
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 12

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital
electric and magnetic dipole moments

1. [20 pts] A particle of mass M and charge q is constrained to move in a circle of radius r0 in the x−y
plane.

(a) If no forces other than the forces of constraint act on the particle, what are the energy levels
and corresponding wavefunctions?

If the particle is forced to remain in the x-y plane, then it can only have angular momen-
tum along the z-axis, so that ~L = Lz~ez and L2 = L2

z.
The kinetic energy can be found two ways:

Method 1: Using our knowledge of angular momentum. We start by choosing φ as our co-
ordinate

H =
L2

2I
=

L2
z

2Mr20
(1)

so that the eigenstates are eigenstates of Lz → −i~
partialφ, from which we see know that the energy levels are then Em = ~2m2

2Mr2
0
, where m =

0,±1,±2,±3 . . . ..., and the wavefunctions are 〈φ|m〉 = 1√
2π
eimφ.

Method 2: Solution from first principles. We start by choosing s as our coordinate, where
s is the distance measured along the circle. The classical Lagrangian is then

L =
Mṡ2

2
(2)

the canonical momentum is ps = ∂sL = Mṡ. The Hamiltonian is then

H = pṡ− L =
p2

s

2M
(3)

promoting s and ps to operators, we must have [S, Ps] = i~, so that in coordinate representation,
we can take S → s, and Ps → −i~∂s, which gives

H = − ~2

2M
∂2

s (4)

the energy eigenvalue equation is then

− ~2

2M
∂2

sψ(s) = Eψ(s) (5)

or equivalently

∂2
sψ(s) = −2ME

~2
ψ(s) (6)
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This has solutions of the form:
ψ(s) ∝ e±i

√
2ME
~ s (7)

single-valuedness requires
ψ(s+ 2πr0) = ψ(s) (8)

which means √
2ME

~
2πr0 = 2πm (9)

where m is any integer. This gives

E =
~2m2

2Mr20
(10)

so that

ψm(s) =
eims/r0

√
2πr0

(11)

Both methods agree because s = r0φ.
(b) A uniform, weak magnetic field of amplitude B0 is applied along the z-axis. What are the new

energy eigenvalues and corresponding wavefunctions?

Using the angular momentum method, we now need to add the term − qB0

2M Lz to the Hamil-
tonian to account for the orbital magnetic dipole moment, which gives

H =
L2

z

2Mr20
− qB0

2M
Lz (12)

so that the eigenstates are still Lz eigenstates, ψm(φ) = eimφ
√

2π
, where m = 0,±1,±2, . . ., but the

degeneracy is lifted so that

Em =
~2m2

2Mr20
− qB0~

2M
m (13)

(c) Instead of a weak magnetic field along the z-axis, a uniform electric field of magnitude E0 is
applied along the x-axis. Find an approximation for the low-lying energy levels that is valid in
the limit qr0E0 � ~2/Mr20.
Hint: try expanding around the potential about a stable equilibrium point.

Here we need to add the electric monopole energy. The electrostatic potential of a uniform
E-field along ~ex is φ(~r) = −E0x, so that the potential energy is U = −qE0x. The full Hamilto-
nian of the particle is then given by

H =
L2

z

2Mr20
− qE0r0 cos(φ) (14)

The stable equilibrium point is at φ = 0. Expanding to second-order about the equilibrium then
gives

H = − ~2

2Mr20
∂2

φ − qE0r0 +
qE0r0

2
φ2 (15)

This is just a harmonic oscillator Hamiltonian, with Meff = Mr20, and ω =
√

qE0

2Mr0
, so that the

energy levels are

En = −qE0r0 + ~
√

qE0

2Mr0

(
n+

1
2

)
(16)
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where n = 0, 1, 2, . . .. This approximation must be valid only when the level spacing is small
compared to the depth of the cos potential, so that

~
√

qE0

2Mr0
� qE0r0 (17)

which is equivalent to
~2

2Mr20
� qE0r0 (18)

3



2. [10 pts] Write out the fully-normalized hydrogen wavefunctions for all of the 3p orbitals. Expand out
any special functions in terms of elementary functions. You can look these up in a book or on-line,
but keep in mind that you will be penalized if your expression is not properly normalized.

