PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 11
Topics Covered: Orbital angular momentum, center-of-mass coordinates
Some Key Concepts: angular degrees of freedom, spherical harmonics

1. [20 pts] In order to derive the properties of the spherical harmonics, we need to determine the action of the angular momentum operator in spherical coordinates. Just as we have $\langle x| P_{x}|\psi\rangle=-i \hbar \frac{d}{d x}\langle x \mid \psi\rangle$, we should find a similar expression for $\langle r \theta \phi| \vec{L}|\psi\rangle$. From $\vec{L}=\vec{R} \times \vec{P}$ and our knowledge of momentum operators, it follows that

$$
\langle r \theta \phi| \vec{L}|\psi\rangle=-1 \hbar\left(\vec{e}_{x}\left(y \frac{d}{d z}-z \frac{d}{d y}\right)+\vec{e}_{y}\left(z \frac{d}{d x}-x \frac{d}{d z}\right)+\vec{e}_{z}\left(x \frac{d}{d y}-y \frac{d}{d x}\right)\right)\langle r \theta \phi \mid \psi\rangle .
$$

Cartesian coordinates are related to spherical coordinates via the transformations

$$
\begin{gathered}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{gathered}
$$

and the inverse transformations

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\arctan \left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\arctan \left(\frac{y}{x}\right) .
\end{gathered}
$$

Their derivatives can be related via expansions such as

$$
\partial_{x}=\frac{\partial r}{\partial x} \partial_{r}+\frac{\partial \theta}{\partial x} \partial_{\theta}+\frac{\partial \phi}{\partial x} \partial_{\phi} .
$$

Using these relations, and similar expressions for ∂_{y} and ∂_{z}, find expressions for $\langle r \theta \phi| L_{x}|\psi\rangle,\langle r \theta \phi| L_{y}|\psi\rangle$, and $\langle r \theta \phi| L_{z}|\psi\rangle$, involving only spherical coordinates and their derivatives.
2. [15pts] From your previous answer and the definition $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$, prove that

$$
\langle r \theta \phi| L^{2}|\psi\rangle=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi^{2}}\right)\langle r \theta \phi \mid \psi\rangle .
$$

3. [10 pts] We can factorize the Hilbert space of a 3-D particle into radial and angular Hilbert spaces, $\mathcal{H}^{(3)}=\mathcal{H}^{(r)} \otimes \mathcal{H}^{(\Omega)}$. Two alternate basis sets that both span $\mathcal{H}^{(\Omega)}$ are $\{|\theta \phi\rangle\}$ and $\{|\ell m\rangle\}$. As the angular momentum operator lives entirely in $\mathcal{H}^{(\Omega)}$, we can use our results from problem 11.1 to derive an expression for $\langle\theta \phi| L_{z}|\ell m\rangle$. Combine this with the formula $L_{z}|\ell m\rangle=\hbar m|\ell m\rangle$, to derive and then solve a differential equation for the ϕ-dependence of $\langle\theta \phi \mid \ell m\rangle$. Your solution should give $\langle\theta \phi \mid \ell m\rangle$ in terms of the as of yet unspecified initial condition $\left.\langle\theta \mid \ell m\rangle \equiv\langle\theta, \phi \mid \ell m\rangle\right|_{\phi=0}$. What restrictions does this solution impose on the quantum number m, which describes the z-component of the orbital angular momentum? Since $m_{\max }=\ell$, what restrictions are then placed on the total angular momentum quantum number ℓ ?
4. [10 pts] Using $L_{ \pm}=L_{x} \pm i L_{y}$ we can use the relation $L_{+}|\ell, \ell\rangle=0$ and the expressions from problem 11.1 to write a differential equation for $\langle\theta \phi \mid \ell \ell\rangle$. Plug in your solution from 11.3 for the ϕ-dependence, and show that the solution is $\langle\theta \phi \mid \ell \ell\rangle=c_{\ell} e^{i \ell \phi} \sin ^{\ell}(\theta)$. Determine the value of the normalization coefficient c_{ℓ} by performing the necessary integral.
5. [10 pts] Using $L_{-}|\ell m\rangle=\hbar \sqrt{\ell(\ell+1)-m(m-1)}|\ell, m-1\rangle$ together with your previous answers to derive an expression for $\langle\theta \phi \mid \ell, m-1\rangle$ in terms of $\langle\theta \phi \mid \ell m\rangle$. Explain how in principle you can now recursively calculate the value of the spherical harmonic $Y_{\ell}^{m}(\theta \phi) \equiv\langle\theta \phi \mid \ell m\rangle$ for any θ and ϕ and for any ℓ and m. Follow your procedure to derive properly normalized expressions for spherical harmonics for the case $\ell=1, m=-1,0,1$.
6. [10 pts] A particle of mass M is constrained to move on a spherical surface of radius a.

Does the system live in $\mathcal{H}^{(3)}, \mathcal{H}^{(r)}$, or $\mathcal{H}^{(\Omega)}$? What is the Hamiltonian? What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?
7. [10 pts] Two particles of mass M_{1} and M_{2} are attached to a massless rigid rod of length d. The rod is attached to an axle at its center-of-mass, and is free to rotate without friction in the x -y plane.

Describe the Hilbert space of the system and then write the Hamiltonian. What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?
8. [10 pts] For a two-particle system, the transformation to relative and center-of-mass coordinates is defined by

$$
\begin{gathered}
\vec{R}=\vec{R}_{1}-\vec{R}_{2} \\
\vec{R}_{C M}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

The corresponding momenta are defined by

$$
\begin{aligned}
\vec{P} & =\mu \frac{d}{d t} \vec{R} \\
\vec{P}_{C M} & =M \frac{d}{d t} \vec{R}_{C M}
\end{aligned}
$$

where $\mu=m_{1} m_{2} / M$ is the reduced mass, and $M=m_{1}+m_{2}$ is the total mass. Invert these expressions to write $\vec{R}_{1}, \vec{R}_{2}, \vec{P}_{1}$, and \vec{P}_{2} in terms of $\vec{R}, \vec{R}_{C M}, \vec{P}$, and $\vec{P}_{C M}$.

