HOMEWORK ASSIGNMENT 1: Due Monday, 9/14/09

PHYS851 Quantum Mechanics I, Fall 2009

- 1. What is the relationship between $\langle \psi | \phi \rangle$ and $\langle \phi | \psi \rangle$? What is the relationship between the matrix elements of \hat{M}^{\dagger} and the matrix elements of \hat{M} ? Assuming that $H^{\dagger} = H$, what is $\langle n | H^{\dagger} | m \rangle$ in terms of $\langle m | H | n \rangle$?
- 2. Use the matrix representation and summation notation to prove that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, where A and B are both operators. Use summation notation to expand $\langle \phi | AB | \psi \rangle^{\dagger}$ in terms of the constituent matrix elements and vector components?
- 3. Consider the discrete orthonormal basis $\{|m\rangle\}$, m = 1, 2, 3, ..., M that spans an *M*-dimensional Hilbert space, \mathcal{H}_M .
 - (a) Show that the identity operator, $\hat{I} = \sum_{m} |m\rangle \langle m|$, satisfies $\hat{I}^2 = \hat{I}$.
 - (b) Form a new projector, \hat{P} , by removing the state $|3\rangle$, i.e. $\hat{P} = \sum_{m \neq 3} |m\rangle \langle m|$. Does $\hat{P}^2 = \hat{P}$? Is P also the identity operator?
 - (c) Compute the trace of \hat{P} and compare it to the trace of \hat{I} .
 - (d) Based on the previous results, formulate the two necessary and sufficient conditions for an operator to be the identity operator in the space \mathcal{H}_M .
 - (e) Now consider the continuous basis $\{|x\rangle\}$, whose elements are orthogonal, but delta-normalized, i.e. $\langle x|x'\rangle = \delta(x-x')$. Show that in this case, the projector $\hat{I} = \int dx |x\rangle \langle x|$ also satisfies $\hat{I}^2 = \hat{I}$.
- 4. Start from the equation $\frac{d}{dt}|\psi\rangle = \hat{H}|\psi\rangle$. Hit it from the left with $\langle n|$ and insert the projector $\hat{I} = \sum_{n} |n\rangle\langle n|$ to derive the equation of motion for $c_n = \langle n|\psi(t)\rangle$? (Hint: be careful not to use the same symbol for two different things)
- 5. Suppose you have a set of d linearly independent vectors; $|e_1\rangle, |e_2\rangle, \ldots, |e_d\rangle$; in a d-dimensional space, but they are not orthonormal. The **Gram-Schmidt procedure** is a systematic algorithm for generating from it an orthonormal basis: $|e'_1\rangle, |e'_2\rangle, \ldots, |e'_d\rangle$. The procedure is as follows:
 - i Normalize the first vector by dividing by its norm: $|e'_1\rangle = \frac{|e_1\rangle}{||e_1||}$
 - ii Find the projection of the second operator along the first and subtract it off: $|e_2''\rangle = |e_2\rangle |e_1'\rangle\langle e_1'|e_2\rangle$ then normalize the resulting vector: $|e_2'\rangle = \frac{|e_2'\rangle}{||e_2'||}$
 - iii Then subtract from $|e_3\rangle$ its projections along $|e'_1\rangle$ and $|e'_2\rangle$ and form $|e'_3\rangle$ by normalizing this vector, and so on for the remaining vectors
 - (a) For the case d = 3 explicitly verify that the new unit vectors are orthogonal
 - (b) Use the Gram-Schmidt procedure to generate an orthonormal basis from the vectors $|e_1\rangle = (1+i)|1\rangle + |2\rangle + i|3\rangle$, $|e_2\rangle = i|1\rangle + 3|2\rangle + |3\rangle$, and $|e_3\rangle = 28|2\rangle$. Please follow the procedure exactly as described above, i.e. first compute $|e'_1\rangle$ using $|e_1\rangle$ and so on.
 - (c) Use the Gram-Schmidt procedure to generate an orthonormal basis from the vectors $|f_1\rangle$, $|f_2\rangle$, and $|f_3\rangle$, defined via $\langle x|f_1\rangle = e^{-x^2/2}$, $\langle x|f_2\rangle = xe^{-x^2/2}$, and $\langle x|f_3\rangle = x^2e^{-x^2/2}$. As your answer, give expressions for $\langle x|f_1'\rangle$, $\langle x|f_2'\rangle$, and $\langle x|f_3'\rangle$.
- 6. Two operators, A and B, can be represented by the matrices $A = \begin{pmatrix} -1 & i \\ 2i & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -i \\ i & 2 \end{pmatrix}$. Use matrix algebra to compute the elements of (a) C = A + B, (b) C = AB, (c) C = [A, B] := AB - BA, (d) A^{\dagger} and B^{\dagger} , (e) B^{-1} . Verify that $BB^{-1} = 1$. (f) Does A have an inverse?

- 7. Let the set of states $|k\rangle$ be an alternate basis for the space spanned by the states $|x\rangle$ where x and k are continuous indices on the interval $(-\infty, \infty)$. This implies that $\langle k|k'\rangle = \delta(k-k')$ and $\int_{-\infty}^{\infty} dk \, |k\rangle \langle k| = \hat{I}$. Let the inner product be defined as $\langle x|k\rangle := \frac{1}{\sqrt{2\pi}} e^{ikx}$.
 - (a) What is $\langle k|x\rangle$?
 - (b) use the relation $\langle x|x'\rangle = \delta(x-x')$ to compute the integral $\int_{-\infty}^{\infty} dk \, e^{ik(x-x')}$.
 - (c) Consider the vector $|f\rangle$, defined via $\langle x|f\rangle = \frac{1}{\sqrt[4]{\pi\sigma^2}}e^{-(x-x_0)^2/2\sigma^2}$. What is ||f||?
 - (d) What is the representation of $|f\rangle$ in the k-basis, i.e. $\langle k|f\rangle$? Hint: start with the thing you want, in this case $\langle k|f\rangle$, and insert the projector onto the basis in which $|f\rangle$ is known.