We have

ψn,`,m(r, θ, φ) =

√
8(n− `− 1)!

2n(a0n)3(n+ `)!
e−r/a0n

(
2r
a0n

)`

L
(2`+1)
n−`−1

(
2r
a0n

)
Y m

` (θ, φ) (19)

Using Mathematica, I then get for n = 3 and ` = 1,

ψ3,1,1(r, θ, φ) =
1

81a7/2
0

√
π
e−r/3a0(6a0 − r)r sin θeiφ (20)

ψ3,1,0(r, θ, φ) =
√

2

81a7/2
0

√
π
e−r/3a0(6a0 − r)r cos θ (21)

ψ3,1,−1(r, θ, φ) =
1

81a7/2
0

√
π
e−r/3a0(6a0 − r)r sin θe−iφ (22)

Normalization checks out:

In[823]:=

Clear@y, n, l, m, r, q, f, aD
In[863]:=

y@n_, l_, m_, r_, q_, f_D := $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%8 Hn - l - 1L!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 n Ha nL3  Hn + lL!

 ExpA -r
ÅÅÅÅÅÅÅÅ
a n

E 

ikjjj
2 r
ÅÅÅÅÅÅÅÅ
a n

y{zzz
l

 LaguerreLAn - l - 1, 2 l + 1,
2 r
ÅÅÅÅÅÅÅÅ
a n

E SphericalHarmonicY@l, m, q, fD
In[864]:=

y311 = FullSimplify@y@3, 1, 1, r, q, fDD
Out[864]=

"#######1ÅÅÅÅÅ
a3

‰-
r
ÅÅÅÅÅÅÅÅ3 a +Â f r H-6 a + rL Sin@qD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
81 a2

è!!!
p

In[865]:=

y310 = FullSimplify@y@3, 1, 0, r, q, fDD
Out[865]=

"#######1ÅÅÅÅÅ
a3

‰-
r
ÅÅÅÅÅÅÅÅ3 a "#####2ÅÅÅ

p
H6 a - rL r Cos@qD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
81 a2

In[866]:=

y31m1 = FullSimplify@y@3, 1, -1, r, q, fDD
Out[866]=

"#######1ÅÅÅÅÅ
a3

‰-
r
ÅÅÅÅÅÅÅÅ3 a -Â f H6 a - rL r Sin@qD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
81 a2

è!!!
p

In[870]:=

Integrate@Conjugate@y311D y311 r2  Sin@qD,8f, 0, 2 p<, 8q, 0, p<, 8r, 0, ¶<, Assumptions Ø a > 0D
Out[870]=

1

In[871]:=

Integrate@Conjugate@y310D y310 r2  Sin@qD,8f, 0, 2 p<, 8q, 0, p<, 8r, 0, ¶<, Assumptions Ø a > 0D
Out[871]=

1

Untitled-1 1
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3. [20 pts] Numerically compute the matrix elements of the z-component of the orbital electric and
magnetic dipole moments for the |200〉 → |100〉, |210〉 → |100〉, and |211〉 → |100〉 transitions in
hydrogen. Be sure to show your work.

For the electric dipole moments, we need to compute e〈i|Z|f〉 = e〈i|R cos Θ|f〉. The selection rules
are mf = mi and Lf = Li ± 1. Of these three transitions, only |210〉 → |100〉 satisfies these selection
rules. Using the wavefunction from 12.2, and mathematica, and taking a0 = 5.20 × 10−10m and
e = −1.6× 10−19C, we find

〈200|eZ|100〉 = 0 (23)

〈210|eZ|100〉 =
∫ ∞

0
dr r2

∫ π

0
dθ cos θ

∫ π

0
dφψ∗2,1,0(r, θ, φ)r cos θψ1,0,0(r, θ, φ)

= 6.305× 10−29Cm (24)
〈211|eZ|100〉 = 0 (25)

For the magnetic dipole moments, we need µ = e
2me

Lz, so the selection rule is mi = mf . The
dipole moment is then µ = e~

2me
m`. This gives zero for all transitions. Note that when spin is

included, there will can be non-zero magnetic dipole transitions between these levels.

