
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 11

Topics Covered: Orbital angular momentum, center-of-mass coordinates
Some Key Concepts: angular degrees of freedom, spherical harmonics

1. [20 pts] In order to derive the properties of the spherical harmonics, we need to determine the action
of the angular momentum operator in spherical coordinates. Just as we have 〈x|Px|ψ〉 = −i~ d

dx〈x|ψ〉,
we should find a similar expression for 〈rθφ|~L|ψ〉. From ~L = ~R× ~P and our knowledge of momentum
operators, it follows that

〈rθφ|~L|ψ〉 = −ı~

(

~ex

(

y
d

dz
− z

d

dy

)

+ ~ey

(

z
d

dx
− x

d

dz

)

+ ~ez

(

x
d

dy
− y

d

dx

))

〈rθφ|ψ〉.

Cartesian coordinates are related to spherical coordinates via the transformations

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

and the inverse transformations
r =

√

x2 + y2 + z2

θ = arctan(

√

x2 + y2

z
)

φ = arctan(
y

x
).

Their derivatives can be related via expansions such as

∂x =
∂r

∂x
∂r +

∂θ

∂x
∂θ +

∂φ

∂x
∂φ.

Using these relations, and similar expressions for ∂y and ∂z, find expressions for 〈rθφ|Lx|ψ〉, 〈rθφ|Ly|ψ〉,
and 〈rθφ|Lz|ψ〉, involving only spherical coordinates and their derivatives.

∂xr = x
r = sin θ cosφ

∂xθ = z2

r2

x

z
√

x2+y2
= cos θ cos φ

r

∂xφ = − x2

x2+y2

y
x2 = − csc θ sinφ

r

So d
dx = sin θ cosφ∂r + cos θ cos φ

r ∂θ − csc θ sinφ
r ∂φ

∂yr = y
r = sin θ sinφ

∂yθ = z2

r2

y

z
√

x2+y2
= cos θ sinφ

r

∂yφ = x2

x2+y2

1
x = csc θ cos φ

r

So d
dy = sin θ sinφ∂r + cos θ sin φ

r ∂θ + csc θ cos φ
r ∂φ

∂zr = z
r = cos θ
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∂zθ = − z2

r2

√
x2+y2

z2 = − sin θ
r

∂zφ = 0
So d

dz = cos θ∂r − sin θ
r ∂θ

Now

〈rθφ|Lx|ψ〉 = −i~(y
d

dz
− z

d

dy
)〈rθφ|ψ〉

So we can say

Lx = i~

(

y
d

dz
− z

d

dy

)

= −i~
(

r sin θ cos θ sinφ∂r − sin2 θ sinφ∂θ − r sin θ cos θ sinφ∂r − cos2 θ sinφ∂θ + cot θ cosφ∂φ

)

Which means
〈rθφ|Lx|ψ〉 = −i~ (− sinφ∂θ − cot θ cosφ∂φ) 〈rθφ|ψ〉

Similarly we can say

Ly = −i~(z
d

dx
− x

d

dz
)

= −i~
(

r sin θ cos θ cosφ∂r + cos2 θ cosφ∂θ − cot θ sinφ∂φ − r sin θ cos θ cosφ∂r + sin2 θ cosφ∂θ

)

so that
〈rθφ|Ly|ψ〉 = −i~ (cosφ∂θ − cot θ sinφ∂φ) 〈rθφ|ψ〉

Lastly, we have

Lz = −i~(x
d

dy
− y

d

dx
)

= −i~
(

r sin2 θ sinφ cosφ∂r + sin θ cos θ sinφ cosφ∂θ + cos2 φ∂φ

+r sin2 θ sinφ cosφ∂r − sin θ cos θ sinφ cosφ∂θ + sin2 φ∂φ

)

so that
〈rθφ|Lz|ψ〉 = −i~∂φ〈rθφ|ψ〉
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2. [15pts] From your previous answer and the definition L2 = L2
x + L2

y + L2
z, prove that

〈rθφ|L2|ψ〉 = −~
2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂2φ2

)

〈rθφ|ψ〉.

