
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 13

Topics Covered: Spin
Please note that the physics of spin-1/2 particles will figure heavily in both the final exam for 851, as well
as the QM subject exam.

Spin-1/2: The Hilbert space of a spin-1/2 particle is the tensor product between the infinite dimen-
sional ‘motional’ Hilbert space H(r) and a two-dimensional ‘spin’ Hilbert space, H(s). The spin Hilbert
space is defined by three non-commuting observables, Sx, Sy, and Sz. These operators satisfy angular
momentum commutation relations, so that simultaneous eigenstates of S2 = S2

x + S2
y + S2

z and Sz exist.
According to the general theory of angular momentum, these states can be designated by two quantum
numbers, s, and ms, where s must be either an integer or half integer, and ms ∈ {s, s−1, . . . ,−s}. The
theory of spin says that for a given particle, the value of s is fixed. A spin-1/2 particle has s = 1/2, so
that ms ∈ {−1/2, 1/2}. Since s never changes, we can label the two eigenstates of Sz as | ↑z〉 and | ↓z〉,
where | ↑z〉 = |s=1

2 ,ms=1
2〉 and | ↓z〉 = |s=1

2 ,ms=−1
2〉, so that

Sz| ↑z〉 =
~
2
| ↑z〉 (1)

Sz| ↓z〉 = −~
2
| ↓z〉 (2)

and

S2| ↑z〉 =
3~2

4
| ↑z〉 (3)

S2| ↓z〉 =
3~2

4
| ↓z〉. (4)

As eigenstates of an observable, these states must satisfy the orthonormality conditions 〈↑z | ↑z〉 = 1,
〈↓z | ↓z〉 = 1, and 〈↑z | ↓z〉 = 〈↓z | ↑z〉 = 0. The two vectors {| ↑〉, | ↓〉} must therefore form a complete
basis that spans H(s), so that

I = | ↑z〉〈↑z |+ | ↓z〉〈↓z |. (5)

1



1. In this problem you will derive the 2×2 matrix representations of the three spin observables from
first principles:

(a) In the basis {| ↑z〉, | ↓z〉}, the matrix representation of Sz is of course

Sz =
(

〈↑z |Sz| ↑z〉 〈↑z |Sz| ↓z〉
〈↓z |Sz| ↑z〉 〈↓z |Sz| ↓z〉

)
. (6)

Use Eqs. (1) and (2) to find the four matrix elements of Sz in the basis of its own eigenstates.

(b) Invert the definitions S+ = Sx + iSy and S− = Sx − iSy, to express Sx and Sy in terms of S+

and S−.

(c) Use the equation
S±|s,ms〉 = ~

√
s(s+1)−ms(ms±1)|s,ms±1〉 (7)

to find the matrix elements of S+ and S− in the basis {| ↑z〉, | ↓z〉.
(d) From your answers to 13.1.b and 13.1.c, derive the matrix representations of Sx and Sy for

spin-1/2.

(e) Explicitly verify that these operators satisfy the angular momentum commutation relations.

(f) Show explicitly that S2 = ~2s(s+1)I.

(g) Based on symmetry, write the 2×2 matrix representations of Sx, Sy, and Sz in the basis of
eigenstates of Sy.

2. Pauli spin matrices: The Pauli spin matrices, σx, σy, and σz are defined via

~S = ~s~σ (8)

(a) Use this definition and your answers to problem 13.1 to derive the 2×2 matrix representations
of the three Pauli matrices in the basis of eigenstates of Sz.

(b) For each Pauli matrix, find its eigenvalues, and the components of its normalized eigenvectors
in the basis of eigenstates of Sz.

(c) Use your answer to 13.2.b to obtain the eigenvalues of Sx, Sy, and Sz, as well as the components
of the corresponding normalized eigenvectors in the basis of eigenstates of Sz.

3. Repeat problems 13.1.(a-d) and 13.2.a for the case of a spin-1 particle.
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4. Consider an electron whose position is held fixed, so that it can be described by a simple two-
component spinor (i.e. no ~r dependence). Let the initial state of the electron be spin up relative to
the z-axis, | ↑z〉. At time t = 0, a uniform magnetic field is applied along the y-axis.
What is the state-vector of the electron at time t > 0?

Hint: Start by writing the Hamiltonian, which should contain only the spin-contribution to the
magnetic dipole energy. Then propagate the state using the energy eigenvalue representation of the
propagator, U(t) =

∑
n |ωn〉e−iωnt〈ωn|.

5. Consider the most general normalized spin-1/2 state |ψ〉 = c↑| ↑z〉+ c↓| ↓z〉.

(a) Compute 〈Sx〉, 〈Sy〉, and 〈Sz〉, with respect to this state.

(b) Compute the variances ∆Sx, ∆Sy, and ∆Sz.

(c) Prove that ∆Sx = ~
2

∣∣∣c2↑ − c2↓

∣∣∣, ∆Sy = ~
2

∣∣∣c2↑ + c2↓

∣∣∣, and ∆Sz = ~|c↑||c↓|.

6. The Stern-Gerlach effect: A Stern-Gerlach analyzer (SGA) spatially separates the ms states,
relative to the axis of alignment, of any particle with spin sent through the device.

(a) Consider an SGA aligned along the z-axis. At the location of the beam center, the magnetic
field inside the SGA can be written to good approximation as ~B(~r) = B0(z)~ez, where B0(z)
is a monotonically increasing function of z. The operator for the spin magnetic dipole energy
is VB = −~µ · ~B(~r). Due to conservation of energy, the electron must experience a force in the
direction of decreasing dipole energy. Show that this force is orthogonal to the Lorentz force
if the particle has charge, and that it will deflect the spin up and spin down states in opposite
directions.

(b) A single electron in the | ↑z〉 state, is directed into SGA1, which is aligned along the x-axis.
Determine the probabilities for the electron to exit SGA1 in the | ↑x〉 and | ↓x〉 channels.

(c) The output beam from SGA1 corresponding to the | ↓x〉 channel is then directed into SGA2,
which is aligned along the z-axis. While the output beam from SGA1 corresponding to the | ↑x〉
channel is directed into SGA3, which is aligned along the unit vector 1√

2
~ez + 1√

2
~ey. Determine

the probabilities for the electron to exit in each of the four output channels (i.e. two for SGA2
and two for SGA3).

7. Work through problem 9.1 on page 990 in Cohen-Tannoudji, transcribed below:

Consider a spin 1/2 particle. Call its spin ~S, and its orbital angular momentum, ~L, and its state
vector |ψ〉. The two functions ψ+(~r) and ψ−(~r) are defined by

ψ±(~r) = 〈~r,±|ψ〉, (9)

where + indicates spin up relative to the z-axis, and − indicates spin down.
Assume that:

ψ+(~r) = R(r)
[
Y 0

0 (θ, φ) +
1√
3
Y 0

1 (θ, φ)
]

(10)

ψ−(~r) =
R(r)√

3

[
Y 1

1 (θ, φ)− Y 0
1 (θ, φ)

]
(11)

where r, θ, and φ are the coordinates of the particle and R(r) is a given function of r.
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(a) What condition must R(r) satisfy for |ψ〉 to be normalized?

(b) Sz is measured with the particle in state |ψ〉. What results can be found, and with what
probabilities? Same question for Lz, then for Sx.

(c) A measurement of L2, with the particle in state |ψ〉, yielded zero. What state describes the
particle just after this measurement? Same question if the measurement of L2 had given 2~2.
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