PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 12
Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

1. [20 pts] A particle of mass $M$ and charge $q$ is constrained to move in a circle of radius $r_{0}$ in the $x-y$ plane.
(a) If no forces other than the forces of constraint act on the particle, what are the energy levels and corresponding wavefunctions?

If the particle is forced to remain in the $x$ - $y$ plane, then it can only have angular momentum along the z-axis, so that $\vec{L}=L_{z} \vec{e}_{z}$ and $L^{2}=L_{z}^{2}$.
The kinetic energy can be found two ways:
Method 1: Using our knowledge of angular momentum. We start by choosing $\phi$ as our coordinate

$$
\begin{equation*}
H=\frac{L^{2}}{2 I}=\frac{L_{z}^{2}}{2 M r_{0}^{2}} \tag{1}
\end{equation*}
$$

so that the eigenstates are eigenstates of $L_{z} \rightarrow-i \hbar$
partial $_{\phi}$, from which we see know that the energy levels are then $E_{m}=\frac{\hbar^{2} m^{2}}{2 M r_{0}^{2}}$, where $m=$ $0, \pm 1, \pm 2, \pm 3 \ldots \ldots$, and the wavefunctions are $\langle\phi \mid m\rangle=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}$.

Method 2: Solution from first principles. We start by choosing $s$ as our coordinate, where $s$ is the distance measured along the circle. The classical Lagrangian is then

$$
\begin{equation*}
\mathcal{L}=\frac{M \dot{s}^{2}}{2} \tag{2}
\end{equation*}
$$

the canonical momentum is $p_{s}=\partial_{s} L=M \dot{s}$. The Hamiltonian is then

$$
\begin{equation*}
H=p \dot{s}-\mathcal{L}=\frac{p_{s}^{2}}{2 M} \tag{3}
\end{equation*}
$$

promoting $s$ and $p_{s}$ to operators, we must have $\left[S, P_{s}\right]=i \hbar$, so that in coordinate representation, we can take $S \rightarrow s$, and $P_{s} \rightarrow-i \hbar \partial_{s}$, which gives

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 M} \partial_{s}^{2} \tag{4}
\end{equation*}
$$

the energy eigenvalue equation is then

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 M} \partial_{s}^{2} \psi(s)=E \psi(s) \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\partial_{s}^{2} \psi(s)=-\frac{2 M E}{\hbar^{2}} \psi(s) \tag{6}
\end{equation*}
$$

This has solutions of the form:

$$
\begin{equation*}
\psi(s) \propto e^{ \pm i \frac{\sqrt{2 M E}}{\hbar} s} \tag{7}
\end{equation*}
$$

single-valuedness requires

$$
\begin{equation*}
\psi\left(s+2 \pi r_{0}\right)=\psi(s) \tag{8}
\end{equation*}
$$

which means

$$
\begin{equation*}
\frac{\sqrt{2 M E}}{\hbar} 2 \pi r_{0}=2 \pi m \tag{9}
\end{equation*}
$$

where $m$ is any integer. This gives

$$
\begin{equation*}
E=\frac{\hbar^{2} m^{2}}{2 M r_{0}^{2}} \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\psi_{m}(s)=\frac{e^{i m s / r_{0}}}{\sqrt{2 \pi r_{0}}} \tag{11}
\end{equation*}
$$

Both methods agree because $s=r_{0} \phi$.
(b) A uniform, weak magnetic field of amplitude $B_{0}$ is applied along the $z$-axis. What are the new energy eigenvalues and corresponding wavefunctions?

Using the angular momentum method, we now need to add the term $-\frac{q B_{0}}{2 M} L_{z}$ to the Hamiltonian to account for the orbital magnetic dipole moment, which gives

$$
\begin{equation*}
H=\frac{L_{z}^{2}}{2 M r_{0}^{2}}-\frac{q B_{0}}{2 M} L_{z} \tag{12}
\end{equation*}
$$

so that the eigenstates are still $L_{z}$ eigenstates, $\psi_{m}(\phi)=\frac{e^{i m \phi}}{\sqrt{2 \pi}}$, where $m=0, \pm 1, \pm 2, \ldots$, but the degeneracy is lifted so that

$$
\begin{equation*}
E_{m}=\frac{\hbar^{2} m^{2}}{2 M r_{0}^{2}}-\frac{q B_{0} \hbar}{2 M} m \tag{13}
\end{equation*}
$$

(c) Instead of a weak magnetic field along the $z$-axis, a uniform electric field of magnitude $E_{0}$ is applied along the $x$-axis. Find an approximation for the low-lying energy levels that is valid in the limit $q r_{0} E_{0} \gg \hbar^{2} / M r_{0}^{2}$.
Hint: try expanding around the potential about a stable equilibrium point.

