PHYS851 Quantum Mechanics I, Fall 2009

HOMEWORK ASSIGNMENT 3:

Fundamentals of Quantum Mechanics

1. [10pts] The trace of an operator is defined as $\operatorname{Tr}\{A\}=\sum_{m}\langle m| A|m\rangle$, where $\{|m\rangle\}$ is a suitable basis set.
(a) Prove that the trace is independent of the choice of basis.
(b) Prove the linearity of the trace operation by proving $\operatorname{Tr}\{a A+b B\}=a \operatorname{Tr}\{A\}+b \operatorname{Tr}\{B\}$.
(c) Prove the cyclic property of the trace by proving $\operatorname{Tr}\{A B C\}=\operatorname{Tr}\{B C A\}=\operatorname{Tr}\{C A B\}$.
2. Consider the system with three physical states $\{|1\rangle,|2\rangle,|3\rangle\}$. In this basis, the Hamiltonian matrix is:

$$
H=\left(\begin{array}{ccc}
1 & 2 i & 1 \\
-2 i & 2 & -2 i \\
1 & 2 i & 1
\end{array}\right)
$$

Find the eigenvalues $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and eigenvectors $\left\{\left|\omega_{1}\right\rangle,\left|\omega_{2}\right\rangle,\left|\omega_{3}\right\rangle\right\}$ of H. Assume that the initial state of the system is $|\psi(0)\rangle=|1\rangle$. Find the three components $\langle 1 \mid \psi(t)\rangle,\langle 2 \mid \psi(t)\rangle$, and $\langle 3 \mid \psi(t)\rangle$. Give all of your answers in proper Dirac notation.
3. Cohen-Tannoudji: pp 203-206: problems 2.2, 2.6, 2.7
4. Cohen-Tannoudji ;pp341-350: problem 3.14