L2 = −~
2 [(sinφ∂θ + cot θ cosφ∂φ)(sinφ∂θ + cot θ cosφ∂φ)

+ (cosφ∂θ − cot θ sinφ∂φ)(cos φ∂θ − cot θ sinφ∂φ) + ∂2
φ

]

= −~
2
[

sin2 φ∂2
θ + cot θ sinφ cos φ∂θ∂φ − csc2 θ sinφ cosφ∂φ + cot θ sinφ cosφ∂φ∂θ + cot θ cos2 φ∂θ

+ cot2 θ cos2 φ∂2
φ − cot2 θ cosφ sinφ∂φ + cos2 φ∂2

θ − cot θ cosφ sinφ∂θ∂φ + csc2 θ sinφ cos φ∂φ

− cot θ sinφ cosφ∂φ∂θ + cot θ sin2 φ∂θ + cot2 θ sin2 θ∂2
φ + cot2 θ sinφ cosφ∂φ + ∂2

φ

]

= −~
2
[

∂2
θ + cot θ∂θ + (1 + cot2 θ)∂2

φ

]

Noting that
1

sin θ
∂θ sin θ∂θ = ∂2

θ + cot θ∂θ

and

1 + cot2 θ =
1

sin2 θ

the proof is complete.
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3. [10 pts] We can factorize the Hilbert space of a 3-D particle into radial and angular Hilbert spaces,
H(3) = H(r) ⊗ H(Ω). Two alternate basis sets that both span H(Ω) are {|θφ〉} and {|ℓm〉}. As the
angular momentum operator lives entirely in H(Ω), we can use our results from problem 11.1 to derive
an expression for 〈θφ|Lz|ℓm〉. Combine this with the formula Lz|ℓm〉 = ~m|ℓm〉, to derive and then
solve a differential equation for the φ-dependence of 〈θφ|ℓm〉. Your solution should give 〈θφ|ℓm〉 in

terms of the as of yet unspecified initial condition 〈θ|ℓm〉 ≡ 〈θ, φ|ℓm〉
∣

∣

∣

φ=0
. What restrictions does this

solution impose on the quantum number m, which describes the z-component of the orbital angular
momentum? Since mmax = ℓ, what restrictions are then placed on the total angular momentum
quantum number ℓ?

〈θφ|Lz|ℓm〉 = −i~ ∂

∂φ
〈θφ|ℓm〉

and
〈θφ|Lz|ℓm〉 = ~m〈θφ|ℓm〉

Thus

−i~ ∂

∂φ
〈θφ|ℓm〉 = ~m〈θφ|ℓm〉

The solution to this simple first-order differential equation is

〈θφ|ℓm〉 = 〈θ0|ℓm〉eimφ

Since the wave-function must be single valued, we require m to be a whole integer.
As mmax = ℓ, this implies that ℓ must be a whole integer also.
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4. [10 pts] Using L± = Lx ± iLy we can use the relation L+|ℓ, ℓ〉 = 0 and the expressions from problem
11.1 to write a differential equation for 〈θφ|ℓℓ〉. Plug in your solution from 11.3 for the φ-dependence,
and show that the solution is 〈θφ|ℓℓ〉 = cℓe

iℓφ sinℓ(θ). Determine the value of the normalization co-
efficient cℓ by performing the necessary integral.

We have 〈θφ|L+|ℓℓ〉 = 0
This implies 〈θφ|Lx|ℓℓ〉 + i〈θφ|Ly|ℓℓ〉 = 0
Using the expressions from 11.1 gives (− sin θ∂θ − cot θ cosφ∂φ + i cosφ∂θ − i cot θ cosφ∂φ)〈θφ|ℓℓ〉 = 0
This simplifies to (i(cos φ+ i sinφ)∂θ − cot θ(cosφ+ i sin φ)∂φ)〈θφ|ℓℓ〉 = 0
Factoring out the eiφ gives (i∂θ − cot θ∂φ)〈θφ|ℓℓ〉 = 0
Plugging in the solution from 11.3 gives (i∂θ − iℓ cot θ)〈θ0|ℓℓ〉e−iℓφ = 0
which reduces to

∂θ〈θ0|ℓℓ〉 = ℓ cot θ〈θ0|ℓℓ〉

Now ∂θ sinℓ θ = ℓ sinℓ−1 θ cos θ = ℓ cot θ sinℓ θ
So the solution is

〈θφ|ℓℓ〉 = cℓe
iℓφ sinℓ θ

The normalization integral is
∫ π
0 sin θdθ

∫ 2π
0 dφ |〈θφ|ℓℓ〉|2 = 1

With our solution this becomes |cℓ|2
∫ π
0 sin θdθ

∫ 2π
0 dφ sin2ℓ θ = 1

Performing the phi integral gives 2π|cℓ|2
∫ π
0 sin θdθ sin2ℓ θ = 1

u-substitution with u = cos θ gives 2π|cℓ|2
∫ 1
−1 du (1 − u2)ℓ = 1

Since the integrand is even, this reduces to 4π|cℓ|2
∫ 1
0 du (1 − u2)ℓ = 1

From Mathematic we get 2π|cℓ|2 Γ[1/2]Γ[ℓ+1]
Γ[ℓ+3/2] = 1

which gives cℓ =
√

Γ(ℓ+3/2)
2πΓ[1/2]Γ[ℓ+1]

Thus we have

〈θφ|ℓℓ〉 =

√

Γ(ℓ+ 3/2)