Here we need to add the electric monopole energy. The electrostatic potential of a uniform E-field along $\vec{e}_{x}$ is $\phi(\vec{r})=-E_{0} x$, so that the potential energy is $U=-q E_{0} x$. The full Hamiltonian of the particle is then given by

$$
\begin{equation*}
H=\frac{L_{z}^{2}}{2 M r_{0}^{2}}-q E_{0} r_{0} \cos (\phi) \tag{14}
\end{equation*}
$$

The stable equilibrium point is at $\phi=0$. Expanding to second-order about the equilibrium then gives

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 M r_{0}^{2}} \partial_{\phi}^{2}-q E_{0} r_{0}+\frac{q E_{0} r_{0}}{2} \phi^{2} \tag{15}
\end{equation*}
$$

This is just a harmonic oscillator Hamiltonian, with $M_{e f f}=M r_{0}^{2}$, and $\omega=\sqrt{\frac{q E_{0}}{2 M r_{0}}}$, so that the energy levels are

$$
\begin{equation*}
E_{n}=-q E_{0} r_{0}+\hbar \sqrt{\frac{q E_{0}}{2 M r_{0}}}\left(n+\frac{1}{2}\right) \tag{16}
\end{equation*}
$$

where $n=0,1,2, \ldots$. This approximation must be valid only when the level spacing is small compared to the depth of the cos potential, so that

$$
\begin{equation*}
\hbar \sqrt{\frac{q E_{0}}{2 M r_{0}}} \ll q E_{0} r_{0} \tag{17}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\hbar^{2}}{2 M r_{0}^{2}} \ll q E_{0} r_{0} \tag{18}
\end{equation*}
$$

2. [10 pts] Write out the fully-normalized hydrogen wavefunctions for all of the 3p orbitals. Expand out any special functions in terms of elementary functions. You can look these up in a book or on-line, but keep in mind that you will be penalized if your expression is not properly normalized.

We have

$$
\begin{equation*}
\psi_{n, \ell, m}(r, \theta, \phi)=\sqrt{\frac{8(n-\ell-1)!}{2 n\left(a_{0} n\right)^{3}(n+\ell)!}} e^{-r / a_{0} n}\left(\frac{2 r}{a_{0} n}\right)^{\ell} L_{n-\ell-1}^{(2 \ell+1)}\left(\frac{2 r}{a_{0} n}\right) Y_{\ell}^{m}(\theta, \phi) \tag{19}
\end{equation*}
$$

Using Mathematica, I then get for $n=3$ and $\ell=1$,

$$
\begin{align*}
\psi_{3,1,1}(r, \theta, \phi) & =\frac{1}{81 a_{0}^{7 / 2} \sqrt{\pi}} e^{-r / 3 a_{0}}\left(6 a_{0}-r\right) r \sin \theta e^{i \phi}  \tag{20}\\
\psi_{3,1,0}(r, \theta, \phi) & =\frac{\sqrt{2}}{81 a_{0}^{7 / 2} \sqrt{\pi}} e^{-r / 3 a_{0}}\left(6 a_{0}-r\right) r \cos \theta  \tag{21}\\
\psi_{3,1,-1}(r, \theta, \phi) & =\frac{1}{81 a_{0}^{7 / 2} \sqrt{\pi}} e^{-r / 3 a_{0}}\left(6 a_{0}-r\right) r \sin \theta e^{-i \phi} \tag{22}
\end{align*}
$$

Normalization checks out:

Untitled-1

In[823]:=
Clear $[\psi, \mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{r}, \theta, \phi, \mathrm{a}]$
In[863]: $=$
$\psi\left[n_{-}, l_{-}, m_{-}, r_{-}, \theta_{-}, \phi_{-}\right]:=\sqrt{\frac{8(n-1-1)!}{2 n(a n)^{3}(n+1)!}} \operatorname{Exp}\left[\frac{-r}{a n}\right]$
$\left(\frac{2 r}{a n}\right)^{1}$ LaguerreL $\left[n-1-1,21+1, \frac{2 r}{a n}\right]$ SphericalHarmonicy $[1, m, \theta, \phi]$
In[864]:=
$\psi 311=$ FullSimplify $[\psi[3,1,1, r, \theta, \phi]]$
Out[864]=
$\frac{\sqrt{\frac{1}{a^{3}}} e^{-\frac{r}{3 a}+i \phi} r(-6 a+r) \operatorname{Sin}[\theta]}{81 a^{2} \sqrt{\pi}}$
In[865]:=
$\psi 310=$ FullSimplify $[\psi[3,1,0, r, \theta, \phi]]$
out [865] =
$\frac{\sqrt{\frac{1}{a^{3}}} e^{-\frac{r}{3 a}} \sqrt{\frac{2}{\pi}}(6 a-r) r \operatorname{Cos}[\theta]}{81 a^{2}}$
In[866]:=
$\psi 31 \mathrm{ml}=$ FullSimplify $[\psi[3,1,-1, r, \theta, \phi]]$
out [866] $=$
$\frac{\sqrt{\frac{1}{a^{3}}} e^{-\frac{r}{3 a}-i \phi}(6 a-r) r \operatorname{Sin}[\theta]}{81 a^{2} \sqrt{\pi}}$
In[870]:=
Integrate [Conjugate $[\psi 311] \psi 311 \mathbf{r}^{2} \operatorname{Sin}[\theta]$,
$\{\phi, 0,2 \pi\},\{\theta, 0, \pi\},\{r, 0, \infty\}$, Assumptions $\rightarrow a>0]$
Out[870]=

In[871]:=
Integrate [Conjugate $[\psi 310] \psi 310 \mathbf{r}^{2} \operatorname{Sin}[\theta]$,
$\{\phi, 0,2 \pi\},\{\theta, 0, \pi\},\{r, 0, \infty\}$, Assumptions $\rightarrow a>0]$
Out[871]=
3. [20 pts] Numerically compute the matrix elements of the z-component of the orbital electric and magnetic dipole moments for the $|200\rangle \rightarrow|100\rangle,|210\rangle \rightarrow|100\rangle$, and $|211\rangle \rightarrow|100\rangle$ transitions in hydrogen. Be sure to show your work.

For the electric dipole moments, we need to compute $e\langle i| Z|f\rangle=e\langle i| R \cos \Theta|f\rangle$. The selection rules are $m_{f}=m_{i}$ and $L_{f}=L_{i} \pm 1$. Of these three transitions, only $|210\rangle \rightarrow|100\rangle$ satisfies these selection rules. Using the wavefunction from 12.2, and mathematica, and taking $a_{0}=5.20 \times 10^{-10} \mathrm{~m}$ and $e=-1.6 \times 10^{-19} \mathrm{C}$, we find

$$
\begin{align*}
\langle 200| e Z|100\rangle & =0  \tag{23}\\
\langle 210| e Z|100\rangle & =\int_{0}^{\infty} d r r^{2} \int_{0}^{\pi} d \theta \cos \theta \int_{0}^{\pi} d \phi \psi_{2,1,0}^{*}(r, \theta, \phi) r \cos \theta \psi_{1,0,0}(r, \theta, \phi) \\
& =6.305 \times 10^{-29} \mathrm{Cm}  \tag{24}\\
\langle 211| e Z|100\rangle & =0 \tag{25}
\end{align*}
$$

For the magnetic dipole moments, we need $\mu=\frac{e}{2 m_{e}} L_{z}$, so the selection rule is $m_{i}=m_{f}$. The dipole moment is then $\mu=\frac{e \hbar}{2 m_{e}} m_{\ell}$. This gives zero for all transitions. Note that when spin is included, there will can be non-zero magnetic dipole transitions between these levels.
4. [ 15 pts ] Based on the classical relation $E=T+V$, where $E$ is the total energy, $T$ is the kinetic energy, and $V$ is the potential energy, what is the probability that the velocity of the relative coordinate exceeds the speed of light for a hydrogen atom in the 1s state? What about the 2s state? Based on these answers, which of the two energy levels would you expect to have a larger relativistic correction?

Using $H=T+V$ and $T=\frac{1}{2} m v^{2}$, we find

$$
v=\sqrt{\frac{2}{m}(E-V)}
$$

so for the hydrogen system with principle quantum number $n$ this gives

$$
v^{2}(r)=\frac{2}{m}\left[-\frac{\hbar^{2}}{2 m a_{0}^{2}} \frac{1}{n^{2}}+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right]
$$

Setting this equal to $c^{2}$ and solving for $r_{c}$ gives

$$
r_{c}(n)=\frac{m a_{0}^{2} n^{2} e^{2}}{2 \pi \epsilon_{0}\left(m^{2} a_{0}^{2} c^{2} n^{2}+\hbar^{2}\right)}
$$

with the parameters (from Google) $m=9.10 \times 10^{-31} \mathrm{~kg}, a_{0}=5.29 \times 10^{-11} \mathrm{~m}, e=1.60 \times 10^{-19} \mathrm{C}$, $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}, c=3.00 \times 10^{8} \mathrm{~ms}^{-1}$, and $\hbar=1.05 \times 10^{-34} \mathrm{Js}$, we find:

For $n=1: r_{c}(1)=5.62 \times 10^{-15} \mathrm{~m}$
For $n=2: r_{c}(2)=5.62 \times 10^{-15} \mathrm{~m}$
So we see that dependence on $n$ is very weak.
The probability to be within this radius, however, depends strongly on $n$. For $n=1$, we have

$$
P\left(r<r_{c}(1)\right)=\int_{0}^{r_{c}(1)} d r R_{10}^{2}(r)=4 \int_{0}^{r_{c}(1) / a_{0}} d x e^{-2 x} x^{2}=8.00 \times 10^{-13}
$$

for $n=2$ we have

$$
P\left(r<r_{c}(2)\right)=\int_{0}^{r_{c}(2)} d r R_{20}^{2}(r)=2 \int_{0}^{r_{c}(2) / a_{0}} d x e^{-2 x} x^{2}\left(1-x^{2}\right)=4.00 \times 10^{-13}
$$

Therefore we would expect the ground-state to have the larger relativistic correction.
5. [10 pts] Consider the Earth-Moon system as a gravitational analog to the hydrogen atom. What is the effective Bohr radius (give both the formula and the numerical value). Based on the classical energy and angular momentum, estimate the $n$ and $m$ quantum numbers for the relative motion (take the z -axis as perpendicular to the orbital plane).

The Bohr radius for Hydrogen is given by

$$
a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}
$$

From wikipedia I found $M_{M}=7.35 \times 10^{22} \mathrm{~kg}, M_{E}=5.97 \times 10^{24} \mathrm{~kg}, r_{M}=3.84 \times 10^{8} \mathrm{~m}$, and $v_{M}=1.022 \times 10^{3} \mathrm{~ms}^{-1}$

To compute the Bohr radius for the moon, we just need to make the substitutions

$$
\begin{gathered}
m \rightarrow \mu=\frac{M_{M} M_{E}}{M_{M}+M_{E}}=\frac{7.35 \times 10^{22} \cdot 5.97 \times 10^{24}}{7.35 \times 10^{22}+5.97 \times 10^{24}}=7.2610^{22} \mathrm{~kg} \\
\frac{e^{2}}{4 \pi \epsilon_{0}} \rightarrow G M_{M} M_{E}=\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)\left(7.35 \times 10^{22}\right)=2.93 \times 10^{37}
\end{gathered}
$$

This gives

$$
a_{M}=\frac{\hbar^{2}}{G M_{M}^{2} M_{E}}=4.67 \times 10^{-129} \mathrm{~m}
$$

The classical energy is

$$
E=\frac{1}{2} \mu v_{E}^{2}-\frac{G M_{M} M_{E}}{r_{M}}=-3.83 \times 10^{28} \mathrm{~J}
$$

Solving

$$
E=-\frac{\hbar^{2}}{2 \mu a_{M}^{2} n^{2}}
$$

for $n$ gives

$$
n=\frac{\hbar}{\sqrt{-2 \mu a_{M}^{2} E}}=2.77 \times 10^{68}
$$

To calculate $m$, we take $L_{z}=\mu v_{M} r_{M}$ and us

$$
m=\frac{L_{z}}{\hbar}=\frac{\mu v_{M} r_{M}}{\hbar}=2.74 \times 10^{68}
$$

Just for fun:
For a transition from $n$ to $n-1$, the energy released is

$$
\Delta E=-\frac{\hbar^{2}}{2 \mu a_{M}^{2}}\left[\frac{1}{n^{2}}-\frac{1}{(n-1)^{2}}\right]=-\frac{\hbar^{2}}{2 \mu a_{M}^{2}} \frac{(n-1)^{2}-n^{2}}{n^{2}(n-1)^{2}}=\frac{\hbar^{2}}{2 \mu a_{M}^{2}} \frac{2 n-1}{n^{2}(n-1)^{2}} \approx \frac{\hbar^{2}}{2 \mu a_{M}^{2}} \frac{2}{n^{3}}
$$

This gives a numerical result of $\Delta E=2.76 \times 10^{-40} \mathrm{~J}$. With $\lambda=2 \pi \hbar c / \Delta E$ we find $\lambda=7.10 \times 10^{14} \mathrm{~m}$. Using $1 \mathrm{lyr}=9.46 \times 10^{15} \mathrm{~m}$ we find that $\lambda=0.075$ light years. The lunar month is 27.21 days, or 0.074 years. Coincidence?

