PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 11
Topics Covered: Orbital angular momentum, center-of-mass coordinates
Some Key Concepts: angular degrees of freedom, spherical harmonics

1. [20 pts] In order to derive the properties of the spherical harmonics, we need to determine the action of the angular momentum operator in spherical coordinates. Just as we have $\langle x| P_{x}|\psi\rangle=-i \hbar \frac{d}{d x}\langle x \mid \psi\rangle$, we should find a similar expression for $\langle r \theta \phi| \vec{L}|\psi\rangle$. From $\vec{L}=\vec{R} \times \vec{P}$ and our knowledge of momentum operators, it follows that

$$
\langle r \theta \phi| \vec{L}|\psi\rangle=-1 \hbar\left(\vec{e}_{x}\left(y \frac{d}{d z}-z \frac{d}{d y}\right)+\vec{e}_{y}\left(z \frac{d}{d x}-x \frac{d}{d z}\right)+\vec{e}_{z}\left(x \frac{d}{d y}-y \frac{d}{d x}\right)\right)\langle r \theta \phi \mid \psi\rangle .
$$

Cartesian coordinates are related to spherical coordinates via the transformations

$$
\begin{gathered}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{gathered}
$$

and the inverse transformations

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\arctan \left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\arctan \left(\frac{y}{x}\right) .
\end{gathered}
$$

Their derivatives can be related via expansions such as

$$
\partial_{x}=\frac{\partial r}{\partial x} \partial_{r}+\frac{\partial \theta}{\partial x} \partial_{\theta}+\frac{\partial \phi}{\partial x} \partial_{\phi} .
$$

Using these relations, and similar expressions for ∂_{y} and ∂_{z}, find expressions for $\langle r \theta \phi| L_{x}|\psi\rangle,\langle r \theta \phi| L_{y}|\psi\rangle$, and $\langle r \theta \phi| L_{z}|\psi\rangle$, involving only spherical coordinates and their derivatives.
$\partial_{x} r=\frac{x}{r}=\sin \theta \cos \phi$
$\partial_{x} \theta=\frac{z^{2}}{r^{2}} \frac{x}{z \sqrt{x^{2}+y^{2}}}=\frac{\cos \theta \cos \phi}{r}$
$\partial_{x} \phi=-\frac{x^{2}}{x^{2}+y^{2}} \frac{y}{x^{2}}=-\frac{\csc \theta \sin \phi}{r}$
So $\frac{d}{d x}=\sin \theta \cos \phi \partial_{r}+\frac{\cos \theta \cos \phi}{r} \partial_{\theta}-\frac{\csc \theta \sin \phi}{r} \partial_{\phi}$
$\partial_{y} r=\frac{y}{r}=\sin \theta \sin \phi$
$\partial_{y} \theta=\frac{z^{2}}{r^{2}} \frac{y}{z \sqrt{x^{2}+y^{2}}}=\frac{\cos \theta \sin \phi}{r}$
$\partial_{y} \phi=\frac{x^{2}}{x^{2}+y^{2}} \frac{1}{x}=\frac{\csc \theta \cos \phi}{r}$
So $\frac{d}{d y}=\sin \theta \sin \phi \partial_{r}+\frac{\cos \theta \sin \phi}{r} \partial_{\theta}+\frac{\csc \theta \cos \phi}{r} \partial_{\phi}$
$\partial_{z} r=\frac{z}{r}=\cos \theta$
$\partial_{z} \theta=-\frac{z^{2}}{r^{2}} \frac{\sqrt{x^{2}+y^{2}}}{z^{2}}=-\frac{\sin \theta}{r}$
$\partial_{z} \phi=0$
So $\frac{d}{d z}=\cos \theta \partial_{r}-\frac{\sin \theta}{r} \partial_{\theta}$

Now

$$
\langle r \theta \phi| L_{x}|\psi\rangle=-i \hbar\left(y \frac{d}{d z}-z \frac{d}{d y}\right)\langle r \theta \phi \mid \psi\rangle
$$

So we can say

$$
\begin{aligned}
L_{x} & =i \hbar\left(y \frac{d}{d z}-z \frac{d}{d y}\right) \\
& =-i \hbar\left(r \sin \theta \cos \theta \sin \phi \partial_{r}-\sin ^{2} \theta \sin \phi \partial_{\theta}-r \sin \theta \cos \theta \sin \phi \partial_{r}-\cos ^{2} \theta \sin \phi \partial_{\theta}+\cot \theta \cos \phi \partial_{\phi}\right)
\end{aligned}
$$

