PHYS851 Quantum Mechanics I, Fall 2009

1. What is the relationship between $\langle\psi \mid \phi\rangle$ and $\langle\phi \mid \psi\rangle$? What is the relationship between the matrix elements of \hat{M}^{\dagger} and the matrix elements of \hat{M} ? Assuming that $H^{\dagger}=H$, what is $\langle n| H^{\dagger}|m\rangle$ in terms of $\langle m| H|n\rangle$?
2. Use the matrix representation and summation notation to prove that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, where A and B are both operators. Use summation notation to expand $\langle\phi| A B|\psi\rangle^{\dagger}$ in terms of the constituent matrix elements and vector components?
3. Consider the discrete orthonormal basis $\{|m\rangle\}, m=1,2,3, \ldots, M$ that spans an M-dimensional Hilbert space, \mathcal{H}_{M}.
(a) Show that the identity operator, $\hat{I}=\sum_{m}|m\rangle\langle m|$, satisfies $\hat{I}^{2}=\hat{I}$.
(b) Form a new projector, \hat{P}, by removing the state $|3\rangle$, i.e. $\hat{P}=\sum_{m \neq 3}|m\rangle\langle m|$. Does $\hat{P}^{2}=\hat{P}$? Is P also the identity operator?
(c) Compute the trace of \hat{P} and compare it to the trace of \hat{I}.
(d) Based on the previous results, formulate the two necessary and sufficient conditions for an operator to be the identity operator in the space \mathcal{H}_{M}.
(e) Now consider the continuous basis $\{|x\rangle\}$, whose elements are orthogonal, but delta-normalized, i.e. $\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$. Show that in this case, the projector $\hat{I}=\int d x|x\rangle\langle x|$ also satisfies $\hat{I}^{2}=\hat{I}$.
4. Start from the equation $\frac{d}{d t}|\psi\rangle=\hat{H}|\psi\rangle$. Hit it from the left with $\langle n|$ and insert the projector $\hat{I}=$ $\sum_{n}|n\rangle\langle n|$ to derive the equation of motion for $c_{n}=\langle n \mid \psi(t)\rangle$? (Hint: be careful not to use the same symbol for two different things)
5. Suppose you have a set of d linearly independent vectors; $\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{d}\right\rangle$; in a d-dimensional space, but they are not orthonormal. The Gram-Schmidt procedure is a systematic algorithm for generating from it an orthonormal basis: $\left|e_{1}^{\prime}\right\rangle,\left|e_{2}^{\prime}\right\rangle \ldots,\left|e_{d}^{\prime}\right\rangle$. The procedure is as follows:
i Normalize the first vector by dividing by its norm: $\left|e_{1}^{\prime}\right\rangle=\frac{\left|e_{1}\right\rangle}{\left\|e_{1}\right\|}$
ii Find the projection of the second operator along the first and subtract it off: $\left|e_{2}^{\prime \prime}\right\rangle=\left|e_{2}\right\rangle-$ $\left|e_{1}^{\prime}\right\rangle\left\langle e_{1}^{\prime} \mid e_{2}\right\rangle$ then normalize the resulting vector: $\left.\left|e_{2}^{\prime}\right\rangle=\frac{\left|e_{2}^{\prime \prime}\right\rangle}{\left|e_{2}^{\prime}\right|} \right\rvert\,$
iii Then subtract from $\left|e_{3}\right\rangle$ its projections along $\left|e_{1}^{\prime}\right\rangle$ and $\left|e_{2}^{\prime}\right\rangle$ and form $\left|e_{3}^{\prime}\right\rangle$ by normalizing this vector, and so on for the remaining vectors
(a) For the case $d=3$ explicitly verify that the new unit vectors are orthogonal
(b) Use the Gram-Schmidt procedure to generate an orthonormal basis from the vectors $\left|e_{1}\right\rangle=$ $(1+i)|1\rangle+|2\rangle+i|3\rangle,\left|e_{2}\right\rangle=i|1\rangle+3|2\rangle+|3\rangle$, and $\left|e_{3}\right\rangle=28|2\rangle$. Please follow the procedure exactly as described above, i.e. first compute $\left|e_{1}^{\prime}\right\rangle$ using $\left|e_{1}\right\rangle$ and so on.
(c) Use the Gram-Schmidt procedure to generate an orthonormal basis from the vectors $\left|f_{1}\right\rangle,\left|f_{2}\right\rangle$, and $\left|f_{3}\right\rangle$, defined via $\left\langle x \mid f_{1}\right\rangle=e^{-x^{2} / 2},\left\langle x \mid f_{2}\right\rangle=x e^{-x^{2} / 2}$, and $\left\langle x \mid f_{3}\right\rangle=x^{2} e^{-x^{2} / 2}$. As your answer, give expressions for $\left\langle x \mid f^{\prime}\right\rangle,\left\langle x \mid f_{2}^{\prime}\right\rangle$, and $\left\langle x \mid f_{3}^{\prime}\right\rangle$.
6. Two operators, A and B, can be represented by the matrices $A=\left(\begin{array}{cc}-1 & i \\ 2 i & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -i \\ i & 2\end{array}\right)$. Use matrix algebra to compute the elements of (a) $C=A+B$, (b) $C=A B$, (c) $C=[A, B]:=$ $A B-B A$, (d) A^{\dagger} and B^{\dagger}, (e) B^{-1}. Verify that $B B^{-1}=1$. (f) Does A have an inverse?
7. Let the set of states $|k\rangle$ be an alternate basis for the space spanned by the states $|x\rangle$ where x and k are continuous indices on the interval $(-\infty, \infty)$. This implies that $\left\langle k \mid k^{\prime}\right\rangle=\delta\left(k-k^{\prime}\right)$ and $\int_{-\infty}^{\infty} d k|k\rangle\langle k|=\hat{I}$. Let the inner product be defined as $\langle x \mid k\rangle:=\frac{1}{\sqrt{2 \pi}} e^{i k x}$.
(a) What is $\langle k \mid x\rangle$?
(b) use the relation $\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$ to compute the integral $\int_{-\infty}^{\infty} d k e^{i k\left(x-x^{\prime}\right)}$.
(c) Consider the vector $|f\rangle$, defined via $\langle x \mid f\rangle=\frac{1}{\sqrt[4]{\pi \sigma^{2}}} e^{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}}$. What is $\|f\|$?
(d) What is the representation of $|f\rangle$ in the k-basis, i.e. $\langle k \mid f\rangle$? Hint: start with the thing you want, in this case $\langle k \mid f\rangle$, and insert the projector onto the basis in which $|f\rangle$ is known.