2πΓ[1/2]Γ[ℓ + 1]
sinℓ θeiℓφ

For the special case ℓ = 3 this gives 〈θφ|33〉 = 1
8e

3iφ
√

35
π sin3 θ, which agrees with the spherical

harmonic Y 3
3 (θ, φ) up to a non-physical phase factor.
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5. [10 pts] Using L−|ℓm〉 = ~
√

ℓ(ℓ+ 1) −m(m− 1)|ℓ,m − 1〉 together with your previous answers to
derive an expression for 〈θφ|ℓ,m − 1〉 in terms of 〈θφ|ℓm〉. Explain how in principle you can now
recursively calculate the value of the spherical harmonic Y m

ℓ (θφ) ≡ 〈θφ|ℓm〉 for any θ and φ and for
any ℓ and m. Follow your procedure to derive properly normalized expressions for spherical harmon-
ics for the case ℓ = 1, m = −1, 0, 1.

To construct the other m states for the same ℓ, we can begin from the expression

〈θφ|L−|ℓm〉 = ~

√

(ℓ+m)(ℓ−m+ 1)〈θφ|ℓ,m− 1〉

Now

〈θφ|L−|ℓm〉 = 〈θφ|Lx|ℓm〉 − i〈θφ|Ly|ℓm〉
= −i~(− sinφ∂θ − cot θ cosφ∂φ)〈θφ|ℓm〉 − ~(cosφ∂θ − cot θ sinφ∂φ)〈θφ|ℓm〉
= ~e−iφ(−∂θ + i cot θ∂φ)〈θφ|ℓm〉

Putting the pieces together gives

〈θφ|ℓ,m− 1〉 =
e−iφ(−∂θ + i cot θ∂φ)
√

(ℓ+m)(ℓ−m+ 1)
〈θφ|ℓm〉

Starting from our expression for 〈θφ|ℓℓ〉, we can find 〈θφ|ℓ, ℓ− 1〉 by applying the above differential
formula. Successive iterations will then generate all the remaining 〈θφ|ℓm〉 states.
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6. [10 pts] A particle of mass M is constrained to move on a spherical surface of radius a.

Does the system live in H(3), H(r), or H(Ω)? What is the Hamiltonian? What are the energy levels
and degeneracies? What are the wavefunctions of the energy eigenstates?

Because the radial motion is constrained to a fixed value, it is only necessary to consider the dynamics
in H(Ω).

The Hamiltonian is then

H =
L2

2Ma2

Choosing simultaneous eigenstates of L2 and Lz, we have

H|ℓ,m〉 =
~

2ℓ(ℓ+ 1)

2Ma2
|ℓ,m〉

so that

Eℓ =
~

2ℓ(ℓ+ 1)

2Ma2

and
dℓ = 2ℓ+ 1

The wavefunctions are the spherical harmonics

〈θφ|ℓ,m〉 = Y ℓ
m(θ, φ)
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7. [10 pts] Two particles of mass M1 and M2 are attached to a massless rigid rod of length d. The rod
is attached to an axle at its center-of-mass, and is free to rotate without friction in the x-y plane.

Describe the Hilbert space of the system and then write the Hamiltonian. What are the energy levels
and degeneracies? What are the wavefunctions of the energy eigenstates?

Only a single angle, φ is required to specify the state of the system, where φ is the azimuthal
angle, thus the Hilbert space is H(φ).

The Hamiltonian is then

H =
L2

z

2I

where

I = 2M

(

d

2

)2

=
Md2

2

is the moment of inertia. This gives

H =
L2

z

Md2

The energy levels are then

Em =
~

2m2

Md2

where m = 0,±1,±2,±3, . . .
The energy levels all have a degeneracy of 2, except for E0, which is not degenerate.
The wavefunctions are given by

〈φ|m〉 =
eimφ

√
2π
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8. [10 pts] For a two-particle system, the transformation to relative and center-of-mass coordinates is
defined by

~R = ~R1 − ~R2

~RCM =
m1

~R1 +m2
~R2

m1 +m2

The corresponding momenta are defined by

~P = µ
d

dt
~R

~PCM = M
d

dt
~RCM

where µ = m1m2/M is the reduced mass, and M = m1 +m2 is the total mass. Invert these expres-
sions to write ~R1, ~R2, ~P1, and ~P2 in terms of ~R, ~RCM , ~P , and ~PCM .

The solutions are
~R1 = ~RCM +

m2

M
~R

~R2 = ~RCM − m1

M
~R

Writing ~P and ~PCM in terms of ~P1 and ~P2 gives

~P =
m2

~P1 −m1
~P2

m1 +m2

~PCM = ~P1 + ~P2

Inverting this gives
~P1 =

m1

M
~PCM + ~P

~P2 =
m2

M
~PCM − ~P
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