Which means

$$
\langle r \theta \phi| L_{x}|\psi\rangle=-i \hbar\left(-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi}\right)\langle r \theta \phi \mid \psi\rangle
$$

Similarly we can say

$$
\begin{aligned}
L_{y} & =-i \hbar\left(z \frac{d}{d x}-x \frac{d}{d z}\right) \\
& =-i \hbar\left(r \sin \theta \cos \theta \cos \phi \partial_{r}+\cos ^{2} \theta \cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}-r \sin \theta \cos \theta \cos \phi \partial_{r}+\sin ^{2} \theta \cos \phi \partial_{\theta}\right)
\end{aligned}
$$

so that

$$
\langle r \theta \phi| L_{y}|\psi\rangle=-i \hbar\left(\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}\right)\langle r \theta \phi \mid \psi\rangle
$$

Lastly, we have

$$
\begin{aligned}
L_{z}= & -i \hbar\left(x \frac{d}{d y}-y \frac{d}{d x}\right) \\
= & -i \hbar\left(r \sin ^{2} \theta \sin \phi \cos \phi \partial_{r}+\sin \theta \cos \theta \sin \phi \cos \phi \partial_{\theta}+\cos ^{2} \phi \partial_{\phi}\right. \\
& \left.+r \sin ^{2} \theta \sin \phi \cos \phi \partial_{r}-\sin \theta \cos \theta \sin \phi \cos \phi \partial_{\theta}+\sin ^{2} \phi \partial_{\phi}\right)
\end{aligned}
$$

so that

$$
\langle r \theta \phi| L_{z}|\psi\rangle=-i \hbar \partial_{\phi}\langle r \theta \phi \mid \psi\rangle
$$

2. [15pts] From your previous answer and the definition $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$, prove that

$$
\langle r \theta \phi| L^{2}|\psi\rangle=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi^{2}}\right)\langle r \theta \phi \mid \psi\rangle .
$$

$$
\begin{aligned}
L^{2}= & -\hbar^{2}\left[\left(\sin \phi \partial_{\theta}+\cot \theta \cos \phi \partial_{\phi}\right)\left(\sin \phi \partial_{\theta}+\cot \theta \cos \phi \partial_{\phi}\right)\right. \\
& \left.+\left(\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}\right)\left(\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}\right)+\partial_{\phi}^{2}\right] \\
= & -\hbar^{2}\left[\sin ^{2} \phi \partial_{\theta}^{2}+\cot \theta \sin \phi \cos \phi \partial_{\theta} \partial_{\phi}-\csc ^{2} \theta \sin \phi \cos \phi \partial_{\phi}+\cot \theta \sin \phi \cos \phi \partial_{\phi} \partial_{\theta}+\cot \theta \cos ^{2} \phi \partial_{\theta}\right. \\
& +\cot ^{2} \theta \cos ^{2} \phi \partial_{\phi}^{2}-\cot ^{2} \theta \cos \phi \sin \phi \partial_{\phi}+\cos ^{2} \phi \partial_{\theta}^{2}-\cot \theta \cos \phi \sin \phi \partial_{\theta} \partial_{\phi}+\csc ^{2} \theta \sin \phi \cos \phi \partial_{\phi} \\
& \left.-\cot \theta \sin \phi \cos \phi \partial_{\phi} \partial_{\theta}+\cot \theta \sin ^{2} \phi \partial_{\theta}+\cot ^{2} \theta \sin ^{2} \theta \partial_{\phi}^{2}+\cot ^{2} \theta \sin \phi \cos \phi \partial_{\phi}+\partial_{\phi}^{2}\right] \\
= & -\hbar^{2}\left[\partial_{\theta}^{2}+\cot \theta \partial_{\theta}+\left(1+\cot ^{2} \theta\right) \partial_{\phi}^{2}\right]
\end{aligned}
$$

