PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 11

Topics Covered: Orbital angular momentum, center-of-mass coordinates
Some Key Concepts: angular degrees of freedom, spherical harmonics

1. [20 pts] In order to derive the properties of the spherical harmonics, we need to determine the action
of the angular momentum operator in spherical coordinates. Just as we have (z|P,|¢)) = —ih% (x|),

we should find a similar expression for (rf¢|L|y). From L = R x P and our knowledge of momentum
operators, it follows that
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Cartesian coordinates are related to spherical coordinates via the transformations
x = rsinf cos ¢

y = rsinfsin ¢

z=rcosb

r=a?+y?+ 22
Va2 +y?
(f)

and the inverse transformations

6 = arctan

¢ = arctan(g).
x
Their derivatives can be related via expansions such as

0= Lo, + D9, 00
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Using these relations, and similar expressions for 9, and 0, find expressions for (r0¢|Ly|v), (r8¢|Ly|y),
and (rf¢|L.|1), involving only spherical coordinates and their derivatives.
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So d% = cos 00, — #8@

Now

(09| L. ) = —ihly 5 =) (r00l)

So we can say
. d d
L, = 1h <y% — zd—y>
= —ih (r sin @ cos 0 sin ¢d, — sin® 0 sin ¢pdy — r sin 0 cos O sin ¢, — cos? O sin ¢pdy + cot 6 cos ¢8¢)
Which means
(r0p|Ly|1p) = —ih (—sin¢dy — cot 6 cos ¢p0y) (r0|1)

Similarly we can say

L, d d
L, = —zh(za—xE)

= —ih (r sin @ cos 6 cos ¢0, + cos> 0 cos pdy — cot 0 sin $0y — rsin b cos 6 cos ¢0, + sin? 6 cos (;589)
so that
(r0¢|Ly|t) = —ih (cos ¢pOp — cot O sin p0y) (r0o|v)

Lastly, we have

L, = —iz— —y—)

= —ih (r sin? 6 sin ¢ cos ¢0, + sin 6 cos 0 sin ¢ cos ¢pdy + cos> $0y
+7sin? 0 sin ¢ cos ¢d, — sin 6 cos O sin ¢ cos pdp + sin’ ¢8¢)

so that
(rO0¢|L.|¢) = —ihdy(rod|v)



2. [15pts] From your previous answer and the definition L? = L2 + LZ + L2, prove that
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L? = —h?[(sin¢dy + cot 6 cos $0y)(sin ¢y + cot O cos pOy)
+ (cos ¢y — cot O sin 0y ) (cos ¢y — cot O sin p0y) + 8(125]
= —K? [sin2 $03 + cot O sin ¢ cos $0g0p — csc? fsin ¢ cos 0y + cot 0sin ¢ cos p0y0g + cot cos? Oy
+ cot?  cos? qﬁ@é — cot? 0 cos ¢ sin POy + cos® 93 — cot 6 cos ¢ sin $OOy + csc? fsin ¢ cos oM
— cot @sin ¢ cos $p0,0y + cot O sin? ¢y + cot? f sin” 98; + cot? 0 sin ¢ cos $0gp + 83)]
= —K [(93 + cot 09 + (1 + cot? 9)83,]

Noting that

,La@ sin 00y = 03 + cot 00y
sin 6

and
1

sin? 6

1+ cot?h =

the proof is complete.



3. [10 pts] We can factorize the Hilbert space of a 3-D particle into radial and angular Hilbert spaces,
HB) = H" @ HE). Two alternate basis sets that both span H?) are {|6¢)} and {|fm)}. As the
angular momentum operator lives entirely in HE) | we can use our results from problem 11.1 to derive
an expression for (#¢|L,|¢m). Combine this with the formula L.|¢m) = hm|¢m), to derive and then
solve a differential equation for the ¢-dependence of (6¢|¢m). Your solution should give (f¢[¢m) in

terms of the as of yet unspecified initial condition (6|¢m) = (0, ¢|¢m) oo What restrictions does this

solution impose on the quantum number m, which describes the z-component of the orbital angular
momentum? Since Mmy,., = £, what restrictions are then placed on the total angular momentum
quantum number £7

0
(09| |tm) = —ihs 06| tm)

and
(0| L,|tm) = hm(0o|fm)
Thus

—ih% (0p|tm) = hm(0p|fm)

The solution to this simple first-order differential equation is
(0p|tm) = (A0|fm)e™™?

Since the wave-function must be single valued, we require m to be a whole integer.
AS My = ¢, this implies that £ must be a whole integer also.



4. [10 pts| Using L+ = L, +iL, we can use the relation L, |{,¢) = 0 and the expressions from problem

11.1 to write a differential equation for (6¢|¢¢). Plug in your solution from 11.3 for the ¢-dependence,
and show that the solution is (¢|¢f) = c,e? sin(#). Determine the value of the normalization co-
efficient ¢, by performing the necessary integral.