5



4. [15 pts] Based on the classical relation E = T+V , where E is the total energy, T is the kinetic energy,
and V is the potential energy, what is the probability that the velocity of the relative coordinate
exceeds the speed of light for a hydrogen atom in the 1s state? What about the 2s state? Based on
these answers, which of the two energy levels would you expect to have a larger relativistic correction?

Using H = T + V and T = 1
2mv

2, we find

v =

√
2
m

(E − V )

so for the hydrogen system with principle quantum number n this gives

v2(r) =
2
m

[
− ~2

2ma2
0

1
n2

+
e2

4πε0r

]
Setting this equal to c2 and solving for rc gives

rc(n) =
ma2

0n
2e2

2πε0(m2a2
0c

2n2 + ~2)

with the parameters (from Google) m = 9.10 × 10−31kg, a0 = 5.29 × 10−11m, e = 1.60 × 10−19C,
ε0 = 8.85× 10−12C2N−1m−2, c = 3.00× 108ms−1, and ~ = 1.05× 10−34Js, we find:

For n = 1: rc(1) = 5.62× 10−15m

For n = 2: rc(2) = 5.62× 10−15m

So we see that dependence on n is very weak.

The probability to be within this radius, however, depends strongly on n. For n = 1, we have

P (r < rc(1)) =
∫ rc(1)

0
dr R2

10(r) = 4
∫ rc(1)/a0

0
dx e−2xx2 = 8.00× 10−13

for n = 2 we have

P (r < rc(2)) =
∫ rc(2)

0
dr R2

20(r) = 2
∫ rc(2)/a0

0
dx e−2xx2(1− x2) = 4.00× 10−13

Therefore we would expect the ground-state to have the larger relativistic correction.
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5. [10 pts] Consider the Earth-Moon system as a gravitational analog to the hydrogen atom. What is
the effective Bohr radius (give both the formula and the numerical value). Based on the classical
energy and angular momentum, estimate the n and m quantum numbers for the relative motion
(take the z-axis as perpendicular to the orbital plane).

The Bohr radius for Hydrogen is given by

a0 =
4πε0~2

me2

From wikipedia I found MM = 7.35 × 1022kg, ME = 5.97 × 1024kg, rM = 3.84 × 108m, and
vM = 1.022× 103ms−1

To compute the Bohr radius for the moon, we just need to make the substitutions

m→ µ =
MMME

MM +ME
=

7.35× 1022 · 5.97× 1024

7.35× 1022 + 5.97× 1024
= 7.261022kg

e2

4πε0
→ GMMME = (6.67× 10−11)(5.97× 1024)(7.35× 1022) = 2.93× 1037

This gives

aM =
~2

GM2
MME

= 4.67× 10−129m

The classical energy is

E =
1
2
µv2

E −
GMMME

rM
= −3.83× 1028J

Solving

E = − ~2

2µa2
Mn

2

for n gives

n =
~√

−2µa2
ME

= 2.77× 1068

To calculate m, we take Lz = µvMrM and us

m =
Lz

~
=
µvMrM

~
= 2.74× 1068

Just for fun:
For a transition from n to n− 1, the energy released is

∆E = − ~2

2µa2
M

[
1
n2
− 1

(n− 1)2

]
= − ~2

2µa2
M

(n− 1)2 − n2

n2(n− 1)2
=

~2

2µa2
M

2n− 1
n2(n− 1)2

≈ ~2

2µa2
M

2
n3

This gives a numerical result of ∆E = 2.76× 10−40J. With λ = 2π~c/∆E we find λ = 7.10× 1014m.
Using 1lyr = 9.46 × 1015m we find that λ = 0.075 light years. The lunar month is 27.21 days, or
0.074 years. Coincidence?
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