Noting that

$$
\frac{1}{\sin \theta} \partial_{\theta} \sin \theta \partial_{\theta}=\partial_{\theta}^{2}+\cot \theta \partial_{\theta}
$$

and

$$
1+\cot ^{2} \theta=\frac{1}{\sin ^{2} \theta}
$$

the proof is complete.
3. [10 pts] We can factorize the Hilbert space of a 3-D particle into radial and angular Hilbert spaces, $\mathcal{H}^{(3)}=\mathcal{H}^{(r)} \otimes \mathcal{H}^{(\Omega)}$. Two alternate basis sets that both span $\mathcal{H}^{(\Omega)}$ are $\{|\theta \phi\rangle\}$ and $\{|\ell m\rangle\}$. As the angular momentum operator lives entirely in $\mathcal{H}^{(\Omega)}$, we can use our results from problem 11.1 to derive an expression for $\langle\theta \phi| L_{z}|\ell m\rangle$. Combine this with the formula $L_{z}|\ell m\rangle=\hbar m|\ell m\rangle$, to derive and then solve a differential equation for the ϕ-dependence of $\langle\theta \phi \mid \ell m\rangle$. Your solution should give $\langle\theta \phi \mid \ell m\rangle$ in terms of the as of yet unspecified initial condition $\left.\langle\theta \mid \ell m\rangle \equiv\langle\theta, \phi \mid \ell m\rangle\right|_{\phi=0}$. What restrictions does this solution impose on the quantum number m, which describes the z-component of the orbital angular momentum? Since $m_{\max }=\ell$, what restrictions are then placed on the total angular momentum quantum number ℓ ?

$$
\langle\theta \phi| L_{z}|\ell m\rangle=-i \hbar \frac{\partial}{\partial \phi}\langle\theta \phi \mid \ell m\rangle
$$

and

$$
\langle\theta \phi| L_{z}|\ell m\rangle=\hbar m\langle\theta \phi \mid \ell m\rangle
$$

Thus

$$
-i \hbar \frac{\partial}{\partial \phi}\langle\theta \phi \mid \ell m\rangle=\hbar m\langle\theta \phi \mid \ell m\rangle
$$

The solution to this simple first-order differential equation is

$$
\langle\theta \phi \mid \ell m\rangle=\langle\theta 0 \mid \ell m\rangle e^{i m \phi}
$$

Since the wave-function must be single valued, we require m to be a whole integer. As $m_{\max }=\ell$, this implies that ℓ must be a whole integer also.
4. [10 pts] Using $L_{ \pm}=L_{x} \pm i L_{y}$ we can use the relation $L_{+}|\ell, \ell\rangle=0$ and the expressions from problem 11.1 to write a differential equation for $\langle\theta \phi \mid \ell \ell\rangle$. Plug in your solution from 11.3 for the ϕ-dependence, and show that the solution is $\langle\theta \phi \mid \ell \ell\rangle=c_{\ell} e^{i \ell \phi} \sin ^{\ell}(\theta)$. Determine the value of the normalization coefficient c_{ℓ} by performing the necessary integral.

We have $\langle\theta \phi| L_{+}|\ell \ell\rangle=0$
This implies $\langle\theta \phi| L_{x}|\ell \ell\rangle+i\langle\theta \phi| L_{y}|\ell \ell\rangle=0$
Using the expressions from 11.1 gives $\left(-\sin \theta \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi}+i \cos \phi \partial_{\theta}-i \cot \theta \cos \phi \partial_{\phi}\right)\langle\theta \phi \mid \ell \ell\rangle=0$
This simplifies to $\left(i(\cos \phi+i \sin \phi) \partial_{\theta}-\cot \theta(\cos \phi+i \sin \phi) \partial_{\phi}\right)\langle\theta \phi \mid \ell \ell\rangle=0$
Factoring out the $e^{i \phi}$ gives $\left(i \partial_{\theta}-\cot \theta \partial_{\phi}\right)\langle\theta \phi \mid \ell \ell\rangle=0$
Plugging in the solution from 11.3 gives $\left(i \partial_{\theta}-i \ell \cot \theta\right)\langle\theta 0 \mid \ell \ell\rangle e^{-i \ell \phi}=0$
which reduces to

$$
\partial_{\theta}\langle\theta 0 \mid \ell \ell\rangle=\ell \cot \theta\langle\theta 0 \mid \ell \ell\rangle
$$

