PHYS851 Quantum Mechanics I, Fall 2009

HOMEWORK ASSIGNMENT 3: Fundamentals of Quantum Mechanics

- 1. [10pts] The trace of an operator is defined as $Tr\{A\} = \sum_{m} \langle m | A | m \rangle$, where $\{|m\rangle\}$ is a suitable basis set.
 - (a) Prove that the trace is independent of the choice of basis.
 - (b) Prove the linearity of the trace operation by proving $Tr\{aA + bB\} = aTr\{A\} + bTr\{B\}$.
 - (c) Prove the cyclic property of the trace by proving $Tr\{ABC\} = Tr\{BCA\} = Tr\{CAB\}$.
- 2. Consider the system with three physical states $\{|1\rangle, |2\rangle, |3\rangle\}$. In this basis, the Hamiltonian matrix is:

$$H = \left(\begin{array}{rrrr} 1 & 2i & 1\\ -2i & 2 & -2i\\ 1 & 2i & 1 \end{array}\right)$$

Find the eigenvalues $\{\omega_1, \omega_2, \omega_3\}$ and eigenvectors $\{|\omega_1\rangle, |\omega_2\rangle, |\omega_3\rangle\}$ of H. Assume that the initial state of the system is $|\psi(0)\rangle = |1\rangle$. Find the three components $\langle 1|\psi(t)\rangle, \langle 2|\psi(t)\rangle$, and $\langle 3|\psi(t)\rangle$. Give all of your answers in proper Dirac notation.

- 3. Cohen-Tannoudji: pp 203-206: problems 2.2, 2.6, 2.7
- 4. Cohen-Tannoudji ;pp341-350: problem 3.14