rangle=\left(x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z}\right)|x y z\rangle$. Evaluate the following:
(a) $\left\langle r \theta \phi \mid r^{\prime} \theta^{\prime} \phi^{\prime}\right\rangle$
(b) $\langle r \theta \phi \mid x y z\rangle$
(c) $\left\langle r \theta \phi \mid p_{x} p_{y} p_{z}\right\rangle$
(d) $\langle r \theta \phi| \vec{R}\left|r^{\prime} \theta^{\prime} \phi^{\prime}\right\rangle$
(e) $\langle r \theta \phi| Z\left|r^{\prime} \theta^{\prime} \phi^{\prime}\right\rangle$
(f) $\langle r \theta \phi| P_{z}\left|r^{\prime} \theta^{\prime} \phi^{\prime}\right\rangle$
2. [10 pts] Consider a system consisting of two spin-less particles with masses m_{1} and m_{2}, and charges q_{1} and q_{2}.
(a) Write the quantum mechanical Hamiltonian that describes this system.
(b) Define a suitable tensor-product-state basis to describe the system.
(c) Evaluate the expression $\langle b| H|\psi\rangle$, where $|\psi\rangle$ is an arbitrary state of the system, and $|b\rangle$ should be replaced by one of your basis states.
(d) Do the same for N identical particles of mass m and charge q.
3. [20 pts] Let $\vec{L}=\vec{R} \times \vec{P}$, where \vec{L}, \vec{R}, and \vec{P} are the three-dimensional vector operators for angular momentum, position, and linear momentum, respectively. For $\mu, \nu \in\{x, y, z\}$, evaluate the following expressions:
(a) $\left[R_{\mu}, R_{\nu}\right]$
(b) $\left[P_{\mu}, P_{\nu}\right]$
(c) $\left[R_{\mu}, P_{\nu}\right]$

Use these results to prove explicitly that $\left[J_{x}, J_{y}\right]=i \hbar J_{z}$, then use a symmetry argument to obtain similar expressions for the commutators $\left[J_{y}, J_{z}\right]$ and $\left[J_{x}, J_{z}\right]$.
4. [10 pts] Show explicitly that $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ commutes with J_{z}, then use a symmetry argument to show that J^{2} must also commute with J_{x} and J_{y}. Then, answer the following (be sure to explain your reasoning):
(a) Do simultaneous eigenstates of J_{x} and J_{z} exist?
(b) Do simultaneous eigenstates of J^{2} and J_{z} exist?
(c) Do simultaneous eigenstates of J^{2} and J_{y} exist?
(d) Do simultaneous eigenstates of J^{2}, J_{z}, and J_{y} exist?
(e) Do simultaneous eigenstates of J^{2} and J_{x}^{2} exist?
(f) Do simultaneous eigenstates of J_{z} and $J_{x}^{2}+J_{y}^{2}$ exist?
5. [20 pts] With $J_{ \pm}=J_{x} \pm i J_{y}$, express $J_{+} J_{-}$and $J_{-} J_{+}$in terms of the operators J^{2} and J_{z}, then compute the the following commutators:
(a) $\left[J_{+}, J_{-}\right]$
(b) $\left[J_{ \pm}, J^{2}\right]$
(c) $\left[J_{ \pm}, J_{z}\right]$
(d) $\left[J_{ \pm}, J_{x}\right]$
(e) $\left[J_{ \pm}, J_{y}\right]$
6. [20 pts] Let $|j, m\rangle$ be the standard simultaneous eigenstate of J^{2} and J_{z}. (a) What are $J^{2}|j, m\rangle$ and $J_{z}|j, m\rangle$ in terms of j and m ? (b) What are the allowed values of j ? (c) For a given j-value, what are the allowed values of m ? First, re-write your answers to (a), (b), and (c) ten times, then compute the following matrix elements:
(d) $\langle j, m| J^{2}\left|j^{\prime}, m^{\prime}\right\rangle$
(e) $\langle j, m| J_{z}\left|j^{\prime}, m^{\prime}\right\rangle$
(f) $\langle j, m| J_{ \pm}\left|j^{\prime} m^{\prime}\right\rangle$
(g) $\langle j, m| J_{x}\left|j^{\prime} m^{\prime}\right\rangle$
(h) $\langle j, m| J_{y}\left|j^{\prime} m^{\prime}\right\rangle$
7. [10 pts] Consider a system described by the Hamiltonian

$$
\begin{equation*}
H=\Delta J_{z}+U\left(J_{x}^{2}+J_{y}^{2}\right) \tag{1}
\end{equation*}
$$

where J_{x}, J_{y}, and J_{z} are the three components of a generalized angular momentum operator, and Δ and U are constants. What are the energy levels of this system?