Now $\partial_{\theta} \sin ^{\ell} \theta=\ell \sin ^{\ell-1} \theta \cos \theta=\ell \cot \theta \sin ^{\ell} \theta$
So the solution is

$$
\langle\theta \phi \mid \ell \ell\rangle=c_{\ell} e^{i \ell \phi} \sin ^{\ell} \theta
$$

The normalization integral is $\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi|\langle\theta \phi \mid \ell \ell\rangle|^{2}=1$
With our solution this becomes $\left|c_{\ell}\right|^{2} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \sin ^{2 \ell} \theta=1$
Performing the phi integral gives $2 \pi\left|c_{\ell}\right|^{2} \int_{0}^{\pi} \sin \theta d \theta \sin ^{2 \ell} \theta=1$
u-substitution with $u=\cos \theta$ gives $2 \pi\left|c_{\ell}\right|^{2} \int_{-1}^{1} d u\left(1-u^{2}\right)^{\ell}=1$
Since the integrand is even, this reduces to $4 \pi\left|c_{\ell}\right|^{2} \int_{0}^{1} d u\left(1-u^{2}\right)^{\ell}=1$
From Mathematic we get $2 \pi\left|c_{\ell}\right|^{2} \frac{\Gamma[1 / 2] \Gamma[\ell+1]}{\Gamma[\ell+3 / 2]}=1$
which gives $c_{\ell}=\sqrt{\frac{\Gamma(\ell+3 / 2)}{2 \pi \Gamma[1 / 2] \Gamma(\ell+1)}}$
Thus we have

$$
\langle\theta \phi \mid \ell \ell\rangle=\sqrt{\frac{\Gamma(\ell+3 / 2)}{2 \pi \Gamma[1 / 2] \Gamma[\ell+1]}} \sin ^{\ell} \theta e^{i \ell \phi}
$$

For the special case $\ell=3$ this gives $\langle\theta \phi \mid 33\rangle=\frac{1}{8} e^{3 i \phi} \sqrt{\frac{35}{\pi}} \sin ^{3} \theta$, which agrees with the spherical harmonic $Y_{3}^{3}(\theta, \phi)$ up to a non-physical phase factor.
5. [10 pts] Using $L_{-}|\ell m\rangle=\hbar \sqrt{\ell(\ell+1)-m(m-1)}|\ell, m-1\rangle$ together with your previous answers to derive an expression for $\langle\theta \phi \mid \ell, m-1\rangle$ in terms of $\langle\theta \phi \mid \ell m\rangle$. Explain how in principle you can now recursively calculate the value of the spherical harmonic $Y_{\ell}^{m}(\theta \phi) \equiv\langle\theta \phi \mid \ell m\rangle$ for any θ and ϕ and for any ℓ and m. Follow your procedure to derive properly normalized expressions for spherical harmonics for the case $\ell=1, m=-1,0,1$.

To construct the other m states for the same ℓ, we can begin from the expression

$$
\langle\theta \phi| L_{-}|\ell m\rangle=\hbar \sqrt{(\ell+m)(\ell-m+1)}\langle\theta \phi \mid \ell, m-1\rangle
$$

Now

$$
\begin{aligned}
\langle\theta \phi| L_{-}|\ell m\rangle & =\langle\theta \phi| L_{x}|\ell m\rangle-i\langle\theta \phi| L_{y}|\ell m\rangle \\
& =-i \hbar\left(-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi}\right)\langle\theta \phi \mid \ell m\rangle-\hbar\left(\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}\right)\langle\theta \phi \mid \ell m\rangle \\
& =\hbar e^{-i \phi}\left(-\partial_{\theta}+i \cot \theta \partial_{\phi}\right)\langle\theta \phi \mid \ell m\rangle
\end{aligned}
$$

Putting the pieces together gives

$$
\langle\theta \phi \mid \ell, m-1\rangle=\frac{e^{-i \phi}\left(-\partial_{\theta}+i \cot \theta \partial_{\phi}\right)}{\sqrt{(\ell+m)(\ell-m+1)}}\langle\theta \phi \mid \ell m\rangle
$$

Starting from our expression for $\langle\theta \phi \mid \ell \ell\rangle$, we can find $\langle\theta \phi \mid \ell, \ell-1\rangle$ by applying the above differential formula. Successive iterations will then generate all the remaining $\langle\theta \phi \mid \ell m\rangle$ states.
6. [10 pts] A particle of mass M is constrained to move on a spherical surface of radius a.