We have (6¢|L|¢¢) =0
This implies (0¢|Ly|00) + i(0p|Ly|00) =0
Using the expressions from 11.1 gives (— sin #09p — cot 6 cos ¢y + i cos ¢pdy — i cot 8 cos ¢y ) (0p|€l) = 0
This simplifies to (i(cos ¢ + isin ¢)0y — cot (cos ¢ + isin ¢)dy)(0p|¢l) =0
Factoring out the €' gives (i0y — cot 004)(0¢|¢f) = 0
Plugging in the solution from 11.3 gives (idy — i€ cot §)(00[£€)e=® = 0
which reduces to
0y (00|0¢)y = € cot 6(60|L¢)

Now 9y sin @ = ¢sin®~! 6 cos @ = £ cot 0 sin® 0
So the solution is ‘
(0p|0) = cpe™® sin® 0

The normalization integral is [ sin 9d9f do|( 9¢|€€>|2 =1

With our solution this becomes |cg|? [ sin §d6 f d¢ sin® 0 =1
Performing the phi integral gives 27|c|? fo sin 0df sin®' 6 = 1

u-substitution with u = cos 6 gives 27|cy|? f—1 du (1 —u?)* =1

Since the integrand is even, this reduces to 47|cy|? fol du (1 —u?) =1

From Mathematic we get 27|cy |2%3[/62ﬁ” =1
_ ['(4+3/2)
which gives ¢, = SRTTL/2TT0+1]

Thus we have

[ rw+sp) L
(Bo|tl) = \/27rF[1/2]F[€ ey sin’ fei’®

For the special case ¢ = 3 this gives (0¢|33) = %egw’\/%sing 0, which agrees with the spherical
harmonic Y3 (6, ¢) up to a non-physical phase factor.



5. [10 pts] Using L_|[¢m) = h\/0({ +1) —m(m — 1)|¢,m — 1) together with your previous answers to
derive an expression for (¢|¢,m — 1) in terms of (A¢|¢m). Explain how in principle you can now
recursively calculate the value of the spherical harmonic Y;"(0¢) = (#¢|¢m) for any 6 and ¢ and for
any £ and m. Follow your procedure to derive properly normalized expressions for spherical harmon-
ics for the case £ =1, m = —1,0, 1.

To construct the other m states for the same ¢, we can begin from the expression

(0S|L_|tm) = hn/ (£ +m) (L —m + 1){0¢|¢,m — 1)
Now

OSIL_[tm) = (66|Lultm) — i(06|Ly|ém)
—ih(—sin ¢y — cot 0 cos ¢y ) (B¢|m) — h(cos pdy — cot O sin pdy)(Bd|¢m)
he™ ' (—0g + i cot 0,) (0¢|tm)

Putting the pieces together gives

e (—0y +icot 00,)

Ol m—1) = JECtm)({l—m+1)

(0]tm)

Starting from our expression for (6¢|¢), we can find (6¢|¢,¢ — 1) by applying the above differential
formula. Successive iterations will then generate all the remaining (6¢|¢m) states.



6. [10 pts] A particle of mass M is constrained to move on a spherical surface of radius a.

Does the system live in H®), K" or H)? What is the Hamiltonian? What are the energy levels
and degeneracies? What are the wavefunctions of the energy eigenstates?

Because the radial motion is constrained to a fixed value, it is only necessary to consider the dynamics

in H,

The Hamiltonian is then )
L
H=—-=
2Ma?
Choosing simultaneous eigenstates of L? and L., we have

_RE(C+1)

H|£> m> - 2M(Z2 |€7m>

so that h2€(€ )
+1
= ————~2
¢ 2Ma?
and
dp =20+ 1

The wavefunctions are the spherical harmonics

(00]¢,m) = Y,(0,9)



7. [10 pts] Two particles of mass M; and M are attached to a massless rigid rod of length d. The rod
is attached to an axle at its center-of-mass, and is free to rotate without friction in the x-y plane.

Describe the Hilbert space of the system and then write the Hamiltonian. What are the energy levels
and degeneracies? What are the wavefunctions of the energy eigenstates?

Only a single angle, ¢ is required to specify the state of the system, where ¢ is the azimuthal
angle, thus the Hilbert space is H(®).

The Hamiltonian is then

L2
H _z
21
where ) ,
r—on (&) = ME
2 2
is the moment of inertia. This gives
L2
H z
Md?
The energy levels are then
h?*m?
Em = 352
Md

where m = 0,+1,4+2,£3, ...
The energy levels all have a degeneracy of 2, except for Ey, which is not degenerate.
The wavefunctions are given by

imep

Vor

Q

(glm) =



8. [10 pts] For a two-particle system, the transformation to relative and center-of-mass coordinates is
defined by

R=R,— R
— mlf_él +m2R2
Ry = T 1 Mot
mi + ms

The corresponding momenta are defined by

. d -
Poy = Md—RCM

where p = mims /M is the reduced mass, and M mi = my is the total mass. Invert these expres-
sions to write Rl, Rg, P1, and P2 in terms of R RCM, P and Pc M-

The solutions are "
— — 9 =
Ri=Recy + —R

1 CM Vi

5o p, Mg
Ry = Roum MR

Writing P and ]30 A in terms of ]31 and 152 gives

= moP —m P
p= 2tz

my1 + mg
ﬁCM = 131 + 132

Inverting this gives

— mi =

P = MPCM +P
— m2 —
P, = MPCM - P