Does the system live in $\mathcal{H}^{(3)}, \mathcal{H}^{(r)}$, or $\mathcal{H}^{(\Omega)}$? What is the Hamiltonian? What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?

Because the radial motion is constrained to a fixed value, it is only necessary to consider the dynamics in $\mathcal{H}^{(\Omega)}$.

The Hamiltonian is then

$$
H=\frac{L^{2}}{2 M a^{2}}
$$

Choosing simultaneous eigenstates of L^{2} and L_{z}, we have

$$
H|\ell, m\rangle=\frac{\hbar^{2} \ell(\ell+1)}{2 M a^{2}}|\ell, m\rangle
$$

so that

$$
E_{\ell}=\frac{\hbar^{2} \ell(\ell+1)}{2 M a^{2}}
$$

and

$$
d_{\ell}=2 \ell+1
$$

The wavefunctions are the spherical harmonics

$$
\langle\theta \phi \mid \ell, m\rangle=Y_{m}^{\ell}(\theta, \phi)
$$

7. [10 pts] Two particles of mass M_{1} and M_{2} are attached to a massless rigid rod of length d. The rod is attached to an axle at its center-of-mass, and is free to rotate without friction in the x-y plane.

Describe the Hilbert space of the system and then write the Hamiltonian. What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?

Only a single angle, ϕ is required to specify the state of the system, where ϕ is the azimuthal angle, thus the Hilbert space is $\mathcal{H}^{(\phi)}$.

The Hamiltonian is then

$$
H=\frac{L_{z}^{2}}{2 I}
$$

where

$$
I=2 M\left(\frac{d}{2}\right)^{2}=\frac{M d^{2}}{2}
$$

is the moment of inertia. This gives

$$
H=\frac{L_{z}^{2}}{M d^{2}}
$$

The energy levels are then

$$
E_{m}=\frac{\hbar^{2} m^{2}}{M d^{2}}
$$

where $m=0, \pm 1, \pm 2, \pm 3, \ldots$
The energy levels all have a degeneracy of 2 , except for E_{0}, which is not degenerate.
The wavefunctions are given by

$$
\langle\phi \mid m\rangle=\frac{e^{i m \phi}}{\sqrt{2 \pi}}
$$

8. [10 pts] For a two-particle system, the transformation to relative and center-of-mass coordinates is defined by

$$
\begin{gathered}
\vec{R}=\vec{R}_{1}-\vec{R}_{2} \\
\vec{R}_{C M}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

The corresponding momenta are defined by

$$
\begin{gathered}
\vec{P}=\mu \frac{d}{d t} \vec{R} \\
\vec{P}_{C M}=M \frac{d}{d t} \vec{R}_{C M}
\end{gathered}
$$

where $\mu=m_{1} m_{2} / M$ is the reduced mass, and $M=m_{1}+m_{2}$ is the total mass. Invert these expressions to write $\vec{R}_{1}, \vec{R}_{2}, \vec{P}_{1}$, and \vec{P}_{2} in terms of $\vec{R}, \vec{R}_{C M}, \vec{P}$, and $\vec{P}_{C M}$.

The solutions are

$$
\begin{aligned}
\vec{R}_{1} & =\vec{R}_{C M}+\frac{m_{2}}{M} \vec{R} \\
\vec{R}_{2} & =\vec{R}_{C M}-\frac{m_{1}}{M} \vec{R}
\end{aligned}
$$

Writing \vec{P} and $\vec{P}_{C M}$ in terms of \vec{P}_{1} and \vec{P}_{2} gives

$$
\begin{gathered}
\vec{P}=\frac{m_{2} \vec{P}_{1}-m_{1} \vec{P}_{2}}{m_{1}+m_{2}} \\
\vec{P}_{C M}=\vec{P}_{1}+\vec{P}_{2}
\end{gathered}
$$

Inverting this gives

$$
\begin{aligned}
& \vec{P}_{1}=\frac{m_{1}}{M} \vec{P}_{C M}+\vec{P} \\
& \vec{P}_{2}=\frac{m_{2}}{M} \vec{P}_{C M}-\vec{P}
\end{aligned}
$$

